1
|
Li Z, Li Q, Wu S, Mei X, Qi X, Liu S, Qiao G, Shen H, Luo J, Zeng J, Huang F, Li R, Wang L. Regulating mitochondrial oxidative phosphorylation and MAPK signaling: wedelolactone as a novel therapeutic for radiation-induced thrombocytopenia. Front Pharmacol 2025; 16:1508215. [PMID: 40371333 PMCID: PMC12075257 DOI: 10.3389/fphar.2025.1508215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Radiation-induced thrombocytopenia (RIT) is a serious complication of cancer radiotherapy, for which therapeutic options are limited. This study investigates wedelolactone (WED), a metabolite of a botanical drug, as a potential treatment for RIT. Methods In vitro experiments were conducted using Meg-01 and K562 cell lines to evaluate the effects of WED on megakaryocyte differentiation and maturation. Flow cytometry and phalloidin staining were employed to assess the expression of megakaryocyte-specific markers CD41 and CD61, as well as nuclear polyploidization. A mouse model of RIT was established to assess the efficacy of WED in restoring platelet counts and regulating hematopoiesis. RNA sequencing and western blot analyses were performed to explore the underlying molecular mechanisms. Results In vitro experiments revealed that WED enhanced megakaryocyte differentiation in a dose-dependent manner, increasing the expression of lineage-specific markers CD41 and CD61, and promoting polyploidization and cytoskeletal reorganization. In vivo, WED significantly restored platelet counts in the mouse model of RIT and promoted the production of hematopoietic stem cells (HSCs), megakaryocytes, and reticulated platelets. RNA sequencing and western blot revealed that WED-induced megakaryocyte differentiation involves the regulation of mitochondrial oxidative phosphorylation mediated by the AMPK signaling pathway and activation of the MAPK signaling pathway. Inhibition of mitochondrial oxidative phosphorylation or MAPK signaling suppressed WED-induced megakaryocyte differentiation, highlighting the central role of these pathways. Discussion These findings indicate that WED could be a promising therapeutic candidate for RIT, acting through the modulation of oxidative phosphorylation and MAPK signaling pathways to enhance thrombopoiesis.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuang Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyue Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Qi
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Rong Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Meng F, Chen S, Liu C, Khan MS, Yan Y, Wan J, Xia Y, Sun C, Yang M, Hu R, Dai K. The role of PKC in X-ray-induced megakaryocyte apoptosis and thrombocytopenia. Blood Cells Mol Dis 2024; 104:102798. [PMID: 37813040 DOI: 10.1016/j.bcmd.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Thrombocytopenia is a critical complication after radiation therapy and exposure. Dysfunction of megakaryocyte development and platelet production are key pathophysiological stages in ionizing radiation (IR)-induced thrombocytopenia. Protein kinase C (PKC) plays an important role in regulating megakaryocyte development and platelet production. However, it remains unclear how PKC regulates IR-induced megakaryocyte apoptosis. In this study, we found that pretreatment of PKC pan-inhibitor Go6983 delayed IR-induced megakaryocyte apoptosis, and inhibited IR-induced mitochondrial membrane potential and ROS production in CMK cells. Moreover, suppressing PKC activation inhibited cleaved caspase3 expression and reduced p38 phosphorylation levels, and IR-induced PKC activation might be regulated by p53. In vivo experiments confirmed that Go6983 promoted platelet count recovery after 21 days of 3 Gy total body irradiation. Furthermore, Go6983 reduced megakaryocyte apoptosis, increased the number of megakaryocyte and polyploid formation in bone marrow, and improved the survival rate of 6 Gy total body irradiation. In conclusion, our results provided a potential therapeutic target for IR-induced thrombocytopenia.
Collapse
Affiliation(s)
- Fanbi Meng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Shuang Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Chunliang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Muhammad Shoaib Khan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Yan Yan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Yue Xia
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Chenglin Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Mengnan Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Renping Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Kesheng Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China.
| |
Collapse
|
4
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
5
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
6
|
Limami Y, Senhaji N, Zaid N, Khalki L, Naya A, Hajjaj-Hassouni N, Jalali F, Oudghiri M, Zaid Y. PKC-Delta-Dependent Pathways Contribute to the Exacerbation of the Platelet Activity in Crohn's Disease. Semin Thromb Hemost 2021; 48:246-250. [PMID: 34749401 DOI: 10.1055/s-0041-1736571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Youness Limami
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco
| | - Nezha Senhaji
- Faculty of Medicine, Laboratory of Genetic and Molecular Pathology, Hassan II University, Casablanca, Morocco
| | - Nabil Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Research Center, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | | | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, California
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | - Younes Zaid
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
7
|
Chaudhary PK, Kim S, Jee Y, Lee SH, Kim S. Characterization of Integrin αIIbβ3-Mediated Outside-in Signaling by Protein Kinase Cδ in Platelets. Int J Mol Sci 2020; 21:ijms21186563. [PMID: 32911704 PMCID: PMC7555476 DOI: 10.3390/ijms21186563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Engagement of integrin αIIbβ3 promotes platelet-platelet interaction and stimulates outside-in signaling that amplifies activation. Protein kinase Cδ (PKCδ) is known to play an important role in platelet activation, but its role in outside-in signaling has not been established. In the present study, we determined the role of PKCδ and its signaling pathways in integrin αIIbβ3-mediated outside-in signaling in platelets using PKCδ-deficient platelets. Platelet spreading to immobilized fibrinogen resulted in PKCδ phosphorylation, suggesting that αIIbβ3 activation caused PKCδ activation. αIIbβ3-mediated phosphorylation of Akt was significantly inhibited in PKCδ -/- platelets, indicating a role of PKCδ in outside-in signaling. αIIbβ3-mediated PKCδ phosphorylation was inhibited by proline-rich tyrosine kinase 2 (Pyk2) selective inhibitor, suggesting that Pyk2 contributes to the regulation of PKCδ phosphorylation in outside-in signaling. Additionally, Src-family kinase inhibitor PP2 inhibited integrin-mediated Pyk2 and PKCδ phosphorylation. Lastly, platelet spreading was inhibited in PKCδ -/- platelets compared to the wild-type (WT) platelets, and clot retraction from PKCδ -/- platelets was markedly delayed, indicating that PKCδ is involved in the regulation of αIIbβ3-dependent interactivities with cytoskeleton elements. Together, these results provide evidence that PKCδ plays an important role in outside-in signaling, which is regulated by Pyk2 in platelets.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
| | - Sanggu Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
| | - Youngheun Jee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Seung-Hun Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
- Correspondence: ; Tel.: +82-43-249-1846
| |
Collapse
|
8
|
Liverani E, Mondrinos MJ, Sun S, Kunapuli SP, Kilpatrick LE. Role of Protein Kinase C-delta in regulating platelet activation and platelet-leukocyte interaction during sepsis. PLoS One 2018; 13:e0195379. [PMID: 29617417 PMCID: PMC5884571 DOI: 10.1371/journal.pone.0195379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
Sepsis is characterized by an intense systemic inflammatory response activating a cascade of proinflammatory events resulting in leukocyte dysregulation and host tissue damage. The lung is particularly susceptible to systemic inflammation, leading to acute lung injury. Key to inflammation-induced lung damage is the excessive migration of neutrophils across the vascular endothelium. The mechanisms which regulate neutrophil activation and migration in sepsis are not well defined but there is growing evidence that platelets are actively involved and play a key role in microvascular permeability and neutrophil-mediated organ damage. We previously identified PKC-delta (PKCδ) as a critical regulator of the inflammatory response in sepsis and demonstrated PKCδ inhibition was lung protective. However, the role of PKCδ in sepsis-induced platelet activation and platelet-leukocyte interactions is not known. In this study, rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Following surgeries, a PKCδ inhibitor (200μg/kg) or vehicle (PBS) was administered intra-tracheally. At 24 hours post-surgeries, lung tissue, BAL fluid, and blood samples were collected. While sepsis caused thrombocytopenia, the remaining circulating platelets were activated as demonstrated by increased p-selectin expression, elevated plasma PF4, and enhanced platelet-leukocyte aggregate formation compared to Sham animals. Platelet activation was associated with increased platelet PKCδ activity. Inhibition of PKCδ attenuated sepsis-induced platelet activation, secretion and aggregate formation. Sepsis-induced thrombocytopenia was also significantly reduced and circulating platelet numbers were similar to sham animals. In the lung, sepsis induced significant influx of platelets and neutrophils and the development of lung injury. Administration of the PKCδ inhibitor decreased platelet and neutrophil influx, and was lung protective. Thus, PKCδ inhibition modulated platelet activity both locally and systemically, decreased neutrophil influx into the lung, and was lung protective. We demonstrate for the first time that PKCδ plays an important role in platelet activation and platelet-neutrophil interaction during sepsis.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Mark J. Mondrinos
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Shuang Sun
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Laurie E. Kilpatrick
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Kostyak JC, Liverani E, Kunapuli SP. PKC-epsilon deficiency alters progenitor cell populations in favor of megakaryopoiesis. PLoS One 2017; 12:e0182867. [PMID: 28783756 PMCID: PMC5544228 DOI: 10.1371/journal.pone.0182867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has long been postulated that Protein Kinase C (PKC) is an important regulator of megakaryopoiesis. Recent contributions to the literature have outlined the functions of several individual PKC isoforms with regard to megakaryocyte differentiation and platelet production. However, the exact role of PKCε remains elusive. OBJECTIVE To delineate the role of PKCε in megakaryopoiesis. APPROACH AND RESULTS We used a PKCε knockout mouse model to examine the effect of PKCε deficiency on platelet mass, megakaryocyte mass, and bone marrow progenitor cell distribution. We also investigated platelet recovery in PKCε null mice and TPO-mediated signaling in PKCε null megakaryocytes. PKCε null mice have higher platelet counts due to increased platelet production compared to WT littermate controls (p<0.05, n = 8). Furthermore, PKCε null mice have more bone marrow megakaryocyte progenitor cells than WT littermate control mice. Additionally, thrombopoietin-mediated signaling is perturbed in PKCε null mice as Akt and ERK1/2 phosphorylation are enhanced in PKCε null megakaryocytes stimulated with thrombopoietin. Finally, in response to immune-induced thrombocytopenia, PKCε null mice recovered faster and had higher rebound thrombocytosis than WT littermate control mice. CONCLUSIONS Enhanced platelet recovery could be due to an increase in megakaryocyte progenitor cells found in PKCε null mice as well as enhanced thrombopoietin-mediated signaling observed in PKCε deficient megakaryocytes. These data suggest that PKCε is a negative regulator of megakaryopoiesis.
Collapse
Affiliation(s)
- John C. Kostyak
- Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elisabetta Liverani
- Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Liverani E. Lung injury during LPS-induced inflammation occurs independently of the receptor P2Y 1. Purinergic Signal 2016; 13:119-125. [PMID: 27815804 DOI: 10.1007/s11302-016-9543-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
Disruption of the lung endothelial and epithelial barriers during acute inflammation leads to excessive neutrophil migration. It is likely that activated platelets promote pulmonary recruitment of neutrophils during inflammation, and previous studies have found that anti-platelet therapy and depletion of circulating platelets have lung-protective effects in different models of inflammation. Because ADP signaling is important for platelet activation, I investigated the role of the ADP-receptor P2Y1, a G protein-coupled receptor expressed on the surface of circulating platelets, during lipopolysaccharide (LPS)-induced inflammation and lung injury in P2Y1-null and wild-type mice. Systemic inflammation was induced by a single intraperitoneal dose of LPS (3 mg/kg), and the mice were analyzed 24 h posttreatment. The data show that the LPS-induced inflammation levels were comparable in the P2Y1-null and wild-type mice. Specifically, splenomegaly, counts of circulating platelets and white blood cells (lymphocytes and neutrophils), and assessments of lung injury (tissue architecture and cell infiltration) were similar in the P2Y1-null and wild-type mice. Based on my results, I conclude that lung injury during LPS-induced inflammation in mice is independent of P2Y1 signaling. I propose that if a blockade of purinergic signaling in platelets is a potential lung-protective strategy in the treatment of acute inflammation, then it is more likely to be a result of the disruption of the signaling pathway mediated by P2Y12, another G protein-coupled receptor that mediates platelet responses to ADP.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Sol Sherry Thrombosis Research Center and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Temple University Hospital, Temple University, 3420 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
11
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Carubbi C, Masselli E, Martini S, Galli D, Aversa F, Mirandola P, Italiano JE, Gobbi G, Vitale M. Human thrombopoiesis depends on Protein kinase Cδ/protein kinase Cε functional couple. Haematologica 2016; 101:812-20. [PMID: 27081176 DOI: 10.3324/haematol.2015.137984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/12/2016] [Indexed: 01/12/2023] Open
Abstract
A deeper understanding of the molecular events driving megakaryocytopoiesis and thrombopoiesis is essential to regulate in vitro and in vivo platelet production for clinical applications. We previously documented the crucial role of PKCε in the regulation of human and mouse megakaryocyte maturation and platelet release. However, since several data show that different PKC isoforms fulfill complementary functions, we targeted PKCε and PKCδ, which show functional and phenotypical reciprocity, at the same time as boosting platelet production in vitro. Results show that PKCδ, contrary to PKCε, is persistently expressed during megakaryocytic differentiation, and a forced PKCδ down-modulation impairs megakaryocyte maturation and platelet production. PKCδ and PKCε work as a functional couple with opposite roles on thrombopoiesis, and the modulation of their balance strongly impacts platelet production. Indeed, we show an imbalance of PKCδ/PKCε ratio both in primary myelofibrosis and essential thrombocythemia, featured by impaired megakaryocyte differentiation and increased platelet production, respectively. Finally, we demonstrate that concurrent molecular targeting of both PKCδ and PKCε represents a strategy for in vitro platelet factories.
Collapse
Affiliation(s)
- Cecilia Carubbi
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Elena Masselli
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Silvia Martini
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Daniela Galli
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Franco Aversa
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Prisco Mirandola
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Joseph E Italiano
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Marco Vitale
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| |
Collapse
|