1
|
Jiang R, He X, Chen W, Cai H, Su Z, Xie Z, Zhang B, Yang J, Wang Y, Huang L, Cao G, Zhong X, Xie H, Zhu H, Cao J, Lu W. lncRNA H19 facilitates vascular neointima formation by targeting miR-125a-3p/FLT1 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1437-1445. [PMID: 39238439 PMCID: PMC11532204 DOI: 10.3724/abbs.2024087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 09/07/2024] Open
Abstract
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neointima/pathology
- Neointima/metabolism
- Neointima/genetics
- Humans
- Cell Proliferation/genetics
- Cell Movement/genetics
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Male
- Cells, Cultured
Collapse
Affiliation(s)
- Rengui Jiang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xuyu He
- Guangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Weidong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhou510120China
| | - Huoying Cai
- Department of Vascular SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Zhaohai Su
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Zheng Xie
- Department of General PracticeGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Bilong Zhang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jiangyong Yang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Yueting Wang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Ling Huang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Gang Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xiutong Zhong
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hui Xie
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hengqing Zhu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jun Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Weiling Lu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| |
Collapse
|
2
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
3
|
Jing L, Shu-xu D, Yong-xin R. A review: Pathological and molecular biological study on atherosclerosis. Clin Chim Acta 2022; 531:217-222. [DOI: 10.1016/j.cca.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
4
|
Kurmanbekova BT, Noruizbaeva AM. Cardiovascular Effects of Metformin. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-02-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most important independent risk factors for the development, progression and mortality from cardiovascular diseases (CVD). The world communities are faced with the question of developing the optimal management tactics for such comorbidity patients. Thus, the prescribed drug should not only have an adequate hypoglycemic effect, but also have a number of cardioprotective properties, be safe in patients with CVD, and possibly even improve the prognosis and reduce mortality rates. This review is devoted to a representative of the biguanide class - metformin, which is one of the earliest and most effective antihyperglycemic drugs, both as monotherapy and in combination with other antihyperglycemic drugs and insulin; while the evidence base for its cardiovascular profile is only gaining momentum. Thus, the purpose of this review is to highlight the cardiovascular effects of metformin in the context of recent research.
Collapse
Affiliation(s)
- B. T. Kurmanbekova
- National Center of cardiology and internal medicine named after academician M.Mirrakhimov
| | - A. M. Noruizbaeva
- National Center of cardiology and internal medicine named after academician M.Mirrakhimov
| |
Collapse
|
5
|
Zhu TT, Zhu CN, Qiu Y, Li QS, Yu X, Hao GJ, Song P, Xu J, Li P, Yin YL. Tertiary butylhydroquinone alleviated liver steatosis and increased cell survival via β-arrestin-2/PI3K/AKT pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1428-1436. [PMID: 35096302 PMCID: PMC8769507 DOI: 10.22038/ijbms.2021.58156.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 12/05/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effects and the underlying mechanisms of tertiary butylhydroquinone (TBHQ) on diabetic liver steatosis and cell survival. MATERIALS AND METHODS We performed streptozocin injection and used a high-sugar-high-fat diet for mice to develop an animal model of type 2 diabetes mellitus (T2DM). Bodyweight, blood glucose levels, and content of insulin were measured on all of the mice. The liver tissues were observed by hematoxylin-eosin staining. Protein levels of the liver were measured by Western blot analysis in mice. Primary hepatocytes were induced by hypochlorous acid (HClO) and insulin to form insulin resistance (IR). Primary hepatocyte apoptosis was observed by Hoechst staining. The PI3K/AKT signaling pathway and β-arrestin-2 factor were evaluated by Western blot assay. RESULTS TBHQ reduced the blood glucose level and content of insulin in serum, increased body weight, and effectively alleviated liver steatosis in diabetic mice. TBHQ significantly up-regulated the expression of p-PI3K, p-AKT, GLUT4, GSK3β, and β-arrestin-2 in the liver of diabetic mice. Cell experiments confirmed that TBHQ increased the survival ability of primary hepatocytes, and TBHQ improved the expression of p-PI3K, p-AKT, GLUT4, and GSK3β by activating β-arrestin-2 in primary hepatocytes. CONCLUSION TBHQ could alleviate liver steatosis and increase cell survival, and the mechanism is due in part to β-arrestin-2 activation.
Collapse
Affiliation(s)
- Tian-tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Chao-nan Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China, Department of Pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang, China, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Qian-Shuai Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xin Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guo-Jie Hao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ya-ling Yin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China, 453003,Corresponding author: Yaling Yin. School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China. Tel:13663737650; Fax: 0086-373-3029918;
| |
Collapse
|
6
|
Ouyang C, Li J, Zheng X, Mu J, Torres G, Wang Q, Zou MH, Xie Z. Deletion of Ulk1 inhibits neointima formation by enhancing KAT2A/GCN5-mediated acetylation of TUBA/α-tubulin in vivo. Autophagy 2021; 17:4305-4322. [PMID: 33985412 DOI: 10.1080/15548627.2021.1911018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ULK1 (unc-51 like autophagy activating kinase) has a central role in initiating macroautophagy/autophagy, a process that contributes to atherosclerosis and neointima hyperplasia, or excessive tissue growth that leads to vessel dysfunction. However, the role of ULK1 in neointima formation remains unclear. We aimed to determine how Ulk1 deletion affected neointima formation and to investigate the underlying mechanisms. We measured autophagy activity, vascular smooth muscle cell (VSMC) migration and neointima hyperplasia in cultured VSMCs and ligation-injured mouse carotid arteries from male wild-type (WT, C57BL/6 J) and VSMC-specific ulk1 knockout (ulk1 KO) mice. Carotid artery ligation in WT mice increased ULK1 protein expression, and concurrently increased autophagic flux and neointima formation. Treating human aortic smooth muscle cells (HASMCs) with PDGF (platelet derived growth factor) increased ULK1 expression, activated autophagy, and promoted cell migration. Further, smooth muscle cell-specific deletion of Ulk1 suppressed autophagy, inhibited VSMC migration, and impeded neointima hyperplasia. Mechanistically, Ulk1 deletion inhibited autophagic degradation of histone acetyltransferase protein KAT2A/GCN5 (K[lysine] acetyltransferase 2A), resulting in accumulation of KAT2A that directly acetylated TUBA/α-tubulin and subsequently increased protein levels of acetylated TUBA. The acetylation of TUBA increased microtubule stability and inhibited VSMC directional migration and neointima formation. Finally, local transfection of Kat2a siRNA decreased TUBA acetylation and prevented the attenuation of vascular injury-induced neointima formation in ulk1 KO mice. These findings suggest that Ulk1 deletion inhibits neointima formation by reducing autophagic degradation of KAT2A and increasing TUBA acetylation in VSMCs.Abbreviations: ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ATAT1: alpha tubulin acetyltransferase 1; ATG: autophagy related; BECN1: beclin 1; BP: blood pressure; CAL: carotid artery ligation; CQ: chloroquine diphosphate; EC: endothelial cells; EEL: external elastic layer; FBS: fetal bovine serum; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; HASMCs: human aortic smooth muscle cells; HAT1: histone acetyltransferase 1; HDAC: histone deacetylase; IEL: inner elastic layer; IP: immunoprecipitation; KAT2A/GCN5: K(lysine) acetyltransferase 2A; KAT8/hMOF: lysine acetyltransferase 8; MAP1LC3: microtubule associated protein 1 light chain 3; MYH11: myosin heavy chain 11; PBS: phosphate-buffered saline; PDGF: platelet derived growth factor; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; RAC3: Rac family small GTPase 3; SIRT2: sirtuin 2; SPP1/OPN: secreted phosphoprotein 1; SQSTM1/p62: sequestosome 1; TAGLN/SM22: transgelin; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase; VSMC: vascular smooth muscle cell; VVG: Verhoeff Van Gieson; WT: wild type.
Collapse
Affiliation(s)
- Changhan Ouyang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jian Li
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaoxu Zheng
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Jing Mu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Gloria Torres
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Qilong Wang
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| |
Collapse
|
7
|
Fan Y, Chen Y, Zhang J, Yang F, Hu Y, Zhang L, Zeng C, Xu Q. Protective Role of RNA Helicase DEAD-Box Protein 5 in Smooth Muscle Cell Proliferation and Vascular Remodeling. Circ Res 2020; 124:e84-e100. [PMID: 30879402 DOI: 10.1161/circresaha.119.314062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE RNA helicases, highly conserved enzymes, are currently believed to be not only involved in RNA modulation, but also in other biological processes. We recently reported that RNA helicase DDX (DEAD-box protein)-5 is required for maintaining the homeostasis of vascular smooth muscle cells (SMCs). However, the expression and function of RNA helicase in vascular physiology and disease is unknown. OBJECTIVE To investigate the role of RNA helicase in vascular diseases. METHODS AND RESULTS We showed here that DDX-5 was the most abundant DEAD-box protein expressed in human and rodent artery, which mainly located in SMCs. It was demonstrated that DDX-5 levels were reduced in cytokine-stimulated SMCs and vascular lesions. DDX-5 knocking down or deficiency increased SMC proliferation and migration, whereas overexpression of DDX-5 prevented aberrant proliferation and migration of SMCs. Mechanistic studies revealed transcription factor GATA (GATA-binding protein)-6 as a novel downstream target of DDX-5, which directly interacted with GATA-6 and protected it from MDM (mouse double minute)-2-mediated degradation. Our ChIP assay identified a previously unreported binding of p27Kip1 promoter to GATA-6. DDX-5 increased the recruitment of GATA-6 to p27Kip1 promoter, which enhanced p27Kip1 expression and maintained SMC quiescence. Finally, we showed exacerbated neointima formation in DDX-5 SMC-deficient mice after femoral artery injury, whereas overexpression of DDX-5 potently inhibited vascular remodeling in balloon-injured rat carotid artery. CONCLUSIONS These findings provide the first evidence for a role of RNA helicase DDX-5 in the protection against SMC proliferation, migration, and neointimal hyperplasia. Our data extend the fundamental role of RNA helicase beyond RNA modulation, which provides the basic information for new therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Ye Fan
- From the Department of Respiratory Disease, Xinqiao Hospital (Y.F., J.Z.), Third Military Medical University, Chongqing, China
| | - Yikuan Chen
- Department of Vascular Surgery, Second Affiliated Hospital, Chongqing Medical University, China (Y.C.)
| | - Jing Zhang
- From the Department of Respiratory Disease, Xinqiao Hospital (Y.F., J.Z.), Third Military Medical University, Chongqing, China
| | - Feng Yang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.)
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, United Kingdom (Y.H., Q.X.)
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital (C.Z.), Third Military Medical University, Chongqing, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., L.Z., Q.X.).,School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, United Kingdom (Y.H., Q.X.)
| |
Collapse
|
8
|
Zhou Y, He X, Liu R, Qin Y, Wang S, Yao X, Li C, Hu Z. LncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells. J Cell Physiol 2019; 234:16205-16214. [PMID: 30740670 DOI: 10.1002/jcp.28284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023]
Abstract
Restenosis after angioplasty or stent is a major clinical problem. While long noncoding RNAs (lncRNAs) are implicated in a variety of diseases, their role in restenosis is not well understood. This study aims to investigate how dysregulated lncRNAs and messenger RNAs (mRNAs) contribute to restenosis. By microarray analysis, we identified 202 lncRNAs and 625 mRNAs (fold change > 2.0, p < 0.05) differentially expressed between the balloon-injured carotid artery and uninjured carotid artery in the rats. Among differentially expressed lncRNAs, LncRNA CRNDE had the highest fold change and the change was validated by reverse transcription polymerase chain reaction. We found that LncRNA CRNDE was significantly upregulated in injured rat carotid artery and vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor-BB (PDGF-BB). Knockdown of LncRNA CRNDE by small interference RNA significantly inhibited PDGF-BB stimulated proliferation and migration of VSMCs. Moreover, knockdown of LncRNA CRNDE attenuated PDGF-BB-induced phenotypic change of VSMCs. Taken together, our study reveals a novel mechanoresponsive LncRNA CRNDE which may be a therapeutic target for restenosis.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Xuyu He
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ruiming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yat-sen Universitya, Guangzhou, China
| | - Yuansen Qin
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Shenming Wang
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Xi Yao
- Department of Biomedical Sciences, Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zuojun Hu
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
9
|
Luo F, Das A, Chen J, Wu P, Li X, Fang Z. Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc Diabetol 2019; 18:54. [PMID: 31029144 PMCID: PMC6486984 DOI: 10.1186/s12933-019-0860-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
With an increasing global burden of coronary artery disease (CAD), early detection and timely management of risk factors are crucial to reduce morbidity and mortality in such patients. Diabetes mellitus (DM) is considered an independent risk factor for the development of CAD. Metformin, an anti-diabetic drug, has been shown in pre-clinical and clinical studies, to lower the cardiovascular events in the DM patients. Growing evidence suggests that metformin has a protective effect on coronary artery beyond its hypoglycemic effects. Given its global availability, route of administration and cost, metformin provides an alternate/additional therapeutic option for primary and secondary prevention of CAD in DM and non-diabetics alike. Future prospective cohort-based studies and randomized clinical trials are needed to identify 'at-risk' population who may potentially benefit from metformin.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Avash Das
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Xiangping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
10
|
Abstract
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ian P Salt
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.).
| | - D Grahame Hardie
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.)
| |
Collapse
|
11
|
Osman I, Fairaq A, Segar L. Pioglitazone Attenuates Injury-Induced Neointima Formation in Mouse Femoral Artery Partially through the Activation of AMP-Activated Protein Kinase. Pharmacology 2017; 100:64-73. [PMID: 28482342 DOI: 10.1159/000471769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Pioglitazone (PIO), an antidiabetic drug, has been shown to attenuate vascular smooth muscle cell (VSMC) proliferation, which is a major event in atherosclerosis and restenosis after angioplasty. Till date, the likely contributory role of AMP-activated protein kinase (AMPK) toward PIO inhibition of VSMC proliferation has not been examined in vivo. This study is aimed at determining whether pharmacological inhibition of AMPK would prevent the inhibitory effect of PIO on neointima formation in a mouse model of arterial injury. METHODS Male CJ57BL/6J mice were subjected to femoral artery injury using guidewire. PIO (20 mg/kg/day) was administered orally 1 day before surgery and for 3 weeks until sacrifice in the absence or presence of compound C (an AMPK inhibitor). Injured femoral arteries were used for morphometric analysis of neointima formation. Aortic tissue lysates were used for immunoblot analysis of phosphorylated AMPK. RESULTS PIO treatment resulted in a significant decrease in intima-to-media ratio by ∼50.3% (p < 0.05, compared with vehicle control; n = 6), which was accompanied by enhanced phosphorylation of AMPK by ∼85% in the vessel wall. Compound C treatment led to a marked reduction in PIO-mediated inhibition of neointima formation. CONCLUSION PIO attenuates injury-induced neointima formation, in part, through the activation of AMPK.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|
12
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Ding Y, Zhang M, Zhang W, Lu Q, Cai Z, Song P, Okon IS, Xiao L, Zou MH. AMP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces Features of Atherosclerotic Plaque Stability. Circ Res 2016; 119:718-30. [PMID: 27439892 DOI: 10.1161/circresaha.116.308689] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE AMP-activated protein kinase (AMPK) has been reported to play a protective role in atherosclerosis. However, whether AMPKα2 controls atherosclerotic plaque stability remains unknown. OBJECTIVE The aim of this study was to evaluate the impact of AMPKα2 deletion on atherosclerotic plaque stability in advanced atherosclerosis at the brachiocephalic arteries and to elucidate the underlying mechanisms. METHODS AND RESULTS Features of atherosclerotic plaque stability and the markers for contractile or synthetic vascular smooth muscle cell (VSMC) phenotypes were monitored in the brachiocephalic arteries from Apoe(-/-)AMPKα2(-/-) mice or VSMC-specific AMPKα2(-/-) mice in an Apoe(-/-) background (Apoe(-/-)AMPKα2(sm-/-)) fed Western diet for 10 weeks. We identified that Apoe(-/-)AMPKα2(-/-) mice and Apoe(-/-)AMPKα2(sm-/-) mice exhibited similar unstable plaque features, aggravated VSMC phenotypic switching, and significant upregulation of Kruppel-like factor 4 (KLF4) in the plaques located in the brachiocephalic arteries compared with those found in Apoe(-/-) and Apoe(-/-)AMPKα2(sm+/+) control mice. Pravastatin, an AMPK activator, suppressed VSMC phenotypic switching and alleviated features of atherosclerotic plaque instability in Apoe(-/-)AMPKα2(sm+/+) mice, but not in Apoe(-/-)AMPKα2(sm-/-) mice. VSMC isolated from AMPKα2(-/-) mice displayed a significant reduction of contractile proteins(smooth muscle actin-α, calponin, and SM-MHC [smooth muscle-mysion heavy chain]) in parallel with increased detection of synthetic proteins (vimentin and osteopontin) and KLF4, as observed in vivo. KLF4-specific siRNA abolished AMPKα2 deletion-induced VSMC phenotypic switching. Furthermore, pharmacological or genetic inhibition of nuclear factor-κB significantly decreased KLF4 upregulation in VSMC from AMPKα2(-/-) mice. Finally, we found that AMPKα2 deletion markedly promoted the binding of nuclear factor-κBp65 to KLF4 promoter. CONCLUSIONS This study demonstrated that AMPKα2 deletion induces VSMC phenotypic switching and promotes features of atherosclerotic plaque instability in nuclear factor-κB-KLF4-dependent manner.
Collapse
Affiliation(s)
- Ye Ding
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Miao Zhang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Wencheng Zhang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Qiulun Lu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Zhejun Cai
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Ping Song
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Imoh Sunday Okon
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Lei Xiao
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Ming-Hui Zou
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.).
| |
Collapse
|
14
|
Wu Y, Song P, Zhang W, Liu J, Dai X, Liu Z, Lu Q, Ouyang C, Xie Z, Zhao Z, Zhuo X, Viollet B, Foretz M, Wu J, Yuan Z, Zou MH. Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 2015; 21:373-82. [PMID: 25799226 PMCID: PMC4390501 DOI: 10.1038/nm.3826] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.
Collapse
Affiliation(s)
- Yue Wu
- 1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ping Song
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wencheng Zhang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Junhui Liu
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyan Dai
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhaoyu Liu
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Qiulun Lu
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Changhan Ouyang
- 1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhonglin Xie
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhengxing Zhao
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xiaozhen Zhuo
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Benoit Viollet
- 1] INSERM, U1016, Institut Cochin, Paris, France. [2] CNRS, UMR 8104, Paris, France. [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- 1] INSERM, U1016, Institut Cochin, Paris, France. [2] CNRS, UMR 8104, Paris, France. [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jiliang Wu
- Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zuyi Yuan
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming-Hui Zou
- 1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
15
|
Lin MC, Ou TT, Chang CH, Chan KC, Wang CJ. Protocatechuic acid inhibits oleic acid-induced vascular smooth muscle cell proliferation through activation of AMP-activated protein kinase and cell cycle arrest in G0/G1 phase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:235-241. [PMID: 25513741 DOI: 10.1021/jf505303s] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protocatechuic acid (PCA) has been implicated in the progression of atherosclerosis. The proliferation of vascular smooth muscle cells (VSMC) may play a crucial role in the pathogenesis of atherosclerosis. Adenosine 5′-monophosphate-activated protein kinase (AMPK) additionally exerts several beneficial effects on vascular function and improves vascular abnormalities. The current study sought to determine whether PCA has an inhibitory effect on VSMC proliferation under oleic acid (OA) treatment. A7r5 cells were treated with OA (150 μM) or cotreated with OA and PCA (150 μg/mL) for 24 and 48 h. PCA-treated cells were found to cause an increase in G0/G1 cell cycle arrest. Western blotting showed that PCA increased the expressions of p53 and p21Cip1, subsequently decreasing the expression of cyclin E1 and Cdk2. In addition, PCA induced phosphorylation of AMPK and inhibited the expression of fatty acid synthase, Akt-p, and Skp2 after stimulation with OA. After treatment with AMPK inhibitor, the effects of PCA mentioned above were reversed. Taken together, PCA inhibited OA-induced VSMC proliferation through AMPK activation and down-regulation of FAS and AKT signals, which then blocks G0/G1 phase cell cycle progression. These findings provide a new insight into the protective properties of PCA on VSMC, which may constitute a novel effective antiatherosclerosis agent.
Collapse
|
16
|
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Ronnebaum SM, Patterson C, Schisler JC. Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 2014; 28:1602-15. [PMID: 25099013 DOI: 10.1210/me.2014-1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the master regulators of both glucose and lipid cellular metabolism is 5'-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute (S.M.R., J.C.S.) and Department of Pharmacology (J.C.S.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Presbyterian Hospital/Weill-Cornell Medical Center (C.P.), New York, New York 10065
| | | | | |
Collapse
|
18
|
Time and flow-dependent changes in the p27(kip1) gene network drive maladaptive vascular remodeling. J Vasc Surg 2014; 62:1296-302.e2. [PMID: 24953896 DOI: 10.1016/j.jvs.2014.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Although clinical studies have identified that a single nucleotide polymorphism in the p27(kip1) gene is associated with success or failure after vein bypass grafting, the underlying mechanisms for this difference are not well defined. Using a high-throughput approach in a flow-dependent vein graft model, we explored the differences in p27(kip1)-related genes that drive the enhanced hyperplastic response under low-flow conditions. METHODS Bilateral rabbit carotid artery interposition grafts with jugular vein were placed with a unilateral distal outflow branch ligation to create differential flow states. Grafts were harvested at 2 hours and at 1, 3, 7, 14, and 28 days after implantation, measured for neointimal area, and assayed for cell proliferation. Whole-vessel messenger RNA was isolated and analyzed using an Affymetrix (Santa Clara, Calif) gene array platform. Ingenuity Pathway Analysis (Ingenuity, Redwood City, Calif) was used to identify the gene networks surrounding p27(kip1). This gene set was then analyzed for temporal expression changes after graft placement and for differential expression in the alternate flow conditions. RESULTS Outflow branch ligation resulted in an eightfold difference in mean flow rates throughout the 28-day perfusion period (P < .001). Flow reduction led to a robust hyperplastic response, resulting in a significant increase in intimal area by 7 days (0.13 ± 0.04 mm(2) vs 0.014 ± 0.006 mm(2); P < .005) and progressive growth to 28 days (1.37 ± 0.05 mm(2) vs 0.39 ± 0.06 mm(2); P < .001). At 7 days, low-flow grafts demonstrated a burst of actively dividing intimal cells (36.4 ± 9.4 cells/mm(2) vs 11.5 ± 1.9 cells/mm(2); P = .04). Sixty-five unique genes within the microarray were identified as components of the p27(kip1) network. At a false discovery rate of 0.05, 26 genes demonstrated significant temporal changes, and two dominant patterns of expression were identified. Class comparison analysis identified differential expression of 11 genes at 2 hours and seven genes and 14 days between the high-flow and low-flow grafts (P < .05). At 2 hours, oncostatin M and cadherin 1 were the most differentially expressed. Cadherin 1 and protein kinase B exhibited the greatest differential expression at 14 days. CONCLUSIONS Alterations in flow and shear stress result in divergent patterns of vein graft remodeling. Associated with the dramatic increase in neointimal expansion observed in low-flow vs high-flow grafts is a subset of differentially expressed p27(kip1)-associated genes that correlate with critical stages in the adaptive response. These represent potential biologic targets whose activity may be altered to augment maladaptive vascular remodeling.
Collapse
|
19
|
Song P, Zou MH. Redox regulation of endothelial cell fate. Cell Mol Life Sci 2014; 71:3219-39. [PMID: 24633153 DOI: 10.1007/s00018-014-1598-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions.
Collapse
Affiliation(s)
- Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L Young Blvd., Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|