1
|
Huang K, Pokhrel A, Echesabal-Chen J, Scott J, Bruce T, Jo H, Stamatikos A. Inhibiting MiR-33a-3p Expression Fails to Enhance ApoAI-Mediated Cholesterol Efflux in Pro-Inflammatory Endothelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:329. [PMID: 40005445 PMCID: PMC11857470 DOI: 10.3390/medicina61020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Atherosclerosis is an inflammatory condition that results in cholesterol accumulating within vessel wall cells. Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide due to this disease being a major contributor to myocardial infarctions and cerebrovascular accidents. Research suggests that cholesterol accumulation occurring precisely within arterial endothelial cells triggers atherogenesis and exacerbates atherosclerosis. Furthermore, inflamed endothelium acts as a catalyst for atherosclerotic development. Therefore, enhancing cholesterol removal specifically in pro-inflammatory endothelial cells may be a potential treatment option for atherosclerosis. While we have previously shown that inhibiting the microRNA guide strand miR-33a-5p within pro-inflammatory endothelial cells increases both ABCA1 expression and apoAI-mediated cholesterol efflux, it is unknown whether inhibiting the miR-33a-3p passenger strand in pro-inflammatory endothelial cells causes similar atheroprotective effects. In this study, this is what we aimed to test. Materials and Methods: We used plasmid transfection to knockdown miR-33a-3p expression within cultured pro-inflammatory immortalized mouse aortic endothelial cells (iMAECs). We compared ABCA1 expression and apoAI-mediated cholesterol efflux within these cells to cultured pro-inflammatory iMAECs transfected with a control plasmid. Results: The knockdown of miR-33a-3p expression within pro-inflammatory iMAECs resulted in a significant increase in ABCA1 mRNA expression. However, the inhibition of miR-33a-3p did not significantly increase ABCA1 protein expression within pro-inflammatory iMAECs. Moreover, we failed to detect a significant increase in apoAI-mediated cholesterol efflux within pro-inflammatory iMAECs from miR-33a-3p knockdown. Conclusions: Our results indicative that the knockdown of miR-33a-3p alone does not enhance ABCA1-dependent cholesterol efflux within pro-inflammatory endothelial cells. To gain any atheroprotective benefit from inhibiting miR-33a-3p within pro-inflammatory endothelium, additional anti-atherogenic strategies would likely be needed in unison.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| | - Achala Pokhrel
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| | - Justin Scott
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (J.S.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (J.S.); (T.B.)
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| |
Collapse
|
2
|
Oladosu O, Chin E, Barksdale C, Powell RR, Bruce T, Stamatikos A. Inhibition of miR-33a-5p in Macrophage-like Cells In Vitro Promotes apoAI-Mediated Cholesterol Efflux. PATHOPHYSIOLOGY 2024; 31:117-126. [PMID: 38535619 PMCID: PMC10976131 DOI: 10.3390/pathophysiology31010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
Atherosclerosis is caused by cholesterol accumulation within arteries. The intima is where atherosclerotic plaque accumulates and where lipid-laden foam cells reside. Intimal foam cells comprise of both monocyte-derived macrophages and macrophage-like cells (MLC) of vascular smooth muscle cell (VSMC) origin. Foam cells can remove cholesterol via apoAI-mediated cholesterol efflux and this process is regulated by the transporter ABCA1. The microRNA miR-33a-5p is thought to be atherogenic via silencing ABCA1 which promotes cholesterol retention and data has shown inhibiting miR-33a-5p in macrophages may be atheroprotective via enhancing apoAI-mediated cholesterol efflux. However, it is not entirely elucidated whether precisely inhibiting miR-33a-5p in MLC also increases ABCA1-dependent cholesterol efflux. Therefore, the purpose of this work is to test the hypothesis that inhibition of miR-33a-5p in cultured MLC enhances apoAI-mediated cholesterol efflux. In our study, we utilized the VSMC line MOVAS cells in our experiments, and cholesterol-loaded MOVAS cells to convert this cell line into MLC. Inhibition of miR-33a-5p was accomplished by transducing cells with a lentivirus that expresses an antagomiR directed at miR-33a-5p. Expression of miR-33a-5p was analyzed by qRT-PCR, ABCA1 protein expression was assessed via immunoblotting, and apoAI-mediated cholesterol efflux was measured using cholesterol efflux assays. In our results, we demonstrated that lentiviral vector-mediated knockdown of miR-33a-5p resulted in decreasing expression of this microRNA in cultured MLC. Moreover, reduction of miR-33a-5p in cultured MLC resulted in de-repression of ABCA1 expression, which caused ABCA1 protein upregulation in cultured MLC. Additionally, this increase in ABCA1 protein expression resulted in enhancing ABCA1-dependent cholesterol efflux through increasing apoAI-mediated cholesterol efflux in cultured MLC. From these findings, we conclude that inhibiting miR-33a-5p in MLC may protect against atherosclerosis by promoting ABCA1-dependent cholesterol efflux.
Collapse
Affiliation(s)
- Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (E.C.); (C.B.)
| | - Emma Chin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (E.C.); (C.B.)
| | - Christian Barksdale
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (E.C.); (C.B.)
| | - Rhonda R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (E.C.); (C.B.)
| |
Collapse
|
3
|
Huang K, Pitman M, Oladosu O, Echesabal-Chen J, Vojtech L, Esobi I, Larsen J, Jo H, Stamatikos A. The Impact of MiR-33a-5p Inhibition in Pro-Inflammatory Endothelial Cells. Diseases 2023; 11:88. [PMID: 37489440 PMCID: PMC10366879 DOI: 10.3390/diseases11030088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Evidence suggests cholesterol accumulation in pro-inflammatory endothelial cells (EC) contributes to triggering atherogenesis and driving atherosclerosis progression. Therefore, inhibiting miR-33a-5p within inflamed endothelium may prevent and treat atherosclerosis by enhancing apoAI-mediated cholesterol efflux by upregulating ABCA1. However, it is not entirely elucidated whether inhibition of miR-33a-5p in pro-inflammatory EC is capable of increasing ABCA1-dependent cholesterol efflux. In our study, we initially transfected LPS-challenged, immortalized mouse aortic EC (iMAEC) with either pAntimiR33a5p plasmid DNA or the control plasmid, pScr. We detected significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux in iMAEC transfected with pAntimiR33a5p when compared to iMAEC transfected with pScr. We subsequently used polymersomes targeting inflamed endothelium to deliver either pAntimiR33a5p or pScr to cultured iMAEC and showed that the polymersomes were selective in targeting pro-inflammatory iMAEC. Moreover, when we exposed LPS-challenged iMAEC to these polymersomes, we observed a significant decrease in miR-33a-5p expression in iMAEC incubated with polymersomes containing pAntimR33a5p versus control iMAEC. We also detected non-significant increases in both ABCA1 protein and apoAI-mediated cholesterol in iMAEC exposed to polymersomes containing pAntimR33a5p when compared to control iMAEC. Based on our results, inhibiting miR-33a-5p in pro-inflammatory EC exhibits atheroprotective effects, and so precisely delivering anti-miR-33a-5p to these cells is a promising anti-atherogenic strategy.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Mark Pitman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (M.P.); (J.L.)
| | - Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98109, USA;
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (M.P.); (J.L.)
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| |
Collapse
|
4
|
Esobi IC, Oladosu O, Echesabal-Chen J, Powell RR, Bruce T, Stamatikos A. miR-33a Expression Attenuates ABCA1-Dependent Cholesterol Efflux and Promotes Macrophage-Like Cell Transdifferentiation in Cultured Vascular Smooth Muscle Cells. J Lipids 2023; 2023:8241899. [PMID: 37359759 PMCID: PMC10289877 DOI: 10.1155/2023/8241899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Recent evidence suggests that the majority of cholesterol-laden cells found in atherosclerotic lesions are vascular smooth muscle cells (VSMC) that have transdifferentiated into macrophage-like cells (MLC). Furthermore, cholesterol-laden MLC of VSMC origin have demonstrated impaired ABCA1-dependent cholesterol efflux, but it is poorly understood why this occurs. A possible mechanism which may at least partially be attributed to cholesterol-laden MLC demonstrating attenuated ABCA1-dependent cholesterol efflux is a miR-33a expression, as a primary function of this microRNA is to silence ABCA1 expression, but this has yet to be rigorously investigated. Therefore, the VSMC line MOVAS cells were used to generate miR-33a knockout (KO) MOVAS cells, and we used KO and wild-type (WT) MOVAS cells to delineate any possible proatherogenic role of miR-33a expression in VSMC. When WT and KO MOVAS cells were cholesterol-loaded to convert into MLC, this resulted in the WT MOVAS cells to exhibit impaired ABCA1-dependent cholesterol efflux. In the cholesterol-loaded WT MOVAS MLC, we also observed a delayed restoration of the VSMC phenotype when these cells were exposed to the ABCA1 cholesterol acceptor, apoAI. These results imply that miR-33a expression in VSMC drives atherosclerosis by triggering MLC transdifferentiation via attenuated ABCA1-dependent cholesterol efflux.
Collapse
Affiliation(s)
- Ikechukwu C. Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Rhonda R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
6
|
Huang K, Bao H, Yan ZQ, Wang L, Zhang P, Yao QP, Shi Q, Chen XH, Wang KX, Shen BR, Qi YX, Jiang ZL. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein. Cardiovasc Res 2017; 113:488-497. [PMID: 28137944 DOI: 10.1093/cvr/cvw257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
Aims Mechanical factors play significant roles in neointimal hyperplasia after vein grafting, but the mechanisms are not fully understood. Here, we investigated the roles of microRNA-33 (miR-33) in neointimal hyperplasia induced by arterial mechanical stretch after vein grafting. Methods and results Grafted veins were generated by the 'cuff' technique. Neointimal hyperplasia and cell proliferation was significantly increased, and miR-33 expression was decreased after 1-, 2-, and 4-week grafts. In contrast, the expression of bone morphogenetic protein 3 (BMP3), which is a putative target of miR-33, and the phosphorylation of smad2 and smad5, which are potential downstream targets of BMP3, were increased in the grafted veins. miR-33 mimics/inhibitor and dual luciferase reporter assay confirmed the interaction of miR-33 and BMP3. miR-33 mimics attenuated, while miR-33 inhibitor accelerated, proliferation of venous smooth muscle cells (SMCs). Moreover, recombinant BMP3 increased SMC proliferation and P-smad2 and P-smad5 levels, whereas BMP3-directed siRNAs had the opposite effect. Then, venous SMCs were exposed to a 10%-1.25 Hz cyclic stretch (arterial stretch) by using the FX4000 cyclic stretch loading system in vitro to mimic arterial mechanical conditions. The arterial stretch increased venous SMC proliferation and repressed miR-33 expression, but enhanced BMP3 expression and smad2 and smad5 phosphorylation. Furthermore, perivascular multi-point injection in vivo demonstrated that agomiR-33 not only attenuates BMP3 expression and smad2 and smad5 phosphorylation, but also slows neointimal formation and cell proliferation in grafted veins. These effects of agomiR-33 on grafted veins could be reversed by local injection of BMP3 lentivirus. Conclusion The miR-33-BMP3-smad signalling pathway protects against venous SMC proliferation in response to the arterial stretch. miR-33 is a target that attenuates neointimal hyperplasia in grafted vessels and may have potential clinical applications.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/genetics
- Antagomirs/metabolism
- Binding Sites
- Bone Morphogenetic Protein 3/genetics
- Bone Morphogenetic Protein 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Hyperplasia
- Jugular Veins/metabolism
- Jugular Veins/pathology
- Jugular Veins/transplantation
- Male
- Mechanotransduction, Cellular
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/transplantation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/transplantation
- Neointima
- Phosphorylation
- RNA Interference
- Rats, Sprague-Dawley
- Smad2 Protein/metabolism
- Smad5 Protein/metabolism
- Stress, Mechanical
- Time Factors
- Transfection
Collapse
|
7
|
Yamori Y, Sagara M, Arai Y, Kobayashi H, Kishimoto K, Matsuno I, Mori H, Mori M. Soy and fish as features of the Japanese diet and cardiovascular disease risks. PLoS One 2017; 12:e0176039. [PMID: 28430815 PMCID: PMC5400241 DOI: 10.1371/journal.pone.0176039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/04/2017] [Indexed: 01/14/2023] Open
Abstract
In the World Health Organization (WHO)-coordinated Cardiovascular Disease and Alimentary Comparison Study, isoflavones (I; biomarker for dietary soy) and taurine (T; biomarker for dietary fish) in 24-hour-urine (24U) were inversely related to coronary heart disease (CHD) mortality. High levels of these biomarkers are found in Japanese people, whose CHD mortality is lowest among developed countries. We analyzed the association of these biomarkers with cardiovascular disease risk in the Japanese to know their health effects within one ethnic population. First, to compare the Japanese intake of I and T with international intakes, the ratios of 24UI and 24UT to creatinine from the WHO Study were divided into quintiles for analysis. The ratio for the Japanese was the highest in the highest quintiles for both I and T, reaching 88.1%, far higher than the average ratio for the Japanese (26.3%) in the total study population. Second, 553 inhabitants of Hyogo Prefecture, Japan, aged 30 to 79 years underwent 24-U collection and blood analyses. The 24UT and 24UI were divided into tertiles and adjusted for age and sex. The highest T tertile, compared with the lowest tertile, showed significantly higher levels of high-density lipoprotein-cholesterol (HDL-C), total cholesterol, 24U sodium (Na) and potassium (K). The highest I tertile showed significantly higher folate, 24UNa and 24UK compared with the lowest tertile. The highest tertile of both T and I showed significantly higher HDL-C, folate, and 24UNa and 24UK compared with the lowest tertile. Thus, greater consumption of fish and soy were significantly associated with higher HDL-C and folate levels, possibly a contributor to Japan having the lowest CHD mortality and longest life expectancy among developed countries. As these intakes were also associated with a high intake of salt, a low-salt intake of fish and soy should be recommended for healthy life expectancy.
Collapse
Affiliation(s)
- Yukio Yamori
- Mukogawa Women’s University Institute for World Health Development, Hyogo Japan
- Laboratory of Preventive Nutritional Medicine, Research Institute for Production and Development, Kyoto, Japan
- Hyogo Prefecture Health Promotion Association, Kobe, Hyogo, Japan
| | - Miki Sagara
- Laboratory of Preventive Nutritional Medicine, Research Institute for Production and Development, Kyoto, Japan
| | - Yoshimi Arai
- Hyogo Prefecture Health Promotion Association, Kobe, Hyogo, Japan
| | - Hitomi Kobayashi
- Hyogo Prefecture Health Promotion Association, Kobe, Hyogo, Japan
| | - Kazumi Kishimoto
- Hyogo Prefecture Health Promotion Association, Kobe, Hyogo, Japan
| | - Ikuko Matsuno
- Hyogo Prefecture Health Promotion Association, Kobe, Hyogo, Japan
| | - Hideki Mori
- Mukogawa Women’s University Institute for World Health Development, Hyogo Japan
| | - Mari Mori
- Mukogawa Women’s University Institute for World Health Development, Hyogo Japan
| |
Collapse
|
8
|
Laffont B, Rayner KJ. MicroRNAs in the Pathobiology and Therapy of Atherosclerosis. Can J Cardiol 2017; 33:313-324. [PMID: 28232017 DOI: 10.1016/j.cjca.2017.01.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short noncoding RNAs, expressed in humans and involved in sequence-specific post-transcriptional regulation of gene expression. They have emerged as key players in a wide array of biological processes, and changes in their expression and/or function have been associated with plethora of human diseases. Atherosclerosis and its related clinical complications, such as myocardial infarction or stroke, represent the leading cause of death in the Western world. Accumulating experimental evidence has revealed a key role for microRNAs in regulating cellular and molecular processes related to atherosclerosis development, ranging from risk factors, to plaque initiation and progression, up to atherosclerotic plaque rupture. In this review, we focus on how microRNAs can influence atherosclerosis biology, as well as the potential clinical applications of microRNAs, which are being developed as targets as well as therapeutic agents for a growing industry hoping to harness the power of RNA-guided gene regulation to fight disease and infection.
Collapse
Affiliation(s)
- Benoit Laffont
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Guo Y, Luo F, Yi Y, Xu D. Fibroblast growth factor 21 potentially inhibits microRNA-33 expression to affect macrophage actions. Lipids Health Dis 2016; 15:208. [PMID: 27905947 PMCID: PMC5134291 DOI: 10.1186/s12944-016-0381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease with complex pathological processes. MicroRNA-33 (miR-33), a novel non-coding RNA that coexpresses with sterol regulatory element-binding proteins (SREBPs), affects macrophage actions to prevent atherosclerosis. Fibroblast growth factor 21 (FGF21) is an important regulator of lipid metabolism, especially for macrophage-related cholesterol export, but the mechanism is not fully studied. Interestingly, FGF21 has been evidenced to prevent atherosclerosis via inhibiting SREBP-2 expression. Therefore, we speculate that FGF21 may be a potential regulator for miR-33 with an aim of insight into novel anti-atherosclerotic mechanisms and research fields.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yuhong Yi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
10
|
Affiliation(s)
- Aarti Shah
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, United Kingdom
| | - Martin Bennett
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, United Kingdom.
| |
Collapse
|
11
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
12
|
Affiliation(s)
- Hong Lu
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
13
|
Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Sowa N, Yahagi N, Shimano H, Matsumura S, Inoue K, Marusawa H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 2014; 4:2883. [PMID: 24300912 PMCID: PMC3863899 DOI: 10.1038/ncomms3883] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33, which is located within the intron of sterol regulatory element-binding protein (SREBP) 2, controls cholesterol homoeostasis and may be a potential therapeutic target for the treatment of atherosclerosis. Here we show that deletion of miR-33 results in marked worsening of high-fat diet-induced obesity and liver steatosis. Using miR-33(-/-)Srebf1(+/-) mice, we demonstrate that SREBP-1 is a target of miR-33 and that the mechanisms leading to obesity and liver steatosis in miR-33(-/-) mice involve enhanced expression of SREBP-1. These results elucidate a novel interaction between SREBP-1 and SREBP-2 mediated by miR-33 in vivo.
Collapse
Affiliation(s)
- Takahiro Horie
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Xinghui Sun
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
15
|
Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 2013; 33:301-11. [PMID: 24222088 PMCID: PMC4035704 DOI: 10.1055/s-0033-1358523] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The liver is a central organ that controls systemic energy homeostasis and nutrient metabolism. Dietary carbohydrates and lipids, and fatty acids derived from adipose tissue are delivered to the liver, and utilized for gluconeogenesis, lipogenesis, and ketogenesis, which are tightly regulated by hormonal and neural signals. Hepatic lipogenesis is activated primarily by insulin that is secreted from the pancreas after a high-carbohydrate meal. Sterol regulatory element binding protein-1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) are major transcriptional regulators that induce key lipogenic enzymes to promote lipogenesis in the liver. Sterol regulatory element binding protein-1c is activated by insulin through complex signaling cascades that control SREBP-1c at both transcriptional and posttranslational levels. Carbohydrate-responsive element-binding protein is activated by glucose independently of insulin. Here, the authors attempt to summarize the current understanding of the molecular mechanism for the transcriptional regulation of hepatic lipogenesis, focusing on recent studies that explore the signaling pathways controlling SREBPs and ChREBP.
Collapse
Affiliation(s)
| | | | | | - Ann-Hwee Lee
- To whom correspondence should be addressed: Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. , Tel: 1-212-746-9087
| |
Collapse
|