1
|
Nassar A, Wagura E, Loukas M. Mast cells and arteriogenesis: A systematic review. Cardiovasc Pathol 2025; 75:107716. [PMID: 39778667 DOI: 10.1016/j.carpath.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood. Notably, the role of innate and adaptive immune cells, particularly mast cells, in arteriogenesis has received limited attention. This systematic review bridges this knowledge gap by investigating the contribution of mast cells to vascular cell proliferation and leukocyte recruitment in arteriogenesis. A comprehensive search of major databases using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines reveals the critical connection between mast cells, inflammatory cells, innate immune cells, and growth factors in arteriogenesis. Our findings highlight the molecular mechanisms of mast cell activation, sheer stress exertion, and pro-arteriogenic growth factor recruitment. Furthermore, we explore the endogenous and exogenous factors, including nitrite, dipyridamole, thrombin, and cobra venom, triggering mast cell-mediated release of pro-arteriogenic factors. Additionally, we examine the impact of recombinant parathyroid hormone (rPTH) therapy on mast cell numbers and arteriogenesis in bone defect and allograft healing. Our review provides compelling evidence for the pro-arteriogenic role of mast cells, particularly during the early inflammatory phase of vessel occlusion, suggesting that targeting mast cell activation may be a promising therapeutic strategy for enhancing arteriogenesis and treating ischemia-related diseases.
Collapse
Affiliation(s)
- Alice Nassar
- Department of Anatomical Sciences, St. George's University, School of Medicine, West Indies, Grenada; Department of Internal Medicine, Trinity Health Hospital, Livonia, Michigan, USA
| | - Elizabeth Wagura
- Department of Anatomical Sciences, St. George's University, School of Medicine, West Indies, Grenada
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University, School of Medicine, West Indies, Grenada; Department of Pathology, St. George's University, School of Medicine, West Indies, Grenada; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota, USA; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland.
| |
Collapse
|
2
|
Markina YV, Kirichenko TV, Tolstik TV, Bogatyreva AI, Zotova US, Cherednichenko VR, Postnov AY, Markin AM. Target and Cell Therapy for Atherosclerosis and CVD. Int J Mol Sci 2023; 24:10308. [PMID: 37373454 DOI: 10.3390/ijms241210308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular diseases (CVD) and, in particular, atherosclerosis, remain the main cause of death in the world today. Unfortunately, in most cases, CVD therapy begins after the onset of clinical symptoms and is aimed at eliminating them. In this regard, early pathogenetic therapy for CVD remains an urgent problem in modern science and healthcare. Cell therapy, aimed at eliminating tissue damage underlying the pathogenesis of some pathologies, including CVD, by replacing it with various cells, is of the greatest interest. Currently, cell therapy is the most actively developed and potentially the most effective treatment strategy for CVD associated with atherosclerosis. However, this type of therapy has some limitations. In this review, we have tried to summarize the main targets of cell therapy for CVD and atherosclerosis in particular based on the analysis using the PubMed and Scopus databases up to May 2023.
Collapse
Affiliation(s)
- Yuliya V Markina
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Taisiya V Tolstik
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Ulyana S Zotova
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Anton Yu Postnov
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | - Alexander M Markin
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| |
Collapse
|
3
|
Schelke LW, Velthuis P, Kadouch J, Swift A. Early ultrasound for diagnosis and treatment of vascular adverse events with hyaluronic acid fillers. J Am Acad Dermatol 2023; 88:79-85. [PMID: 31325548 DOI: 10.1016/j.jaad.2019.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hyaluronic acid fillers are known for a reliable safety profile, but complications do occur, even serious vascular adverse events. OBJECTIVE To improve the treatment outcome after a vascular adverse event with use of hyaluronic acid filler treatments. METHODS Duplex ultrasonography is used to detect the hyaluronic acid filler causing the intra-arterial obstruction. RESULTS If treated in time, 1 single treatment of ultrasonographically guided injections of hyaluronidase into the filler deposit will prevent skin necrosis. CONCLUSION Because the use of duplex ultrasonography adds extra essential information, its use may become an integral part of the prevention and treatment of injection adverse events.
Collapse
Affiliation(s)
- Leonie W Schelke
- Erasmus Medical Centre, Department of Dermatology, Rotterdam, The Netherlands.
| | - Peter Velthuis
- ReSculpt Clinic, Department of Dermatology, Amsterdam, The Netherlands
| | - Jonathan Kadouch
- ReSculpt Clinic, Department of Dermatology, Amsterdam, The Netherlands
| | - Arthur Swift
- Westmount Institute of Plastic Surgery, Montreal, Canada
| |
Collapse
|
4
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
5
|
Sok MCP, Baker N, McClain C, Lim HS, Turner T, Hymel L, Ogle M, Olingy C, Palacios JI, Garcia JR, Srithar K, García AJ, Qiu P, Botchwey EA. Dual delivery of IL-10 and AT-RvD1 from PEG hydrogels polarize immune cells towards pro-regenerative phenotypes. Biomaterials 2021; 268:120475. [PMID: 33321293 PMCID: PMC11129952 DOI: 10.1016/j.biomaterials.2020.120475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammation after traumatic injury or surgical intervention is both a protective tissue response leading to regeneration and a potential cause of wound complications. One potentially successful strategy to harness to pro-regenerative roles of host inflammation is the localized delivery of bioactive materials to induce immune suppressive cellular responses by cells responding to injury. In this study, we designed a fully synthetic poly (ethylene) glycol (PEG)-based hydrogel to release the specialized pro-resolving lipid mediator aspirin-triggered resolvin-D1 (AT-RvD1) and recombinant human interleukin 10 (IL-10). We utilized a unique side-by-side internally controlled implant design wherein bioactive hydrogels were implanted adjacent to control hydrogels devoid of immune modulatory factors in the dorsal skinfold window chamber. We also explored single-immune cell data with unsupervised approaches such as SPADE. First, we show that RGD-presenting hydrogel delivery results in enhanced immune cell recruitment to the site of injury. We then use intra-vital imaging to assess cellular recruitment and microvascular remodeling to show an increase in the caliber and density of local microvessels. Finally, we show that the recruitment and re-education of mononuclear phagocytes by combined delivery IL-10 and AT-RvD1 localizes immune suppressive subsets to the hydrogel, including CD206+ macrophages (M2a/c) and IL-10 expressing dendritic cells in the context of chronic inflammation following surgical tissue disruption. These data demonstrate the potential of combined delivery on the recruitment of regenerative cell subsets involved in wound healing complications.
Collapse
Affiliation(s)
- Mary Caitlin P Sok
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Emory University Medical Scientist Training Program, USA
| | - Nusaiba Baker
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Emory University Medical Scientist Training Program, USA
| | - Claire McClain
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hong Seo Lim
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Molly Ogle
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Claire Olingy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Joshua I Palacios
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - José R Garcia
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krithik Srithar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Lin XC, Pan M, Zhu LP, Sun Q, Zhou ZS, Li CC, Zhang GG. NFAT5 promotes arteriogenesis via MCP-1-dependent monocyte recruitment. J Cell Mol Med 2019; 24:2052-2063. [PMID: 31883300 PMCID: PMC6991654 DOI: 10.1111/jcmm.14904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 01/24/2023] Open
Abstract
Studies have demonstrated that nuclear factor of activated T cells 5 (NFAT5) is not only a tonicity‐responsive transcription factor but also activated by other stimuli, so we aim to investigate whether NFAT5 participates in collateral arteries formation in rats. We performed femoral artery ligature (FAL) in rats for hindlimb ischaemia model and found that NFAT5 was up‐regulated in rat adductors with FAL compared with sham group. Knockdown of NFAT5 with locally injection of adenovirus‐mediated NFAT5‐shRNA in rats significantly inhibited hindlimb blood perfusion recovery and arteriogenesis. Moreover, NFAT5 knockdown decreased macrophages infiltration and monocyte chemotactic protein‐1 (MCP‐1) expression in rats adductors. In vitro, with interleukin‐1β (IL‐1β) stimulation and loss‐of‐function studies, we demonstrated that NFAT5 knockdown inhibits MCP‐1 expression in endothelial cells and chemotaxis of THP‐1 cells regulated by ERK1/2 pathway. More importantly, exogenous MCP‐1 delivery could recover hindlimb blood perfusion, promote arteriogenesis and macrophages infiltration in rats after FAL, which were depressed by NFAT5 knockdown. Besides, NFAT5 knockdown also inhibited angiogenesis in gastrocnemius muscles in rats. Our results indicate that NFAT5 is a critical regulator of arteriogenesis and angiogenesis via MCP‐1‐dependent monocyte recruitment, suggesting that NFAT5 may represent an alternative therapeutic target for ischaemic diseases.
Collapse
Affiliation(s)
- Xing-Chi Lin
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Pan
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ping Zhu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Shi Zhou
- Department of Laboratory Animal, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Sun N, Ning B, Bruce AC, Cao R, Seaman SA, Wang T, Fritsche-Danielson R, Carlsson LG, Peirce SM, Hu S. In vivo imaging of hemodynamic redistribution and arteriogenesis across microvascular network. Microcirculation 2019; 27:e12598. [PMID: 31660674 DOI: 10.1111/micc.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Arteriogenesis is an important mechanism that contributes to restoration of oxygen supply in chronically ischemic tissues, but remains incompletely understood due to technical limitations. This study presents a novel approach for comprehensive assessment of the remodeling pattern in a complex microvascular network containing multiple collateral microvessels. METHODS We have developed a hardware-software integrated platform for quantitative, longitudinal, and label-free imaging of network-wide hemodynamic changes and arteriogenesis at the single-vessel level. By ligating feeding arteries in the mouse ear, we induced network-wide hemodynamic redistribution and localized arteriogenesis. The utility of this technology was demonstrated by studying the influence of obesity on microvascular arteriogenesis. RESULTS Simultaneously monitoring the remodeling of competing collateral arterioles revealed a new, inverse relationship between initial vascular resistance and extent of arteriogenesis. Obese mice exhibited similar remodeling responses to lean mice through the first week, including diameter increase and flow upregulation in collateral arterioles. However, these gains were subsequently lost in obese mice. CONCLUSIONS Capable of label-free, comprehensive, and dynamic quantification of structural and functional changes in the microvascular network in vivo, this platform opens up new opportunities to study the mechanisms of microvascular arteriogenesis, its implications in diseases, and approaches to pharmacologically rectify microvascular dysfunction.
Collapse
Affiliation(s)
- Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bo Ning
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Scott A Seaman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tianxiong Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Leif G Carlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
7- O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules 2019; 9:biom9110716. [PMID: 31717401 PMCID: PMC6920859 DOI: 10.3390/biom9110716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have been successful in attenuating this phenotypic switch. While the vast majority of studies investigating phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion. MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression of MMP-2, MMP-9, and NF-κB, as well as reduced activation of ERK1/2 and FAK. Furthermore, MP-treated VSMCs showed an increase in early (myocardin, SM-22α, SM-α) and mid-term (calponin and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a promising modulator for inflammation-induced arteriolar pathophysiology.
Collapse
|
9
|
Heuslein JL, Gorick CM, McDonnell SP, Song J, Annex BH, Price RJ. Exposure of Endothelium to Biomimetic Flow Waveforms Yields Identification of miR-199a-5p as a Potent Regulator of Arteriogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:829-844. [PMID: 30153567 PMCID: PMC6118158 DOI: 10.1016/j.omtn.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Arteriogenesis, the growth of endogenous collateral arteries bypassing arterial occlusion(s), is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease (PAD). Nonetheless, endothelial mechano-signaling during arteriogenesis is incompletely understood. Here we tested the hypothesis that a mechanosensitive microRNA, miR-199a-5p, regulates perfusion recovery and collateral arteriogenesis following femoral arterial ligation (FAL) via control of monocyte recruitment and pro-arteriogenic gene expression. We have previously shown that collateral artery segments exhibit distinctly amplified arteriogenesis if they are exposed to reversed flow following FAL in the mouse. We performed a genome-wide analysis of endothelial cells exposed to a biomimetic reversed flow waveform. From this analysis, we identified mechanosensitive miR-199a-5p as a novel candidate regulator of collateral arteriogenesis. In vitro, miR-199a-5p inhibited pro-arteriogenic gene expression (IKKβ, Cav1) and monocyte adhesion to endothelium. In vivo, following FAL in mice, miR-199a-5p overexpression impaired foot perfusion and arteriogenesis. In contrast, a single intramuscular anti-miR-199a-5p injection elicited a robust therapeutic response, including complete foot perfusion recovery, markedly augmented arteriogenesis (>3.4-fold increase in segment conductance), and improved gastrocnemius tissue composition. Finally, we found plasma miR-199a-5p to be elevated in human PAD patients with intermittent claudication compared to a risk factor control population. Through our transformative analysis of endothelial mechano-signaling in response to a biomimetic amplified arteriogenesis flow waveform, we have identified miR-199a-5p as both a potent regulator of arteriogenesis and a putative target for treating PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Stephanie P McDonnell
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian H Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Traore MA, George SC. Tissue Engineering the Vascular Tree. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:505-514. [PMID: 28799844 PMCID: PMC5729878 DOI: 10.1089/ten.teb.2017.0010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
A major hurdle in the field of tissue engineering and regenerative medicine remains the design and construction of larger (> 1 cm3) in vitro tissues for biological studies and transplantation. While there has been success in creating three-dimensional (3D) capillary networks, relatively large arteries (diameter >3-5 mm), and more recently small arteries (diameter 500 μm-1 mm), there has been no success in the creation of a living dynamic blood vessel network comprising of arterioles (diameter 40-300 μm), capillaries, and venules. Such a network would provide the foundation to supply nutrients and oxygen to all surrounding cells for larger tissues and organs that require a hierarchical vascular supply. In this study, we describe the different technologies and methods that have been employed in an effort to create individual vessels and networks of vessels to support engineered tissues for in vivo and in vitro applications. A special focus is placed on the generation of blood vessels with average dimensions that span from microns (capillaries) to a millimeter (large arterioles). We also identify major challenges while exploring new opportunities to create model systems of the entire vascular tree, including arterioles and venules.
Collapse
Affiliation(s)
- Mahama A. Traore
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Washington University, Saint Louis, Missouri
| | | |
Collapse
|
11
|
Heuslein JL, Gorick CM, Song J, Price RJ. DNA Methyltransferase 1-Dependent DNA Hypermethylation Constrains Arteriogenesis by Augmenting Shear Stress Set Point. J Am Heart Assoc 2017; 6:JAHA.117.007673. [PMID: 29191807 PMCID: PMC5779061 DOI: 10.1161/jaha.117.007673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Arteriogenesis is initiated by increased shear stress and is thought to continue until shear stress is returned to its original “set point.” However, the molecular mechanism(s) through which shear stress set point is established by endothelial cells (ECs) are largely unstudied. Here, we tested the hypothesis that DNA methyltransferase 1 (DNMT1)–dependent EC DNA methylation affects arteriogenic capacity via adjustments to shear stress set point. Methods and Results In femoral artery ligation–operated C57BL/6 mice, collateral artery segments exposed to increased shear stress without a change in flow direction (ie, nonreversed flow) exhibited global DNA hypermethylation (increased 5‐methylcytosine staining intensity) and constrained arteriogenesis (30% less diameter growth) when compared with segments exposed to both an increase in shear stress and reversed‐flow direction. In vitro, ECs exposed to a flow waveform biomimetic of nonreversed collateral segments in vivo exhibited a 40% increase in DNMT1 expression, genome‐wide hypermethylation of gene promoters, and a DNMT1‐dependent 60% reduction in proarteriogenic monocyte adhesion compared with ECs exposed to a biomimetic reversed‐flow waveform. These results led us to test whether DNMT1 regulates arteriogenic capacity in vivo. In femoral artery ligation–operated mice, DNMT1 inhibition rescued arteriogenic capacity and returned shear stress back to its original set point in nonreversed collateral segments. Conclusions Increased shear stress without a change in flow direction initiates arteriogenic growth; however, it also elicits DNMT1‐dependent EC DNA hypermethylation. In turn, this diminishes mechanosensing, augments shear stress set point, and constrains the ultimate arteriogenic capacity of the vessel. This epigenetic effect could impact both endogenous collateralization and treatment of arterial occlusive diseases.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
12
|
Seaman SA, Cao Y, Campbell CA, Peirce SM. Arteriogenesis in murine adipose tissue is contingent on CD68 + /CD206 + macrophages. Microcirculation 2017; 24:10.1111/micc.12341. [PMID: 27976451 PMCID: PMC5432396 DOI: 10.1111/micc.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The surgical transfer of skin, fat, and/or muscle from a donor site to a recipient site within the same patient is a widely performed procedure in reconstructive surgeries. A surgical pretreatment strategy that is intended to increase perfusion in the flap, termed "flap delay," is a commonly employed technique by plastic surgeons prior to flap transplantation. Here, we explored whether CD68+ /CD206+ macrophages are required for arteriogenesis within the flap by performing gain-of-function and loss-of-function studies in a previously published flap delay murine model. METHODS AND RESULTS Local injection of M2-polarized macrophages into the flap resulted in an increase in collateral vessel diameter. Application of a thin biomaterial film loaded with a pharmacological agent (FTY720), which has been previously shown to recruit CD68+ /CD206+ macrophages to remodeling tissue, increased CD68+ /CD206+ cell recruitment and collateral vessel enlargement. Conversely, when local macrophage populations were depleted within the inguinal fat pad via clodronate liposome delivery, we observed fewer CD68+ cells accompanied by diminished collateral vessel enlargement. CONCLUSIONS Our study underscores the importance of macrophages during microvascular adaptations that are induced by flap delay. These studies suggest a mechanism for a translatable therapeutic target that may be used to enhance the clinical flap delay procedure.
Collapse
Affiliation(s)
- Scott A. Seaman
- Department of Biomedical Engineering, University of Virginia
| | - Yiqi Cao
- Department of Biomedical Engineering, University of Virginia
| | | | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia
- Department of Plastic Surgery, University of Virginia
| |
Collapse
|
13
|
Sok MCP, Tria MC, Olingy CE, San Emeterio CL, Botchwey EA. Aspirin-Triggered Resolvin D1-modified materials promote the accumulation of pro-regenerative immune cell subsets and enhance vascular remodeling. Acta Biomater 2017; 53:109-122. [PMID: 28213094 DOI: 10.1016/j.actbio.2017.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
Many goals in tissue engineering rely on modulating cellular localization and polarization of cell signaling, including the inhibition of inflammatory infiltrate, facilitation of inflammatory cell egress, and clearance of apoptotic cells. Omega-3 polyunsaturated fatty acid-derived resolvins are gaining increasing recognition for their essential roles in inhibition of neutrophil invasion into inflamed tissue and promotion of macrophage phagocytosis of cellular debris as well as their egress to the lymphatics. Biomaterial-based release of lipid mediators is a largely under-explored approach that provides a method to manipulate local lipid signaling gradients in vivo and direct the recruitment and/or polarization of anti-inflammatory cell subsets to suppress inflammatory signaling and enhance angiogenesis and tissue regeneration. The goal of this study was to encapsulate Aspirin-Triggered Resolvin D1 (AT-RvD1) into a degradable biomaterial in order to elucidate the effects of sustained, localized delivery in a model of sterile inflammation. Flow cytometric and imaging analysis at both 1 and 3days after injury showed that localized AT-RvD1 delivery was able significantly increase the accumulation of anti-inflammatory monocytes and M2 macrophages while limiting the infiltration of neutrophils. Additionally, cytokine profiling and longitudinal vascular analysis revealed a shift towards a pro-angiogenic profile with increased concentrations of VEGF and SDF-1α, and increased arteriolar diameter and tortuosity. These results demonstrate the ability of locally-delivered AT-RvD1 to increase pro-regenerative immune subpopulations and promote vascular remodeling. STATEMENT OF SIGNIFICANCE This work is motivated by our efforts to explore the underlying mechanisms of inflammation resolution after injury and to develop biomaterial-based approaches to amplify endogenous mechanisms of resolution and repair. Though specific lipid mediators have been identified that actively promote the resolution of inflammation, biomaterial-based localized delivery of these mediators has been largely unexplored. We loaded Aspirin-Triggered Resolvin D1 into a PLGA scaffold and examined the effects of sustained, localized delivery on the innate immune response. We found that biomaterial delivery of resolvin was able to enhance the accumulation of pro-regenerative populations of immune cells, including anti-inflammatory monocytes, population that has never before been shown to respond to resolvin treatment, and also enhance vascular remodeling in response to tissue injury.
Collapse
Affiliation(s)
- Mary Caitlin P Sok
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Maxianne C Tria
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cheryl L San Emeterio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
14
|
Guo L, Harari E, Virmani R, Finn AV. Linking Hemorrhage, Angiogenesis, Macrophages, and Iron Metabolism in Atherosclerotic Vascular Diseases. Arterioscler Thromb Vasc Biol 2017; 37:e33-e39. [DOI: 10.1161/atvbaha.117.309045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liang Guo
- From the CVPath Institute, Inc, Gaithersburg, MD
| | | | - Renu Virmani
- From the CVPath Institute, Inc, Gaithersburg, MD
| | | |
Collapse
|
15
|
Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. Sci Rep 2017; 7:447. [PMID: 28348370 PMCID: PMC5428475 DOI: 10.1038/s41598-017-00477-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/27/2017] [Indexed: 01/18/2023] Open
Abstract
Successful tissue repair requires the activities of myeloid cells such as monocytes and macrophages that guide the progression of inflammation and healing outcome. Immunoregenerative materials leverage the function of endogenous immune cells to orchestrate complex mechanisms of repair; however, a deeper understanding of innate immune cell function in inflamed tissues and their subsequent interactions with implanted materials is necessary to guide the design of these materials. Blood monocytes exist in two primary subpopulations, characterized as classical inflammatory or non-classical. While classical monocytes extravasate into inflamed tissue and give rise to macrophages or dendritic cells, the recruitment kinetics and functional role of non-classical monocytes remains unclear. Here, we demonstrate that circulating non-classical monocytes are directly recruited to polymer films within skin injuries, where they home to a perivascular niche and generate alternatively activated, wound healing macrophages. Selective labeling of blood monocyte subsets indicates that non-classical monocytes are biased progenitors of alternatively activated macrophages. On-site delivery of the immunomodulatory small molecule FTY720 recruits S1PR3-expressing non-classical monocytes that support vascular remodeling after injury. These results elucidate a previously unknown role for blood-derived non-classical monocytes as contributors to alternatively activated macrophages, highlighting them as key regulators of inflammatory response and regenerative outcome.
Collapse
|
16
|
Kalucka J, Bierhansl L, Wielockx B, Carmeliet P, Eelen G. Interaction of endothelial cells with macrophages-linking molecular and metabolic signaling. Pflugers Arch 2017; 469:473-483. [PMID: 28236120 DOI: 10.1007/s00424-017-1946-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 12/20/2022]
Abstract
Angiogenesis and inflammation go hand in hand in various (patho-)physiological conditions. Several studies have highlighted the interconnection between endothelial cells (ECs) and macrophages in these conditions at the level of growth factor and cytokine signaling, yet the importance of metabolism and metabolic signaling has been largely overlooked. Modulating macrophage and/or endothelial functions by interfering with metabolic pathways offers new perspectives for therapeutic strategies. In this review, we highlight the complexity of the interrelationship between the inflammatory response and angiogenesis. More in particular, the interaction between macrophages and ECs will be discussed with a special focus on how their metabolism can contribute to (patho-)physiological conditions.
Collapse
Affiliation(s)
- Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium. .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium.
| | - Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Faculty of medicine, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium. .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium.
| |
Collapse
|
17
|
Ogle ME, Krieger JR, Tellier LE, McFaline-Figueroa J, Temenoff JS, Botchwey EA. Dual Affinity Heparin-Based Hydrogels Achieve Pro-Regenerative Immunomodulation and Microvascular Remodeling. ACS Biomater Sci Eng 2017; 4:1241-1250. [DOI: 10.1021/acsbiomaterials.6b00706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Jack R. Krieger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Liane E. Tellier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Jennifer McFaline-Figueroa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Edward A. Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
San Emeterio CL, Olingy CE, Chu Y, Botchwey EA. Selective recruitment of non-classical monocytes promotes skeletal muscle repair. Biomaterials 2016; 117:32-43. [PMID: 27930948 DOI: 10.1016/j.biomaterials.2016.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023]
Abstract
Regeneration of traumatic defects in skeletal muscle requires the synchronized behavior of multiple cells that participate in repair. The inflammatory cascade that is rapidly initiated after injury serves as a powerful node at which to guide the progression of healing and influence tissue repair. Here, we examine the role that myeloid cells play in the healing of traumatic skeletal muscle injury, and leverage their pro-regenerative functions using local delivery of the immunomodulatory small molecule FTY720. We demonstrate that increasing the frequency of non-classical monocytes in inflamed muscle coincides with increased numbers of CD206+ alternatively activated macrophages. Animals treated with immunomodulatory materials had greater defect closure and more vascularization in the acute phases of injury. In the later stages of repair, during which parenchymal tissue growth occurs, we observed improved regeneration of muscle fibers and decreased fibrotic tissue following localization of pro-regenerative inflammation. These results highlight non-classical monocytes as a novel therapeutic target to improve the regenerative outcome after traumatic skeletal muscle injury.
Collapse
Affiliation(s)
- Cheryl L San Emeterio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yihsuan Chu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
Seaman SA, Cao Y, Campbell CA, Peirce SM. Macrophage Recruitment and Polarization During Collateral Vessel Remodeling in Murine Adipose Tissue. Microcirculation 2016; 23:75-87. [PMID: 26638986 DOI: 10.1111/micc.12261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE During autologous flap transplantation for reconstructive surgeries, plastic surgeons use a surgical pre-treatment strategy called "flap delay," which entails ligating a feeding artery into an adipose tissue flap 10-14 days prior to transfer. It is believed that this blood flow alteration leads to vascular remodeling in the flap, resulting in better flap survival following transfer; however, the structural changes in the microvascular network are poorly understood. Here, we evaluate microvascular adaptations within adipose tissue in a murine model of flap delay. METHODS AND RESULTS We used a murine flap delay model in which we ligated an artery supplying the inguinal fat pad. Although the extent of angiogenesis appeared minimal, significant diameter expansion of pre-existing collateral arterioles was observed. There was a 5-fold increase in recruitment of CX3CR1(+) monocytes to ligated tissue, a threefold increase in CD68(+) /CD206(+) macrophages in ligated tissue, a 40% increase in collateral vessel diameters supplying ligated tissue, and a 6-fold increase in the number of proliferating cells in ligated tissue. CONCLUSIONS Our study describes microvascular adaptations in adipose in response to altered blood flow and underscores the importance of macrophages. Our data supports the development of therapies that target macrophages in order to enhance vascular remodeling in flaps.
Collapse
Affiliation(s)
- Scott A Seaman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Yiqi Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Chris A Campbell
- Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Wang Y, Zhang L, Jia L, Liu J, Liu K, Feng Q, Wang Q. Calcitonin gene-related peptide in aerobic exercise induces collateral circulation development in rat ischemia myocardium. Biomed Pharmacother 2016; 82:561-7. [PMID: 27470397 DOI: 10.1016/j.biopha.2016.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Aerobic exercise may offer favorable effects for coronary perfusion in the myocardial ischemia area, although the underlying molecular mechanisms remain unclear. This study was designed to investigate the effect of aerobic exercise on the collateral circulation in the ischemia myocardium and to evaluate calcitonin gene-related peptide (CGRP) changes during this process. METHODS AND RESULTS Wistar rats were randomly divided into 3 groups of 7 rats each: a sham operated group (Sham), a myocardial ischemia-only group (MI) and a MI plus aerobic exercise group (MI+AE). The rat myocardial ischemia model was established by injecting isoprenaline (2mg/kg, i.p.). The aerobic exercise training consisted of swimming (40min/d, 5d/wk) for 4 weeks. At the end-points, after echocardiographic analysis was performed, blood and ischemia myocardium samples were collected and analyzed by ELISA to quantify the CGRP protein. The dorsal root ganglia were isolated and analyzed by reverse transcription polymerase chain reaction (RT-PCR) to examine the CGRP mRNA expression, and ischemia myocardium capillary density was evaluated by immunohistochemistry. Our data showed that the capillary density in the left ventricle and heart function were significantly decreased with decreased CGRP production in the MI rats, which were reversed by aerobic exercise in the MI+AE rats. CONCLUSION These results indicate that aerobic exercise may alleviate myocardial ischemia through collateral circulation development with increased CGRP production. CGRP may play an important role in developing the collateral circulation.
Collapse
Affiliation(s)
- YuanHui Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China; Clinical Medical School, Jining Medical University, Jining 272013, Shandong, China
| | - Lei Zhang
- Clinical Medical School, Jining Medical University, Jining 272013, Shandong, China
| | - Li Jia
- Clinical Medical School, Jining Medical University, Jining 272013, Shandong, China
| | - Jing Liu
- Clinical Medical School, Jining Medical University, Jining 272013, Shandong, China
| | - Kun Liu
- Clinical Medical School, Jining Medical University, Jining 272013, Shandong, China
| | - QiZhen Feng
- Clinical Medical School, Jining Medical University, Jining 272013, Shandong, China
| | - Qiang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China.
| |
Collapse
|
21
|
Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion. Sci Rep 2016; 6:27029. [PMID: 27244251 PMCID: PMC4886679 DOI: 10.1038/srep27029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/12/2016] [Indexed: 01/20/2023] Open
Abstract
Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.
Collapse
|
22
|
Affiliation(s)
- Chantal M. Boulanger
- From the INSERM, U970, Paris Cardiovascular Research Center–PARCC, and Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| |
Collapse
|
23
|
Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016; 23:95-121. [PMID: 26614117 PMCID: PMC4744134 DOI: 10.1111/micc.12259] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| | - Jenny Munson
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Shayn M. Peirce
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Walter Lee Murfee
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| |
Collapse
|
24
|
Krieger JR, Ogle ME, McFaline-Figueroa J, Segar CE, Temenoff JS, Botchwey EA. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials 2015; 77:280-90. [PMID: 26613543 DOI: 10.1016/j.biomaterials.2015.10.045] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/04/2023]
Abstract
Tissue repair processes are characterized by the biphasic recruitment of distinct subpopulations of blood monocytes, including classical ("inflammatory") monocytes (IMs, Ly6C(hi)Gr1(+)CX3CR1(lo)) and non-classical anti-inflammatory monocytes (AMs, Ly6C(lo)Gr1(-)CX3CR1(hi)). Drug-eluting biomaterial implants can be used to tune the endogenous repair process by the preferential recruitment of pro-regenerative cells. To enhance recruitment of AMs during inflammatory injury, a novel N-desulfated heparin-containing poly(ethylene glycol) diacrylate (PEG-DA) hydrogel was engineered to deliver exogenous stromal derived factor-1α (SDF-1α), utilizing the natural capacity of heparin to sequester and release growth factors. SDF-1α released from the hydrogels maintained its bioactivity and stimulated chemotaxis of bone marrow cells in vitro. Intravital microscopy and flow cytometry demonstrated that SDF-1α hydrogels implanted in a murine dorsal skinfold window chamber promoted spatially-localized recruitment of AMs relative to unloaded internal control hydrogels. SDF-1α delivery stimulated arteriolar remodeling that was correlated with AM enrichment in the injury niche. SDF-1α, but not unloaded control hydrogels, supported sustained arteriogenesis and microvascular network growth through 7 days. The recruitment of AMs correlated with parameters of vascular remodeling suggesting that tuning the innate immune response by biomaterial SDF-1α release is a promising strategy for promoting vascular remodeling in a spatially controlled manner.
Collapse
Affiliation(s)
- J R Krieger
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - M E Ogle
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - J McFaline-Figueroa
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - C E Segar
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - J S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - E A Botchwey
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
Yang B, Cai B, Deng P, Wu X, Guan Y, Zhang B, Cai W, Schaper J, Schaper W. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis. PLoS One 2015; 10:e0127931. [PMID: 26133549 PMCID: PMC4489889 DOI: 10.1371/journal.pone.0127931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism responsible, at least in part, for macrophage invasion during arteriogenesis.
Collapse
Affiliation(s)
- Baolin Yang
- Department of Histology & Embryology, School of Basic Medicine, Central South Univ., Changsha, 410078, Hunan, P.R. China
- Department of Anatomy, School of Basic Medicine, Nanchang Univ., Nanchang, 330006, Jiangxi, P.R. China
| | - Baizhen Cai
- Dept. of Intensive Care Unit, the 3rd Xiangya Hospital, Central South Univ., Changsha, 410013, Hunan, P.R. China
| | - Panyue Deng
- Department of Histology & Embryology, School of Basic Medicine, Central South Univ., Changsha, 410078, Hunan, P.R. China
- * E-mail: (WC); (PD); (WS); (JS)
| | - Xiaoqiong Wu
- Department of Anatomy & Neurobiology, School of Basic Medicine, Central South Univ., Changsha, 410013, Hunan, P.R. China
| | - Yinglu Guan
- Department of Histology & Embryology, School of Basic Medicine, Central South Univ., Changsha, 410078, Hunan, P.R. China
| | - Bin Zhang
- Department of Histology & Embryology, School of Basic Medicine, Central South Univ., Changsha, 410078, Hunan, P.R. China
| | - Weijun Cai
- Department of Histology & Embryology, School of Basic Medicine, Central South Univ., Changsha, 410078, Hunan, P.R. China
- * E-mail: (WC); (PD); (WS); (JS)
| | - Jutta Schaper
- Max-Planck-Institute for Heart and Lung Research, Arteriogenesis Research Group, Bad Nauheim, D-61231, Germany
- * E-mail: (WC); (PD); (WS); (JS)
| | - Wolfgang Schaper
- Max-Planck-Institute for Heart and Lung Research, Arteriogenesis Research Group, Bad Nauheim, D-61231, Germany
- * E-mail: (WC); (PD); (WS); (JS)
| |
Collapse
|