1
|
Yuan S, Khodursky S, Geng J, Sharma P, Spin JM, Tsao P, Levin MG, Damrauer SM. Identifying Circulating Protein Mediators in the Link Between Smoking and Abdominal Aortic Aneurysm: An Integrated Analysis of Human Proteomic and Genomic Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25322973. [PMID: 40061319 PMCID: PMC11888489 DOI: 10.1101/2025.02.27.25322973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Smoking is a well-established risk factor for abdominal aortic aneurysm (AAA). However, the molecular pathways underlying this relationship remain poorly understood. This study aimed to identify circulating protein mediators that may explain the association between smoking and AAA. Methods We conducted a network Mendelian randomization (MR) study utilizing summary-level data from the largest available genome-wide association studies. Our primary smoking exposure was the lifetime smoking index, with smoking initiation and cigarettes per day included as supplementary traits. The AAA dataset comprised 39,221 cases and 1,086,107 controls. Protein data were sourced from two large cohorts: UKB-PPP, where proteins were measured using the Olink platform in 54,219 individuals, and deCODE, where proteins were measured using the SomaScan platform in 35,559 individuals. Two-sample MR was employed to estimate the association between smoking and AAA (βtotal) and between smoking and circulating protein levels (β1). Summary data-based MR was then used to assess the association between smoking-related proteins and AAA risk (β2). Mediation pathways were identified based on the directionality of effect estimates, and the corresponding mediation effects were quantified. Results Genetically predicted smoking traits were consistently associated with an increased risk of AAA. The lifetime smoking index was associated with the levels of 543 out of 5,764 unique circulating proteins, with 470 of these associations replicated in supplementary analyses using additional smoking traits and protein sources. Among the smoking-related proteins, genetically predicted levels of 22 were associated with AAA risk. Eight mediation pathways were identified accounting for 42.7% of the total smoking-AAA association and with mediation effects >4% for ADAMTS15, IL1RN, MMP12, PGF, PCSK9, and UXS1. Conclusion This study identified numerous circulating proteins potentially causally linked to smoking, and eight of these proteins were found to mediate the association between smoking and AAA risk.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Khodursky
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jiawei Geng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pranav Sharma
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua M. Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Levin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M. Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Golledge J, Lu HS, Curci JA. Small AAAs: Recommendations for Rodent Model Research for the Identification of Novel Therapeutics. Arterioscler Thromb Vasc Biol 2024; 44:1467-1473. [PMID: 38924435 PMCID: PMC11384288 DOI: 10.1161/atvbaha.124.320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
CLINICAL PROBLEM Most abdominal aortic aneurysms (AAAs) are small with low rupture risk (<1%/y) when diagnosed but slowly expand to ≥55 mm and undergo surgical repair. Patients and clinicians require medications to limit AAA growth and rupture, but drugs effective in animal models have not translated to patients. RECOMMENDATIONS FOR INCREASING TRANSLATION FROM MOUSE MODELS Use models that simulate human AAA tissue pathology, growth patterns, and rupture; focus on the clinically relevant outcomes of growth and rupture; design studies with the rigor required of human clinical trials; monitor AAA growth using reproducible ultrasound; and perform studies in both males and females. SUMMARY OF STRENGTHS AND WEAKNESSES OF MOUSE MODELS The aortic adventitial elastase oral β-aminopropionitrile model has many strengths including simulating human AAA pathology and modeling prolonged aneurysm growth. The Ang II (angiotensin II) model performed less well as it better simulates acute aortic syndrome than AAA. The elastase plus TGFβ (transforming growth factor-β) blocking antibody model displays a high rupture rate, making prolonged monitoring of AAA growth not feasible. The elastase perfusion and calcium chloride models both display limited AAA growth.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Hong S. Lu
- Saha Cardiovascular Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Section of Vascular Surgery, Department of Surgery, Tennessee Valley Health System, VA Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Lin J, Chen S, Yao Y, Yan M. Status of diagnosis and therapy of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1199804. [PMID: 37576107 PMCID: PMC10416641 DOI: 10.3389/fcvm.2023.1199804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by localized dilation of the abdominal aorta. They are associated with several serious consequences, including compression of adjacent abdominal organs, pain, treatment-related financial expenditure. The main complication of AAA is aortic rupture, which is responsible for about 200,000 deaths per year worldwide. An increasing number of researchers are dedicating their efforts to study AAA, resulting in significant progress in this field. Despite the commendable progress made thus far, there remains a lack of established methods to effectively decelerate the dilation of aneurysms. Therefore, further studies are imperative to expand our understanding and enhance our knowledge concerning AAAs. Although numerous factors are known to be associated with the occurrence and progression of AAA, the exact pathway of development remains unclear. While asymptomatic at most times, AAA features a highly unpredictable disease course, which could culminate in the highly deadly rupture of the aneurysmal aorta. Current guidelines recommend watchful waiting and lifestyle adjustment for smaller, slow-growing aneurysms, while elective/prophylactic surgical repairs including open repair and endovascular aneurysm repair are recommended for larger aneurysms that have grown beyond certain thresholds (55 mm for males and 50 mm for females). The latter is a minimally invasive procedure and is widely believed to be suited for patients with a poor general condition. However, several concerns have recently been raised regarding the postoperative complications and possible loss of associated survival benefits on it. In this review, we aimed to highlight the current status of diagnosis and treatment of AAA by an in-depth analysis of the findings from literatures.
Collapse
Affiliation(s)
- Jinping Lin
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuwei Chen
- Department of anesthesiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Yuanyuan Yao
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Yan
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Azarbal AF, Repella T, Carlson E, Manalo EC, Palanuk B, Vatankhah N, Zientek K, Keene DR, Zhang W, Abraham CZ, Moneta GL, Landry GJ, Alkayed NJ, Sakai LY. A Novel Model of Tobacco Smoke-Mediated Aortic Injury. Vasc Endovascular Surg 2022; 56:244-252. [PMID: 34961389 DOI: 10.1177/15385744211063054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tobacco smoke exposure is a major risk factor for aortic aneurysm development. However, the initial aortic response to tobacco smoke, preceding aneurysm formation, is not well understood. We sought to create a model to determine the effect of solubilized tobacco smoke (STS) on the thoracic and abdominal aorta of mice as well as on cultured human aortic smooth muscle cells (HASMCs). METHODS Tobacco smoke was solubilized and delivered to mice via implanted osmotic minipumps. Twenty male C57BL/6 mice received STS or vehicle infusion. The descending thoracic, suprarenal abdominal, and infrarenal abdominal segments of the aorta were assessed for elastic lamellar damage, smooth muscle cell phenotype, and infiltration of inflammatory cells. Cultured HASMCs grown in media containing STS were compared to cells grown in standard media in order to verify our in vivo findings. RESULTS Tobacco smoke solution caused significantly more breaks in the elastic lamellae of the thoracic and abdominal aorta compared to control solution (P< .0001) without inciting an inflammatory infiltrate. Elastin breaks occurred more frequently in the abdominal aorta than the thoracic aorta (P < .01). Exposure to STS-induced aortic microdissections and downregulation of α-smooth muscle actin (α-SMA) by vascular smooth muscle cells (VSMCs). Treatment of cultured HASMCs with STS confirmed the decrease in α-SMA expression. CONCLUSION Delivery of STS via osmotic minipumps appears to be a promising model for investigating the early aortic response to tobacco smoke exposure. The initial effect of tobacco smoke exposure on the aorta is elastic lamellar damage and downregulation of (α-SMA) expression by VSMCs. Elastic lamellar damage occurs more frequently in the abdominal aorta than the thoracic aorta and does not seem to be mediated by the presence of macrophages or other inflammatory cells.
Collapse
Affiliation(s)
- Amir F Azarbal
- Department of Surgery, 6684Oregon Health and Science University, Portland, OR, USA
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
| | - Tana Repella
- Department of Surgery, 6684Oregon Health and Science University, Portland, OR, USA
| | - Eric Carlson
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
- Department of Molecular & Medical Genetics, 6684Oregon Health and Science University, Portland, OR, USA
| | - Elise C Manalo
- Knight Cancer Institute, 6684Oregon Health and Science University, Portland, OR, USA
| | - Braden Palanuk
- Department of Surgery, 6684Oregon Health and Science University, Portland, OR, USA
| | - Nasibeh Vatankhah
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
| | - Keith Zientek
- Proteomics Core Facility, 6684Oregon Health & Science University, Portland, OR, USA
| | | | - Wenri Zhang
- Department of Anesthesia and Perioperative Medicine, 6684Oregon Health and Science University, Portland, OR, USA
| | - Cherrie Z Abraham
- Department of Surgery, 6684Oregon Health and Science University, Portland, OR, USA
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
| | - Gregory L Moneta
- Department of Surgery, 6684Oregon Health and Science University, Portland, OR, USA
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
| | - Gregory J Landry
- Department of Surgery, 6684Oregon Health and Science University, Portland, OR, USA
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, 6684Oregon Health and Science University, Portland, OR, USA
- 24179Shriners Hospital for Children, Portland, OR, USA
| | - Lynn Y Sakai
- Department of Molecular & Medical Genetics, 6684Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Sun L, Chang Y, Jiang P, Ma Y, Yuan Q, Ma X. Association of gene polymorphisms in FBN1 and TGF-β signaling with the susceptibility and prognostic outcomes of Stanford type B aortic dissection. BMC Med Genomics 2022; 15:65. [PMID: 35307021 PMCID: PMC8935688 DOI: 10.1186/s12920-022-01213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study is aimed at investigating the association of Fibrillin-1 (FBN1) and transforming growth factor β (TGF-β) signaling-related gene polymorphisms with the susceptibility of Stanford type B aortic dissection (AD) and its clinical prognostic outcomes. Methods Five single-nucleotide polymorphism (SNPs) (FBN1rs 145233125, rs201170905, rs11070646, TGFB1rs1800469, and TGFB2rs900) were analyzed in patients with Stanford type B AD (164) and healthy controls (317). Gene–gene and gene–environment interactions were assessed by generalized multifactor dimensionality reduction. A 4-year follow-up was performed for all AD patients. Results G carriers of FBN1 rs201170905 and TGFB1 rs1800469 have an increased risk of Stanford type B AD. The interaction of FBN1, TGFB1, TGFB2 and environmental promoted to the increased risk of type B AD (cross-validation consistency = 10/10, P = 0.001). Dominant models of FBN1rs145233125 TC + CC genotype (P = 0.028), FBN1 rs201170905 AG + GG (P = 0.047) and TGFB1 rs1800469 AG + GG (P = 0.052) were associated with an increased risk of death of Stanford type B AD. The recessive model of FBN1 rs145233125 CC genotype (P < 0.001), FBN1rs201170905 GG (P < 0.001), TGFB1 rs1800469 AG + GG genotype (P = 0.011) was associated with an increased risk of recurrence of chest pain in Stanford type B AD. Conclusions The interactions of gene–gene and gene–environment are related with the risk of Stanford type B AD. C carriers of rs145233125, G carriers of rs201170905 and G carriers of rs1800469 may be the poor clinical outcome indicators of mortality and recurrent chest pain in Stanford type B AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01213-z.
Collapse
|
6
|
Cho HJ, Yoo JH, Kim MH, Ko KJ, Jun KW, Han KD, Hwang JK. The risk of dementia in adults with abdominal aortic aneurysm. Sci Rep 2022; 12:1228. [PMID: 35075181 PMCID: PMC8786889 DOI: 10.1038/s41598-022-05191-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/03/2022] [Indexed: 01/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) and dementia have similar epidemiological profiles and common pathogenic mechanisms. However, there have been few studies on the link between these two diseases. For this study, information from 2009 to 2015 was extracted from the Korean National Health Insurance system database. A total of 15,251 participants with a new diagnosis of AAA was included. Propensity score matching by age and sex with patients in whom AAA was not diagnosed was used to select the control group of 45,753 participants. The primary endpoint of this study was newly diagnosed dementia (Alzheimer's disease (AD), vascular dementia (VD), or other type of dementia). The incidence of dementia was 23.084 per 1000 person years in the AAA group, which was higher than that of the control group (15.438 per 1000 person years). When divided into AD and VD groups, the incidence of AD was higher than that of VD, but the HR of AAA for occurrence of dementia was higher in VD (1.382 vs. 1.784). Among the various risk factors, there was an interaction of age, hypertension, and history of cardiovascular disease with incidence of dementia (p < 0.05). In the presence of hypertension, the HR for occurrence of dementia was high according to presence or absence of AAA (1.474 vs 1.165). In addition, this study showed higher HR in the younger age group (age < 65) and in the group with no history of cardiovascular disease [1.659 vs. 1.403 (age), 1.521 vs. 1.255 (history of cardiovascular disease)]. AAA was associated with increased risk of dementia regardless of AD or VD, even after adjusting for several comorbidities. These findings indicate that follow-up with AAA patients is necessary for early detection of signs and symptoms of dementia.
Collapse
Affiliation(s)
- Hyung-Jin Cho
- Division of Vascular and Transplant Surgery, Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul, 03312, Korea
| | - Ju-Hwan Yoo
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Korea
| | - Mi-Hyeong Kim
- Division of Vascular and Transplant Surgery, Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul, 03312, Korea
| | - Kyung-Jai Ko
- Department of Surgery, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Kang-Woong Jun
- Division of Vascular and Transplant Surgery, Department of Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Gyeonggi-do, Korea
| | - Kyung-do Han
- Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, Korea.
| | - Jeong-Kye Hwang
- Division of Vascular and Transplant Surgery, Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul, 03312, Korea.
| |
Collapse
|
7
|
Busch A, Bleichert S, Ibrahim N, Wortmann M, Eckstein HH, Brostjan C, Wagenhäuser MU, Goergen CJ, Maegdefessel L. Translating mouse models of abdominal aortic aneurysm to the translational needs of vascular surgery. JVS Vasc Sci 2021; 2:219-234. [PMID: 34778850 PMCID: PMC8577080 DOI: 10.1016/j.jvssci.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Abdominal aortic aneurysm (AAA) is a condition that has considerable socioeconomic impact and an eventual rupture is associated with high mortality and morbidity. Despite decades of research, surgical repair remains the treatment of choice and no medical therapy is currently available. Animal models and, in particular, murine models, of AAA are a vital tool for experimental in vivo research. However, each of the different models has individual limitations and provide only partial mimicry of human disease. This narrative review addresses the translational potential of the available mouse models, highlighting unanswered questions from a clinical perspective. It is based on a thorough presentation of the available literature and more than a decade of personal experience, with most of the available models in experimental and translational AAA research. Results From all the models published, only the four inducible models, namely the angiotensin II model (AngII), the porcine pancreatic elastase perfusion model (PPE), the external periadventitial elastase application (ePPE), and the CaCl2 model have been widely used by different independent research groups. Although the angiotensin II model provides features of dissection and aneurysm formation, the PPE model shows reliable features of human AAA, especially beyond day 7 after induction, but remains technically challenging. The translational value of ePPE as a model and the combination with β-aminopropionitrile to induce rupture and intraluminal thrombus formation is promising, but warrants further mechanistic insights. Finally, the external CaCl2 application is known to produce inflammatory vascular wall thickening. Unmet translational research questions include the origin of AAA development, monitoring aneurysm growth, gender issues, and novel surgical therapies as well as novel nonsurgical therapies. Conclusion New imaging techniques, experimental therapeutic alternatives, and endovascular treatment options provide a plethora of research topics to strengthen the individual features of currently available mouse models, creating the possibility of shedding new light on translational research questions.
Collapse
Affiliation(s)
- Albert Busch
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| | - Sonja Bleichert
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Nahla Ibrahim
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus Wortmann
- Department of Vascular and Endovascular Surgery, Universitaetsklinik Heidelberg, Heidelberg, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Christine Brostjan
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus U Wagenhäuser
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Ind
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| |
Collapse
|
8
|
Nicotine Exacerbates TAAD Formation Induced by Smooth Muscle-Specific Deletion of the TGF- β Receptor 2. J Immunol Res 2021; 2021:6880036. [PMID: 34646889 PMCID: PMC8505064 DOI: 10.1155/2021/6880036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023] Open
Abstract
Tobacco smoke is an established risk factor for thoracic aortic aneurysms and dissections (TAAD). However, little is known about its underlying mechanisms due to the lack of validated animal models. The present study developed a mouse model that may be utilized to investigate exacerbation of TAAD formation by mimetics of tobacco smoke. TAADs were created via inducible deletion of smooth muscle cell-specific Tgfbr2 receptors. Using this model, the first set of experiments evaluated the efficacy of nicotine salt (34.0 mg/kg/day), nicotine free base (NFB, 5.0 mg 90-day pellets), and cigarette smoke extract (0.1 ml/mouse/day). Compared with their respective control groups, only NFB pellets promoted TAAD dilation (23 ± 3% vs. 12 ± 2%, P = 0.014), and this efficacy was achieved at a cost of >50% acute mortality. Infusion of NFB with osmotic minipumps at extremely high, but nonlethal, doses (15.0 or 45.0 mg/kg/day) failed to accelerate TAAD dilation. Interestingly, costimulation with β-aminopropionitrile (BAPN) promoted TAAD dilation and aortic rupture at dosages of 3.0 and 45.0 mg/kg/day, respectively, indicating that BAPN sensitizes the response of TAADs to NFB. In subsequent analyses, the detrimental effects of NFB were associated with clustering of macrophages, neutrophils, and T-cells in areas with structural destruction, enhanced matrix metalloproteinase- (MMP-) 2 production, and pathological angiogenesis with attenuated fibrosis in the adventitia. In conclusion, modeling nicotine exacerbation of TAAD formation requires optimization of chemical form, route of delivery, and dosage of the drug as well as the pathologic complexity of TAADs. Under the optimized conditions of the present study, chronic inflammation and adventitial mal-remodeling serve as critical pathways through which NFB exacerbates TAAD formation.
Collapse
|
9
|
Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y. Smoking and the Pathophysiology of Peripheral Artery Disease. Front Cardiovasc Med 2021; 8:704106. [PMID: 34513948 PMCID: PMC8429807 DOI: 10.3389/fcvm.2021.704106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Smoking is one of the most important preventable factors causing peripheral artery disease (PAD). The purpose of this review is to comprehensively analyze and summarize the pathogenesis and clinical characteristics of smoking in PAD based on existing clinical, in vivo, and in vitro studies. Extensive searches and literature reviews have shown that a large amount of data exists on the pathological process underlying the effects of cigarette smoke and its components on PAD through various mechanisms. Cigarette smoke extracts (CSE) induce endothelial cell dysfunction, smooth muscle cell remodeling and macrophage phenotypic transformation through multiple molecular mechanisms. These pathological changes are the molecular basis for the occurrence and development of peripheral vascular diseases. With few discussions on the topic, we will summarize recent insights into the effect of smoking on regulating PAD through multiple pathways and its possible pathogenic mechanism.
Collapse
Affiliation(s)
- Weiming Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kang Geng
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Risk Factors and Mouse Models of Abdominal Aortic Aneurysm Rupture. Int J Mol Sci 2020; 21:ijms21197250. [PMID: 33008131 PMCID: PMC7583758 DOI: 10.3390/ijms21197250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is an important cause of death in older adults. In clinical practice, the most established predictor of AAA rupture is maximum AAA diameter. Aortic diameter is commonly used to assess AAA severity in mouse models studies. AAA rupture occurs when the stress (force per unit area) on the aneurysm wall exceeds wall strength. Previous research suggests that aortic wall structure and strength, biomechanical forces on the aorta and cellular and proteolytic composition of the AAA wall influence the risk of AAA rupture. Mouse models offer an opportunity to study the association of these factors with AAA rupture in a way not currently possible in patients. Such studies could provide data to support the use of novel surrogate markers of AAA rupture in patients. In this review, the currently available mouse models of AAA and their relevance to the study of AAA rupture are discussed. The review highlights the limitations of mouse models and suggests novel approaches that could be incorporated in future experimental AAA studies to generate clinically relevant results.
Collapse
|
11
|
Torres-Fonseca M, Galan M, Martinez-Lopez D, Cañes L, Roldan-Montero R, Alonso J, Reyero-Postigo T, Orriols M, Mendez-Barbero N, Sirvent M, Blanco-Colio LM, Martínez J, Martin-Ventura JL, Rodríguez C. Pathophisiology of abdominal aortic aneurysm: biomarkers and novel therapeutic targets. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 31:166-177. [PMID: 30528271 DOI: 10.1016/j.arteri.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular pathology with a high rate of morbidity and mortality and a prevalence that, in men over 65 years, can reach around 8%. In this disease, usually asymptomatic, there is a progressive dilatation of the vascular wall that can lead to its rupture, a fatal phenomenon in more than 80% of cases. The treatment of patients with asymptomatic aneurysms is limited to periodic monitoring with imaging tests, control of cardiovascular risk factors and treatment with statins and antiplatelet therapy. There is no effective pharmacological treatment capable of limiting AAA progression or avoiding their rupture. At present, the aortic diameter is the only marker of risk of rupture and determines the need for surgical repair when it reaches values greater than 5.5cm. This review addresses the main aspects related to epidemiology, risk factors, diagnosis and clinical management of AAA, exposes the difficulties to have good biomarkers of this pathology and describes the strategies for the identification of new therapeutic targets and biomarkers in AAA.
Collapse
Affiliation(s)
- Monica Torres-Fonseca
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - María Galan
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, España
| | - Diego Martinez-Lopez
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Laia Cañes
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), IIB-Sant Pau, Barcelona, España
| | - Raquel Roldan-Montero
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Judit Alonso
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Teresa Reyero-Postigo
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Mar Orriols
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Nerea Mendez-Barbero
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Marc Sirvent
- Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - José Martínez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), IIB-Sant Pau, Barcelona, España
| | - Jose Luis Martin-Ventura
- Vascular Research Lab, Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, España.
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, España.
| | | |
Collapse
|
12
|
Carino D, Sarac TP, Ziganshin BA, Elefteriades JA. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27:58-80. [PMID: 29896039 PMCID: PMC5995687 DOI: 10.1055/s-0038-1657771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a permanent dilatation of the abdominal aorta that exceeds 3 cm. Most AAAs arise in the portion of abdominal aorta distal to the renal arteries and are defined as infrarenal. Most AAAs are totally asymptomatic until catastrophic rupture. The strongest predictor of AAA rupture is the diameter. Surgery is indicated to prevent rupture when the risk of rupture exceeds the risk of surgery. In this review, we aim to analyze this disease comprehensively, starting from an epidemiological perspective, exploring etiology and pathophysiology, and concluding with surgical controversies. We will pursue these goals by addressing eight specific questions regarding AAA: (1) Is the incidence of AAA increasing? (2) Are ultrasound screening programs for AAA effective? (3) What causes AAA: Genes versus environment? (4) Animal models: Are they really relevant? (5) What pathophysiology leads to AAA? (6) Indications for AAA surgery: Are surgeons over-eager to operate? (7) Elective AAA repair: Open or endovascular? (8) Emergency AAA repair: Open or endovascular?
Collapse
Affiliation(s)
- Davide Carino
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Timur P. Sarac
- Section of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Tilson MD. Autoimmunity in the Abdominal Aortic Aneurysm and its Association with Smoking. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2018; 5:159-167. [PMID: 29766007 DOI: 10.12945/j.aorta.2017.17.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Smoking increases the risk of abdominal aortic aneurysm (AAA) in both humans and mice, although the underlying mechanisms are not completely understood. An adventitial aortic antigen, AAAP-40, has been partially sequenced. It has motifs with similarities to all three fibrinogen chains and appears to be connected in evolution to a large family of proteins called fibrinogen-related proteins. Fibrinogen may undergo non-enzymatic nitration, which may result from exposure to nitric oxide in cigarette smoke. Nitration of proteins renders them more immunogenic. It has recently been reported that anti-fibrinogen antibody promotes AAA development in mice. Also, anti-fibrinogen antibodies are present in patients with AAA. These matters are reviewed in the overall context of autoimmunity in AAA. The evidence suggests that smoking amplifies an auto-immune reaction that is critical to the pathogenesis of AAA.
Collapse
Affiliation(s)
- M David Tilson
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
Li FD, Kang R, Nie H, Wang XM, Zheng YH. An association of spleen volume and aortic diameter in patients and in mice with abdominal aortic aneurysm. BMC Surg 2017; 17:134. [PMID: 29246140 PMCID: PMC5731055 DOI: 10.1186/s12893-017-0328-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Background To investigate the potential mechanism of splenic enlargement in Ang II/APOE model and the associations between the spleen volume and the indices of abdominal aortic aneurysm (AAA) in human. Methods To investigate the changes of spleen volume on AAA formation, apolipoprotein E knockout (Apo E−/−) mice were treated with Ang II (1000 ng/kg/min) up to 28 days to generate AAA. We used Magnetic Resonance Imaging (MRI), liquid measurement, H&E and immunohistochemistry to analyze the morphological or pathological changes of spleen. To investigate the changes of spleen volume in human, a retrospective case-control study involving 30 male AAA patients and 25 male controls were performed. Spleen volume was measured on computed tomography images. Univariate analysis and multivariable sequential logistic regression analyses were used to analyze the association between spleen volume and maximal diameter (Dmax). Results In Ang II/APOE model, we found splenic enlargement in mice with AAA compared with the sham group. Histopathological investigations revealed hypertrophies of splenic follicles and increased populations of CD3+ T cells. In clinic cohort study, univariate analysis revealed higher values in large AAA (Dmax > 5.5 cm,n = 15) compared with the small (Dmax < 5.5 cm,n = 15) for spleen volume (230.6 ± 64.5 cm3 vs. 170.0 ± 32.8 cm3; P = 0.0030). Regression analysis revealed a statistically significant positive linear correlation of spleen volume and Dmax of AAA (r = 0.3611;P = 0.0423). Conclusions Mimicking the splenic pathology observed in murine AAA model, there is a strong positive correlation between spleen volume and the Dmax in male AAA patients. As Dmax is a valuable predictor of AAA rupture, the spleen enlargement may be another indicator.
Collapse
Affiliation(s)
- Fang-Da Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Rui Kang
- Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Diseases, Shandong University, NO, 324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Hao Nie
- Department of Vascular Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Xi-Ming Wang
- Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Diseases, Shandong University, NO, 324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Yue-Hong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongdan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
15
|
Aortic Wall Inflammation Predicts Abdominal Aortic Aneurysm Expansion, Rupture, and Need for Surgical Repair. Circulation 2017; 136:787-797. [PMID: 28720724 PMCID: PMC5571881 DOI: 10.1161/circulationaha.117.028433] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Ultrasmall superparamagnetic particles of iron oxide (USPIO) detect cellular inflammation on magnetic resonance imaging (MRI). In patients with abdominal aortic aneurysm, we assessed whether USPIO-enhanced MRI can predict aneurysm growth rates and clinical outcomes. Methods In a prospective multicenter open-label cohort study, 342 patients with abdominal aortic aneurysm (diameter ≥40 mm) were classified by the presence of USPIO enhancement and were monitored with serial ultrasound and clinical follow-up for ≥2 years. The primary end point was the composite of aneurysm rupture or repair. Results Participants (85% male, 73.1±7.2 years) had a baseline aneurysm diameter of 49.6±7.7 mm, and USPIO enhancement was identified in 146 (42.7%) participants, absent in 191 (55.8%), and indeterminant in 5 (1.5%). During follow-up (1005±280 days), 17 (5.0%) abdominal aortic aneurysm ruptures, 126 (36.8%) abdominal aortic aneurysm repairs, and 48 (14.0%) deaths occurred. Compared with those without uptake, patients with USPIO enhancement have increased rates of aneurysm expansion (3.1±2.5 versus 2.5±2.4 mm/year, P=0.0424), although this was not independent of current smoking habit (P=0.1993). Patients with USPIO enhancement had higher rates of aneurysm rupture or repair (47.3% versus 35.6%; 95% confidence intervals, 1.1–22.2; P=0.0308). This finding was similar for each component of rupture (6.8% versus 3.7%, P=0.1857) or repair (41.8% versus 32.5%, P=0.0782). USPIO enhancement was associated with reduced event-free survival for aneurysm rupture or repair (P=0.0275), all-cause mortality (P=0.0635), and aneurysm-related mortality (P=0.0590). Baseline abdominal aortic aneurysm diameter (P<0.0001) and current smoking habit (P=0.0446) also predicted the primary outcome, and the addition of USPIO enhancement to the multivariate model did not improve event prediction (c-statistic, 0.7935–0.7936). Conclusions USPIO-enhanced MRI is a novel approach to the identification of aortic wall cellular inflammation in patients with abdominal aortic aneurysms and predicts the rate of aneurysm growth and clinical outcome. However, it does not provide independent prediction of aneurysm expansion or clinical outcomes in a model incorporating known clinical risk factors. Clinical Trial Registration: URL: http://www.isrctn.com. Unique identifier: ISRCTN76413758.
Collapse
|
16
|
Han SA, Joh JH, Park HC. Risk Factors for Abdominal Aortic Aneurysm in the Korean Population. Ann Vasc Surg 2017; 41:135-140. [DOI: 10.1016/j.avsg.2016.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/04/2016] [Accepted: 08/13/2016] [Indexed: 01/31/2023]
|
17
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
18
|
Tilson MD. Decline of the atherogenic theory of the etiology of the abdominal aortic aneurysm and rise of the autoimmune hypothesis. J Vasc Surg 2016; 64:1523-1525. [PMID: 27633167 DOI: 10.1016/j.jvs.2016.06.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Affiliation(s)
- M David Tilson
- Department of Surgery, St. Luke's Roosevelt Hospital Center, New York, NY.
| |
Collapse
|
19
|
Yan H, Zhou HF, Akk A, Hu Y, Springer LE, Ennis TL, Pham CTN. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation. Arterioscler Thromb Vasc Biol 2016; 36:1660-1669. [PMID: 27283739 DOI: 10.1161/atvbaha.116.307786] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We previously established that neutrophil-derived dipeptidyl peptidase I (DPPI) is essential for experimental abdominal aortic aneurysm (AAA) development. Because DPPI activates several neutrophil serine proteases, it remains to be determined whether the AAA-promoting effect of DPPI is mediated by neutrophil serine proteases. APPROACH AND RESULTS Using an elastase-induced AAA model, we demonstrate that the absence of 2 neutrophil serine proteases, neutrophil elastase and proteinase-3, recapitulates the AAA-resistant phenotype of DPPI-deficient mice. DPPI and neutrophil serine proteases direct the in vitro and in vivo release of extracellular structures termed neutrophil extracellular traps (NETs). Administration of DNase1, which dismantles NETs, suppresses elastase-induced AAA in wild-type animals and in DPPI-deficient mice reconstituted with wild-type neutrophils. NETs also contain the cathelicidin-related antimicrobial peptide that complexes with self-DNA in recruiting plasmacytoid dendritic cells (pDCs), inducing type I interferons (IFNs) and promoting AAA in DPPI-deficient mice. Conversely, depletion of pDCs or blockade of type I IFNs suppresses experimental AAA. Moreover, we find an abundance of human cathelicidin peptide, a 37 amino acid sequence starting with 2 leucines and the human orthologue of cathelicidin-related antimicrobial peptide, in the vicinity of pDCs in human AAA tissues. Increased type I IFN mRNA expression is observed in human AAA tissues and circulating IFN-α is detected in ≈50% of the AAA sera examined. CONCLUSIONS These results suggest that neutrophil protease-mediated NET release contributes to elastase-induced AAA through pDC activation and type I IFN production. These findings increase our understanding of the pathways underlying AAA inflammatory responses and suggest that limiting NET, pDC, and type I IFN activities may suppress aneurysm progression.
Collapse
Affiliation(s)
- Huimin Yan
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hui-Fang Zhou
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Antonina Akk
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ying Hu
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Luke E Springer
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terri L Ennis
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christine T N Pham
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
20
|
Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2016; 13:975-87. [PMID: 26308600 DOI: 10.1586/14779072.2015.1074861] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An aortic aneurysm is a dilatation in which the aortic diameter is ≥3.0 cm. If left untreated, the aortic wall continues to weaken and becomes unable to withstand the forces of the luminal blood pressure resulting in progressive dilatation and rupture, a catastrophic event associated with a mortality of 50-80%. Smoking and positive family history are important risk factors for the development of abdominal aortic aneurysms (AAA). Several genetic risk factors have also been identified. On the histological level, visible hallmarks of AAA pathogenesis include inflammation, smooth muscle cell apoptosis, extracellular matrix degradation and oxidative stress. We expect that large genetic, genomic, epigenetic, proteomic and metabolomic studies will be undertaken by international consortia to identify additional risk factors and biomarkers, and to enhance our understanding of the pathobiology of AAA. Collaboration between different research groups will be important in overcoming the challenges to develop pharmacological treatments for AAA.
Collapse
Affiliation(s)
- Helena Kuivaniemi
- a 1 Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | | | | | | |
Collapse
|
21
|
Gutierrez PS, Leite TNP, Mangione FM. Male gender and smoking are related to single, but not to multiple, human aortic aneurysms. Cardiovasc Pathol 2015; 24:290-3. [PMID: 26071928 DOI: 10.1016/j.carpath.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED There is scanty information concerning multiple aortic aneurysms. Thus, we verified if clinical or pathological characteristics are different in patients with multiple (two or more) aortic aneurysms in comparison with those with only one. MATERIAL AND METHODS We selected at the necropsy files of the Heart Institute, São Paulo University School of Medicine, the last 100 cases with aortic aneurysms, comparing between the two groups: sex, age, presence of systemic arterial hypertension, diabetes, dyslipedemia, history of smoking habit, cause of the aneurysm, cause of death, and if the diagnosis was reached during life. Age was analysed by Mann-Whitney test, and the other variables by chi-square or Fisher's exact test. RESULTS Multiple aneurysms corresponded to 14% of cases. The proportion of women among patients with multiple aneurysms was higher than among those with single aneurysm (64.3% versus 20.9%, P<.01), even if only cases with atherosclerosis were taken into consideration (women among multiple-6/10, 60.0%; among single-14/70, 20.0%; P=.01). Smoking was less reported in cases with multiple (4/14, 28.6%) than with single aneurysm (53/86, 61.6%; P=.04); considering cases with atherosclerosis, such difference decreases (40.0% of multiple versus 68.6% of single, P=.09). CONCLUSION although atherosclerosis is present in most cases of both single and multiple aortic aneurysms, male gender and smoking, considered highly influential in such lesions, are less frequent in patients with multiple than in patients with single aneurysms. Thus mechanisms underlying multiple aortic aneurysms are probably different from those related to single, more common aneurysms.
Collapse
Affiliation(s)
- Paulo S Gutierrez
- Laboratory of Pathology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Thiago N P Leite
- Clinical Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda M Mangione
- Clinical Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Thatcher SE, Zhang X, Howatt DA, Yiannikouris F, Gurley SB, Ennis T, Curci JA, Daugherty A, Cassis LA. Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2014; 34:2617-23. [PMID: 25301841 DOI: 10.1161/atvbaha.114.304613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (AngII) to form angiotensin-(1-7) (Ang-(1-7)), which generally opposes effects of AngII. AngII infusion into hypercholesterolemic male mice induces formation of abdominal aortic aneurysms (AAAs). This study tests the hypothesis that deficiency of ACE2 promotes AngII-induced AAAs, whereas ACE2 activation suppresses aneurysm formation. APPROACH AND RESULTS ACE2 protein was detectable by immunostaining in mice and human AAAs. Whole-body deficiency of ACE2 significantly increased aortic lumen diameters and external diameters of suprarenal aortas from AngII-infused mice. Conversely, ACE2 deficiency in bone marrow-derived cells had no effect on AngII-induced AAAs. In contrast to AngII-induced AAAs, ACE2 deficiency had no significant effect on external aortic diameters of elastase-induced AAAs. Because ACE2 deficiency promoted AAA formation in AngII-infused mice, we determined whether ACE2 activation suppressed AAAs. ACE2 activation by administration of diminazene aceturate (30 mg/kg per day) to Ldlr(-/-) mice increased kidney ACE2 mRNA abundance and activity and elevated plasma Ang-(1-7) concentrations. Unexpectedly, administration of diminazene aceturate significantly reduced total sera cholesterol and very low-density lipoprotein-cholesterol concentrations. Notably, diminazene aceturate significantly decreased aortic lumen diameters and aortic external diameters of AngII-infused mice resulting in a marked reduction in AAA incidence (from 73% to 29%). None of these effects of diminazene aceturate were observed in the Ace2(-/y) mice. CONCLUSIONS These results demonstrate that ACE2 exerts a modulatory role in AngII-induced AAA formation, and that therapeutic stimulation of ACE2 could be a benefit to reduce AAA expansion and rupture in patients with an activated renin-angiotensin system.
Collapse
Affiliation(s)
- Sean E Thatcher
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Xuan Zhang
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Deborah A Howatt
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Frederique Yiannikouris
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Susan B Gurley
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Terri Ennis
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - John A Curci
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Alan Daugherty
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.)
| | - Lisa A Cassis
- From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.).
| |
Collapse
|
23
|
|
24
|
Affiliation(s)
- Alan Daugherty
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.); and Department of Surgery and Cancer, Imperial College, London, United Kingdom (J.T.P.)
| | | |
Collapse
|
25
|
Norman PE, Curci JA. Understanding the effects of tobacco smoke on the pathogenesis of aortic aneurysm. Arterioscler Thromb Vasc Biol 2013; 33:1473-7. [PMID: 23685557 DOI: 10.1161/atvbaha.112.300158] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aneurysmal arterial disease is a vascular degenerative condition that is distinct from atherosclerotic and other occlusive arterial diseases. There is regionalization of the predisposition to aneurysm formation within the vascular tree, and the pathological process varies with location. Infrarenal abdominal aortic aneurysm (AAA) is the most common manifestation of aneurysmal disease, and smoking is the dominant risk factor. Smoking is a much greater risk factor for AAA than for atherosclerosis. In addition to playing a role in the pathogenesis of AAA, smoking also increases the rate of expansion and risk of rupture of established AAA. The mechanistic relationship between AAA and smoking is being established by the use of enhanced animal models that are dependent on smoke or smoke components. The mechanisms seem to involve durable alterations in vascular smooth muscle cell and inflammatory cell function. This review examines the clinical, epidemiological, and mechanistic evidence implicating smoking as a cause of aneurysms, focusing on AAA.
Collapse
Affiliation(s)
- Paul E Norman
- School of Surgery, University of Western Australia, Fremantle, Australia.
| | | |
Collapse
|