1
|
Lluch A, Latorre J, Oliveras-Cañellas N, Fernández-Sánchez A, Moreno-Navarrete JM, Castells-Nobau A, Comas F, Buxò M, Rodríguez-Hermosa JI, Ballester M, Espadas I, Martín-Montalvo A, Zhang B, Zhou Y, Burkhardt R, Höring M, Liebisch G, Castellanos-Rubio A, Santin I, Kar A, Laakso M, Pajukanta P, Olkkonen VM, Fernández-Real JM, Ortega FJ. A novel long non-coding RNA connects obesity to impaired adipocyte function. Mol Metab 2024; 90:102040. [PMID: 39362599 PMCID: PMC11544081 DOI: 10.1016/j.molmet.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.
Collapse
Affiliation(s)
- Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| | - Núria Oliveras-Cañellas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | | | - José M Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Castells-Nobau
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - Maria Buxò
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - José I Rodríguez-Hermosa
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; School of Medicine, University of Girona (UdG), Girona, Spain
| | - María Ballester
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Bizkaia, Spain
| | - Asha Kar
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, University of Helsinki, Helsinki, Finland
| | - José M Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain; School of Medicine, University of Girona (UdG), Girona, Spain.
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
2
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Rouland A, Masson D, Lagrost L, Vergès B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol 2022; 21:272. [PMID: 36471375 PMCID: PMC9724408 DOI: 10.1186/s12933-022-01703-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein C1 (apoC1) is a small size apolipoprotein whose exact role is not totally clarified but which seems to modulate significantly the metabolism of lipoproteins. ApoC1 is involved in the metabolism of triglyceride-rich lipoproteins by inhibiting the binding of very low density lipoproteins (VLDL) to VLDL-receptor (VLDL-R), to low density lipoprotein receptor (LDL-R) and to LDL receptor related protein (LRP), by reducing the activity of lipoprotein lipase (LPL) and by stimulating VLDL production, all these effects leading to increase plasma triglycerides. ApoC1 takes also part in the metabolism of high density lipoproteins (HDL) by inhibiting Cholesterol Ester Transfer Protein (CETP). The functionality of apoC1 on CETP activity is impaired in diabetes that might account, at least in part, for the increased plasma CETP activity observed in patients with diabetes. Its different effects on lipoprotein metabolism with a possible role in the modulation of inflammation makes the net impact of apoC1 on cardiometabolic risk difficult to figure out and apoC1 might be considered as pro-atherogenic or anti-atherogenic depending on the overall metabolic context. Making the link between total plasma apoC1 levels and the risk of cardio-metabolic diseases is difficult due to the high exchangeability of this small protein whose biological effects might depend essentially on its association with VLDL or HDL. The role of apoC1 in humans is not entirely elucidated and further studies are needed to determine its precise role in lipid metabolism and its possible pleiotropic effects on inflammation and vascular wall biology. In this review, we will present data on apoC1 structure and distribution among lipoproteins, on the effects of apoC1 on VLDL metabolism and HDL metabolism and we will discuss the possible links between apoC1, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Alexia Rouland
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - David Masson
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Laurent Lagrost
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Bruno Vergès
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Thomas Gautier
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Benjamin Bouillet
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,grid.31151.37Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital François Mitterrand, CHU Dijon, BP 77908, 21079 Dijon, France
| |
Collapse
|
4
|
Cyr Y, Lamantia V, Bissonnette S, Burnette M, Besse-Patin A, Demers A, Wabitsch M, Chrétien M, Mayer G, Estall JL, Saleh M, Faraj M. Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome. Physiol Rep 2021; 9:e14721. [PMID: 33527668 PMCID: PMC7851436 DOI: 10.14814/phy2.14721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background LDL‐cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin‐1 beta (IL‐1β) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface‐expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function. Methodology Post hoc analysis was conducted in 27 overweight/ obese subjects with normal plasma LDL‐C and measures of disposition index (DI during Botnia clamps) and postprandial fat metabolism. WAT was assessed for surface‐expression of LDLR and CD36 (immunohistochemistry), protein expression (immunoblot), IL‐1β secretion (AlphaLISA), and function (3H‐triolein storage). Results Compared to subjects with higher than median plasma PCSK9, subjects with lower PCSK9 had higher WAT surface‐expression of LDLR (+81%) and CD36 (+36%), WAT IL‐1β secretion (+284%), plasma IL‐1 receptor‐antagonist (+85%), and postprandial hypertriglyceridemia, and lower WAT pro‐IL‐1β protein (−66%), WAT function (−62%), and DI (−28%), without group‐differences in body composition, energy intake or expenditure. Adjusting for WAT LDLR or CD36 eliminated group‐differences in WAT function, DI, and postprandial hypertriglyceridemia. Native LDL inhibited Simpson‐Golabi Behmel‐syndrome (SGBS) adipocyte differentiation and function and increased inflammation. Conclusion Normocholesterolemic subjects with lower plasma PCSK9 and higher WAT surface‐expression of LDLR and CD36 have higher WAT NLRP3 inflammasome activation and T2D risk factors. This may be due to LDL‐induced inhibition of adipocyte function.
Collapse
Affiliation(s)
- Yannick Cyr
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Valérie Lamantia
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Simon Bissonnette
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Melanie Burnette
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Annie Demers
- Institut de cardiologie de Montréal (ICM), Montréal, QC, Canada
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | - Michel Chrétien
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, Canada
| | - Gaétan Mayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany.,Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Life Sciences and Health, The University of Bordeaux, Bordeaux, France
| | - May Faraj
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| |
Collapse
|
5
|
Wagner R, Dittrich J, Thiery J, Ceglarek U, Burkhardt R. Simultaneous LC/MS/MS quantification of eight apolipoproteins in normal and hypercholesterolemic mouse plasma. J Lipid Res 2019; 60:900-908. [PMID: 30723096 PMCID: PMC6446716 DOI: 10.1194/jlr.d084301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Apolipoproteins are major structural and functional constituents of lipoprotein particles. As modulators of lipid metabolism, adipose tissue biology, and energy homeostasis, apolipoproteins may serve as biomarkers or potential therapeutic targets for cardiometabolic diseases. Mice are the preferred model to study metabolic disease and CVD, but a comprehensive method to quantify circulating apolipoproteins in mice is lacking. We developed and validated a targeted proteomics assay to quantify eight apolipoproteins in mice via proteotypic signature peptides and corresponding stable isotope-labeled analogs. The LC/MS/MS method requires only a 3 µl sample volume to simultaneously determine mouse apoA-I, apoA-II, apoA-IV, apoB-100, total apoB, apoC-I, apoE, and apoJ concentrations. ApoB-48 concentrations can be calculated by subtracting apoB-100 from total apoB. After we established the analytic performance (sensitivity, linearity, and imprecision) and compared results for selected apolipoproteins against immunoassays, we applied the method to profile apolipoprotein levels in plasma and isolated HDL from normocholesterolemic C57BL/6 mice and from hypercholesterolemic Ldl-receptor- and Apoe-deficient mice. In conclusion, we present a robust, quantitative LC/MS/MS method for the multiplexed analysis of eight apolipoproteins in mice. This assay can be applied to investigate the effects of genetic manipulation or dietary interventions on apolipoprotein levels in plasma and isolated lipoprotein fractions.
Collapse
Affiliation(s)
- Richard Wagner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Lamantia V, Bissonnette S, Provost V, Devaux M, Cyr Y, Daneault C, Rosiers CD, Faraj M. The Association of Polyunsaturated Fatty Acid δ-5-Desaturase Activity with Risk Factors for Type 2 Diabetes Is Dependent on Plasma ApoB-Lipoproteins in Overweight and Obese Adults. J Nutr 2019; 149:57-67. [PMID: 30535058 PMCID: PMC6351138 DOI: 10.1093/jn/nxy238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
Background δ-5 and δ-6 desaturases (D5D and D6D) catalyze the endogenous conversion of n-3 (ω-3) and n-6 (ω-6) polyunsaturated fatty acids (PUFAs). Their activities are negatively and positively associated with type 2 diabetes (T2D), respectively, by unclear mechanisms. Elevated plasma apoB-lipoproteins (measured as plasma apoB), which can be reduced by n-3 PUFA intake, promote T2D risk factors. Objective The aim of this study was to test the hypothesis that the association of D5D and D6D activities with T2D risk factors is dependent on plasma apoB. Methods This is a pooled analysis of 2 populations recruited for 2 different metabolic studies. It is a post hoc analysis of baseline data of these subjects [n = 98; 60% women (postmenopausal); mean ± SD body mass index (in kg/m2): 32.8 ± 4.7; mean ± SD age: 57.6 ± 6.3 y]. Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured using Botnia clamps. Plasma clearance of a high-fat meal (600 kcal/m2, 66% fat) and white adipose tissue (WAT) function (storage of 3H-triolein-labeled substrate) were assessed in a subpopulation (n = 47). Desaturase activities were estimated from plasma phospholipid fatty acids. Associations were examined using Pearson and partial correlations. Results While both desaturase activities were positively associated with percentage of eicosapentaenoic acid, only D5D was negatively associated with plasma apoB (r = -0.30, P = 0.003). Association of D5D activity with second-phase GIIS (r = -0.23, P = 0.029), IS (r = 0.33, P = 0.015, in women) and 6-h area-under-the-curve (AUC6h) of plasma chylomicrons (apoB48, r = -0.47, P = 0.020, in women) was independent of age and adiposity, but was eliminated after adjustment for plasma apoB. D6D activity was associated in the opposite direction with GIIS (r = 0.24, P = 0.049), IS (r = -0.36, P = 0.004) and AUC6h chylomicrons (r = 0.52, P = 0.004), independent of plasma apoB. Both desaturases were associated with plasma interleukin-1-receptor antagonist (D5D: r = -0.45, P < 0.001 in women; D6D: r = -0.33, P = 0.007) and WAT function (trend for D5D: r = 0.30, P = 0.05; D6D: r = 0.39, P = 0.027) independent of any adjustment. Conclusions Association of D5D activity with IS, lower GIIS, and plasma chylomicron clearance is dependent on plasma apoB in overweight and obese adults.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Viviane Provost
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Marie Devaux
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | | | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Cardiologie de Montréal (ICM), Montréal, Québec
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec,Montreal Diabetes Research Center (MDRC), Montréal, Québec,Address correspondence to MF (e-mail: )
| |
Collapse
|
7
|
Bissonnette S, Saint-Pierre N, Lamantia V, Leroux C, Provost V, Cyr Y, Rabasa-Lhoret R, Faraj M. High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet. Am J Clin Nutr 2018; 108:62-76. [PMID: 29917037 DOI: 10.1093/ajcn/nqy070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/21/2018] [Indexed: 11/14/2022] Open
Abstract
Background To optimize the prevention of type 2 diabetes (T2D), high-risk obese subjects with the best metabolic recovery after a hypocaloric diet should be targeted. Apolipoprotein B lipoproteins (apoB lipoproteins) induce white adipose tissue (WAT) dysfunction, which in turn promotes postprandial hypertriglyceridemia, insulin resistance (IR), and hyperinsulinemia. Objective The aim of this study was to explore whether high plasma apoB, or number of plasma apoB lipoproteins, identifies subjects who best ameliorate WAT dysfunction and related risk factors after a hypocaloric diet. Design Fifty-nine men and postmenopausal women [mean ± SD age: 58 ± 6 y; body mass index (kg/m2): 32.6 ± 4.6] completed a prospective study with a 6-mo hypocaloric diet (-500 kcal/d). Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured by 1-h intravenous glucose-tolerance test (IVGTT) followed by a 3-h hyperinsulinemic-euglycemic clamp, respectively. Ex vivo gynoid WAT function (i.e., hydrolysis and storage of 3H-triolein-labeled triglyceride-rich lipoproteins) and 6-h postprandial plasma clearance of a 13C-triolein-labeled high-fat meal were measured in a subsample (n = 25). Results Postintervention first-phase GIISIVGTT and total C-peptide secretion decreased in both sexes, whereas second-phase and total GIISIVGTT and clamp IS were ameliorated in men (P < 0.05). Baseline plasma apoB was associated with a postintervention increase in WAT function (r = 0.61) and IS (glucose infusion rate divided by steady state insulin (M/Iclamp) r = 0.30) and a decrease in first-phase, second-phase, and total GIISIVGTT (r = -0.30 to -0.35) without sex differences. The association with postintervention amelioration in WAT function and GIISIVGTT was independent of plasma cholesterol (total, LDL, and HDL), sex, and changes in body composition. Subjects with high baseline plasma apoB (1.2 ± 0.2 g/L) showed a significant increase in WAT function (+105%; P = 0.012) and a decrease in total GIISIVGTT (-34%; P ≤ 0.001), whereas sex-matched subjects with low plasma apoB (0.7 ± 0.1 g/L) did not, despite equivalent changes in body composition and energy intake and expenditure. Conclusions High plasma apoB identifies obese subjects who best ameliorate WAT dysfunction and glucose-induced hyperinsulinemia, independent of changes in adiposity after consumption of a hypocaloric diet. We propose that subjects with high plasma apoB represent an optimal target group for the primary prevention of T2D by hypocaloric diets. This trial was registered at BioMed Central as ISRCTN14476404.
Collapse
Affiliation(s)
- Simon Bissonnette
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | | | - Valerie Lamantia
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - Catherine Leroux
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Viviane Provost
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - Yannick Cyr
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - Remi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - May Faraj
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| |
Collapse
|
8
|
Impact of meal fatty acid composition on postprandial lipaemia, vascular function and blood pressure in postmenopausal women. Nutr Res Rev 2018; 31:193-203. [DOI: 10.1017/s0954422418000033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractCVD are the leading cause of death in women globally, with ageing associated with progressive endothelial dysfunction and increased CVD risk. Natural menopause is characterised by raised non-fasting TAG concentrations and impairment of vascular function compared with premenopausal women. However, the mechanisms underlying the increased CVD risk after women have transitioned through the menopause are unclear. Dietary fat is an important modifiable risk factor relating to both postprandial lipaemia and vascular reactivity. Meals rich in SFA and MUFA are often associated with greater postprandial TAG responses compared with those containing n-6 PUFA, but studies comparing their effects on vascular function during the postprandial phase are limited, particularly in postmenopausal women. The present review aimed to evaluate the acute effects of test meals rich in SFA, MUFA and n-6 PUFA on postprandial lipaemia, vascular reactivity and other CVD risk factors in postmenopausal women. The systematic search of the literature identified 778 publications. The impact of fat-rich meals on postprandial lipaemia was reported in seven relevant studies, of which meal fat composition was compared in one study described in three papers. An additional study determined the impact of a high-fat meal on vascular reactivity. Although moderately consistent evidence suggests detrimental effects of high-fat meals on postprandial lipaemia in postmenopausal (than premenopausal) women, there is insufficient evidence to establish the impact of meals of differing fat composition. Furthermore, there is no robust evidence to conclude the effect of meal fatty acids on vascular function or blood pressure. In conclusion, there is an urgent requirement for suitably powered robust randomised controlled trials to investigate the impact of meal fat composition on postprandial novel and established CVD risk markers in postmenopausal women, an understudied population at increased cardiometabolic risk.
Collapse
|
9
|
Zhang M, Li Y, Wei X, Tian F, Ouyang F, Zhao S, Liu L. Indispensable role of lipoprotein bound-ApoE in adipogenesis and endocytosis induced by postprandial TRL. Biochem Biophys Res Commun 2017; 493:298-305. [PMID: 28893538 DOI: 10.1016/j.bbrc.2017.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Diet-associated obesity is coexisted with postprandial hypertriglyceridemia that indicates increased number of triglyceride-rich lipoproteins (TRL). This study aimed to investigate the effect of postprandial TRL-bound apolipoprotein E (ApoE) on adipogenesis and potential mechanisms. 3T3-L1 cells were cultured with (i) human TRL (h-TRL) with or without insulin, or (ii) TRL from wild type mice (WT-TRL) or ApoE knock-out mice (EKO-TRL) and insulin. The differentiating adipocytes were incubated with different kinds of TRL labeled by red fluorescence and confocal microscopy was performed. Receptor associated protein (RAP), heparin or both were added to inhibit low density lipoprotein receptor family receptors, heparan sulfate proteoglycan or both, respectively. With the aid of insulin, postprandial h-TRL or WT-TRL, instead of EKO-TRL, successfully induced adipogenesis. Confocal microscopy revealed red fluorescence in the differentiating adipocytes treated with h-TRL or WT-TRL, but not with EKO-TRL. RAP markedly reduced red fluorescence within the differentiating adipocytes, while heparin had little impact. The low density lipoprotein receptor related protein 1 protein showed upward trend with the increase of TRL concentrations. Taken together, lipoprotein-bound ApoE was required in both postprandial TRL-induced adipogenesis and TRL endocytosis by the differentiating adipocytes, the latter could be partially through low density lipoprotein receptor family dependent-pathway.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yanhong Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Xuehong Wei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, PR China
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
ApoB-lipoproteins and dysfunctional white adipose tissue: Relation to risk factors for type 2 diabetes in humans. J Clin Lipidol 2017; 11:34-45.e2. [DOI: 10.1016/j.jacl.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/11/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
|
11
|
Ooi EM, Chan DC, Hodson L, Adiels M, Boren J, Karpe F, Fielding BA, Watts GF, Barrett PHR. Triglyceride-rich lipoprotein metabolism in women: roles of apoC-II and apoC-III. Eur J Clin Invest 2016; 46:730-6. [PMID: 27378472 DOI: 10.1111/eci.12657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/02/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Experimental data suggest that apolipoprotein (apo) C-II and C-III regulate triglyceride-rich lipoprotein (TRL) metabolism, but there are limited studies in humans. We investigated the metabolic associations of TRLs with apoC-II and apoC-III concentrations and kinetics in women. MATERIAL AND METHODS The kinetics of plasma apoC-II, apoC-III and very low-density lipoprotein (VLDL) apoB-100 and triglycerides were measured in the postabsorptive state using stable isotopic techniques and compartmental modelling in 60 women with wide-ranging body mass index (19·5-32·9 kg/m(2) ). RESULTS Plasma apoC-II and apoC-III concentrations were positively associated with the concentrations of plasma triglycerides, VLDL1 - and VLDL2 -apoB-100 and triglyceride (all P < 0·05). ApoC-II production rate (PR) was positively associated with VLDL1 -apoB-100 concentration, VLDL1 triglyceride concentration and VLDL1 triglyceride PR, while apoC-II fractional catabolic rate (FCR) was positively associated with VLDL1 triglyceride FCR (all P < 0·05). No significant associations were observed between apoC-II and VLDL2 apoB-100 or triglyceride kinetics. ApoC-III PR, but not FCR, was positively associated with VLDL1 triglyceride, and VLDL2 -apoB-100 and triglyceride concentrations (all P < 0·05). No significant associations were observed between apoC-III and VLDL-apoB-100 and triglyceride kinetics. In multivariable analysis, including homoeostasis model assessment score, menopausal status and obesity, apoC-II concentration was significantly associated with plasma triglyceride, VLDL1 -apoB-100 and VLDL1 triglyceride concentrations and PR. Using the same multivariable analysis, apoC-III was significantly associated with plasma triglyceride and VLDL1 - and VLDL2 -apoB-100 and triglyceride concentrations and FCR. CONCLUSIONS In women, plasma apoC-II and apoC-III concentrations are regulated by their respective PR and are significant, independent determinants of the kinetics and plasma concentrations of TRLs.
Collapse
Affiliation(s)
- Esther M Ooi
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Martin Adiels
- Health Metrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | - Barbara A Fielding
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gerald F Watts
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Cardiovascular Medicine, Royal Perth Hospital, Perth, WA, Australia
| | - P Hugh R Barrett
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia.,Faculty of Engineering, Computing and Mathematics, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
12
|
Zhang MY, Li YH, Wei XH, Ouyang F, Liu L. Triglyceride-rich lipoproteins induce adipogenic differentiation through an apolipoprotein E/LRP1/caveolae-dependent pathway: A hypothesis for diet-induced obesity. Int J Cardiol 2016; 212:82-3. [DOI: 10.1016/j.ijcard.2016.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/12/2016] [Indexed: 01/28/2023]
|
13
|
Cyr Y, Wassef H, Bissonnette S, Lamantia V, Davignon J, Faraj M. WAT apoC-I secretion: role in delayed chylomicron clearance in vivo and ex vivo in WAT in obese subjects. J Lipid Res 2016; 57:1074-85. [PMID: 27040450 DOI: 10.1194/jlr.p064170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 01/14/2023] Open
Abstract
Reduced white adipose tissue (WAT) LPL activity delays plasma clearance of TG-rich lipoproteins (TRLs). We reported the secretion of apoC-I, an LPL inhibitor, from WAT ex vivo in women. Therefore we hypothesized that WAT-secreted apoC-I associates with reduced WAT LPL activity and TRL clearance. WAT apoC-I secretion averaged 86.9 ± 31.4 pmol/g/4 h and 74.1 ± 36.6 pmol/g/4 h in 28 women and 11 men with BMI ≥27 kg/m(2), respectively, with no sex differences. Following the ingestion of a (13)C-triolein-labeled high-fat meal, subjects with high WAT apoC-I secretion (above median) had delayed postprandial plasma clearance of dietary TRLs, assessed from plasma (13)C-triolein-labeled TGs and apoB48. They also had reduced hydrolysis and storage of synthetic (3)H-triolein-labeled ((3)H)-TRLs in WAT ex vivo (i.e., in situ LPL activity). Adjusting for WAT in situ LPL activity eliminated group differences in chylomicron clearance; while adjusting for plasma apoC-I, (3)H-NEFA uptake by WAT, or body composition did not. apoC-I inhibited in situ LPL activity in adipocytes in both a concentration- and time-dependent manner. There was no change in postprandial WAT apoC-I secretion. WAT apoC-I secretion may inhibit WAT LPL activity and promote delayed chylomicron clearance in overweight and obese subjects. We propose that reducing WAT apoC-I secretion ameliorates postprandial TRL clearance in humans.
Collapse
Affiliation(s)
- Yannick Cyr
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - Hanny Wassef
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - Simon Bissonnette
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - Valerie Lamantia
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - Jean Davignon
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - May Faraj
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| |
Collapse
|
14
|
Bissonnette S, Saint-Pierre N, Lamantia V, Cyr Y, Wassef H, Faraj M. Plasma IL-1Ra: linking hyperapoB to risk factors for type 2 diabetes independent of obesity in humans. Nutr Diabetes 2015; 5:e180. [PMID: 26417659 PMCID: PMC4657760 DOI: 10.1038/nutd.2015.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Objective: Plasma apoB predicts the incidence of type 2 diabetes (T2D); however, the link between apoB-linpoproteins and risks for T2D remain unclear. Insulin resistance (IR) and compensatory hyperinsulinemia characterize prediabetes, and the involvement of an activated interleukin-1 (IL-1) family, mainly IL-1β and its receptor antagonist (IL-Ra), is well documented. ApoB-lipoproteins were reported to promote IL-1β secretion in immune cells; however, in vivo evidence is lacking. We hypothesized that obese subjects with hyperapoB have an activated IL-1 system that explains hyperinsulinemia and IR in these subjects. Subjects/Methods: We examined 81 well-characterized normoglycemic men and postmenopausal women (⩾27 kg m−2, 45–74 years, non-smokers, sedentary, free of chronic disease). Insulin secretion and sensitivity were measured by the gold-standard Botnia clamp, which is a combination of a 1-h intravenous glucose tolerance test (IVGTT) followed by 3-h hyperinsulinemic euglycemic clamp. Results: Plasma IL-1β was near detection limit (0.071–0.216 pg ml−1), while IL-1Ra accumulated at 1000-folds higher (77–1068 pg ml−1). Plasma apoB (0.34–1.80 g l−1) associated significantly with hypersinsulinemia (totalIVGTT: C-peptide r=0.27, insulin r=0.22), IR (M/I=−0.29) and plasma IL-1Ra (r=0.26) but not with IL-1β. Plasma IL-1Ra associated with plasma IL-1β (r=0.40), and more strongly with hyperinsulinemia and IR than apoB, while the association of plasma IL-1β was limited to second phase and total insulin secretion (r=0.23). Adjusting the association of plasma apoB to hyperinsulinemia and IR for IL-1Ra eliminated these associations. Furthermore, despite equivalent body composition, subjects with hyperapoB (⩾80th percentile, 1.14 g l−1) had higher C-peptide secretion and lower insulin sensitivity than those with low plasma apoB (⩽20th percentile, 0.78 g l−1). Adjustment for plasma IL-1 Ra eliminated all group differences. Conclusion: Plasma apoB is associated with hyperinsulinemia and IR in normoglycemic obese subjects, which is eliminated upon adjustment for plasma IL-1Ra. This may implicate the IL-1 family in elevated risks for T2D in obese subjects with hyperapoB.
Collapse
Affiliation(s)
- S Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Département de Nutrition, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - N Saint-Pierre
- Département de Nutrition, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - V Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Département de Nutrition, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - Y Cyr
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Département de Nutrition, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - H Wassef
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Département de Nutrition, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| | - M Faraj
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Département de Nutrition, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, Québec, Canada
| |
Collapse
|
15
|
Wassef H, Bissonnette S, Saint-Pierre N, Lamantia V, Cyr Y, Chrétien M, Faraj M. The apoB-to-PCSK9 ratio: A new index for metabolic risk in humans. J Clin Lipidol 2015; 9:664-75. [DOI: 10.1016/j.jacl.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/08/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
16
|
Wassef H, Davignon J, Prud’homme D, Rabasa-Lhoret R, Faraj M. Changes in total and central fat mass after a hypocaloric diet associate with changes of apoC-I in postmenopausal obese women. J Clin Lipidol 2014; 8:510-9. [DOI: 10.1016/j.jacl.2014.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
17
|
Bissonnette S, Salem H, Wassef H, Saint-Pierre N, Tardif A, Baass A, Dufour R, Faraj M. Low density lipoprotein delays clearance of triglyceride-rich lipoprotein by human subcutaneous adipose tissue. J Lipid Res 2013; 54:1466-76. [PMID: 23417739 DOI: 10.1194/jlr.p023176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delayed clearance of triglyceride-rich lipoprotein (TRL) by white adipose tissue (WAT) promotes hypertriglyceridemia and elevated apoB-lipoproteins, which are primarily in the form of LDL. This study examines whether LDL promotes delayed clearance of TRL by WAT. Following the ingestion of a (13)C-triolein-labeled high-fat meal, obese women with high plasma apoB (> median 0.93 g/l, N = 11, > 98% as IDL/LDL) had delayed clearance of postprandial (13)C-triglyceride and (13)C-NEFA over 6 h compared with controls. AUC6 h of plasma (13)C-triglyceride and (13)C-NEFA correlated with plasma apoB but not with LDL diameter or adipocyte area. There was no group difference in (13)C-triolein oxidation rate, which suggests lower (13)C-NEFA storage in peripheral tissue in women with high apoB. Ex vivo/in vitro plasma apoB correlated negatively with WAT (3)H-lipid following a 4 h incubation of women's WAT with synthetic (3)H-triolein-TRL. LDL-differentiated 3T3-L1 adipocytes had lower (3)H-TRL hydrolysis and (3)H-NEFA storage. Treatment of women's WAT with their own LDL decreased (3)H-TRL hydrolysis and (3)H-NEFA uptake. Finally, LDL, although not an LPL substrate, reduced LPL-mediated (3)H-TRL hydrolysis as did VLDL and HDL. Exposure to LDL decreases TRL clearance by human WAT ex vivo. This may promote production of apoB-lipoproteins and hypertriglyceridemia through a positive-feedback mechanism in vivo.
Collapse
Affiliation(s)
- Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|