1
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Liu D, Wang J, Zhang S, Jiang H, Wu Y, Wang C, Chen W. The potential of ARL4C and its-mediated genes in atherosclerosis and agent development. Front Pharmacol 2025; 16:1513340. [PMID: 40176913 PMCID: PMC11961928 DOI: 10.3389/fphar.2025.1513340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Foam cells are the risk factors for atherosclerosis. Recently, ARL4C, a member of the ADP-ribosylation factor family of GTP-binding proteins, was found to promote cholesterol efflux to decrease foam cell formation, suggesting that ARL4C may be a new promising target for the treatment of atherosclerosis. In fact, ARL4C regulated the expression of multiple atherosis-related genes, including ABCA1, ALDH1A3, ARF6, ENHO, FLNA, LRP6, OSBPL5, Snail2, and SOX2. Many agents, including ABCA1 agonists (CS-6253, IMM-H007, RG7273, and R3R-01), FLNA antagonist sumifilam, LRP6 inhibitor BI-905677 and agonist SZN-1326, and SOX2 inhibitor STEMVAC, were investigated in clinical trials. Targeting these genes could improve the success rate of drug development in clinical trials. Indeed, many agents could regulate ARL4C expression, including LXR/RXR agonists, Ac-LDL, sucrose, T9-t11-CLA, and miR-26. Downregulation of ARL4C with siRNA and anti-sense oligonucleotide (ASO), such as ASO-1316, is developing in preclinical research for the treatment of lung adenocarcinoma, liver cancer, and colorectal cancer. Thus, ARL4C and its regulated genes may be a potential target for drug development. Thus, we focus on the role of ARL4C and its-mediated genes in atherosclerosis and agent development, which provide insights for the identification, research, and drug development of novel targets.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shuangshuang Zhang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Yudong Wu
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Chao Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Wujun Chen
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Huynh TN, Havrda MC, Zanazzi GJ, Chang CCY, Chang TY. Inhibiting the Cholesterol Storage Enzyme ACAT1/SOAT1 in Myelin Debris-Treated Microglial Cell Lines Activates the Gene Expression of Cholesterol Efflux Transporter ABCA1. Biomolecules 2024; 14:1301. [PMID: 39456234 PMCID: PMC11505751 DOI: 10.3390/biom14101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Aging is the major risk factor for Alzheimer's disease (AD). In the aged brain, myelin debris accumulates and is cleared by microglia. Phagocytosed myelin debris increases neutral lipid droplet content in microglia. Neutral lipids include cholesteryl esters (CE) and triacylglycerol (TAG). To examine the effects of myelin debris on neutral lipid content in microglia, we added myelin debris to human HMC3 and mouse N9 cells. The results obtained when using 3H-oleate as a precursor in intact cells reveal that myelin debris significantly increases the biosynthesis of CE but not TAG. Mass analyses have shown that myelin debris increases both CE and TAG. The increase in CE biosynthesis was abolished using inhibitors of the cholesterol storage enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1/SOAT1). ACAT1 inhibitors are promising drug candidates for AD treatment. In myelin debris-loaded microglia, treatment with two different ACAT1 inhibitors, K604 and F12511, increased the mRNA and protein content of ATP-binding cassette subfamily A1 (ABCA1), a protein that is located at the plasma membrane and which controls cellular cholesterol disposal. The effect of the ACAT1 inhibitor on ABCA1 was abolished by preincubating cells with the liver X receptor (LXR) antagonist GSK2033. We conclude that ACAT1 inhibitors prevent the accumulation of cholesterol and CE in myelin debris-treated microglia by activating ABCA1 gene expression via the LXR pathway.
Collapse
Affiliation(s)
- Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Matthew C. Havrda
- Department of Molecular and System Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
4
|
Fernando L, Echesabal-Chen J, Miller M, Powell RR, Bruce T, Paul A, Poudyal N, Saliutama J, Parman K, Paul KS, Stamatikos A. Cholesterol Efflux Decreases TLR4-Target Gene Expression in Cultured Macrophages Exposed to T. brucei Ghosts. Microorganisms 2024; 12:1730. [PMID: 39203572 PMCID: PMC11357207 DOI: 10.3390/microorganisms12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis in humans. Infection with T. brucei elicits a potent pro-inflammatory immune response within infected human hosts, and this response is thought to at least be partially due to Toll-like receptor (TLR) activation. In response to stimulation by lipopolysaccharide and other pathogen antigens, TLR4 translocates to lipid rafts, which induces the expression of pro-inflammatory genes. However, cholesterol efflux is acknowledged as anti-inflammatory due to promoting lipid raft disruption. In this study, we wanted to assess the impact of T. brucei "ghosts", which are non-viable T. brucei essentially devoid of intracellular contents, in stimulating macrophage TLR4 translocation to lipid rafts, and whether promoting cholesterol efflux in macrophages incubated with T. brucei ghosts attenuates TLR4-target gene expression. When cultured macrophages were exposed to T. brucei ghosts, we observed an increase in lipid raft TLR4 protein content, which suggests certain surface molecules of T. brucei serve as ligands for TLR4. However, pretreating macrophages with cholesterol acceptors before T. brucei ghost exposure decreased lipid raft TLR4 protein content and the expression of pro-inflammatory TLR4-target genes. Taken together, these results imply that macrophage cholesterol efflux weakens pro-inflammatory responses which occur from T. brucei infection via increasing macrophage lipid raft disruption.
Collapse
Affiliation(s)
- Lawrence Fernando
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Murphy Miller
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA;
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Nava Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Joshua Saliutama
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kristina Parman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| |
Collapse
|
5
|
Wang Y, Guo M, Tang CK. History and Development of ABCA1. Curr Probl Cardiol 2024; 49:102036. [PMID: 37595859 DOI: 10.1016/j.cpcardiol.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
ATP-binding cassette protein A1 (ABCA1) is a key protein in the transport of intracellular cholesterol to the extracellular and plays an important role in reducing cholesterol accumulation in surrounding tissues. Bibliometric analysis refers to the cross-science of quantitative analysis of a variety of documents by mathematical and statistical methods. It combines an analysis of structural and temporal patterns in scholarly publications with a description of topic concentration and types of uncertainty. This paper analyzes the history, hotspot, and development trend of ABCA1 through bibliometrics. It will provide readers with the research status and development trend of ABCA1 and help the hot research in this field explore new research directions. After screening, the research on ABCA1 is still in a hot phase in the past 20 years. ABCA1 is emerging in previously unrelated disciplines such as cancer. There were 551 keywords and 6888 breakout citations counted by CiteSpace. The relationship between cancer and cardiovascular disease has been linked by ABCA1. This review will guide readers who are not familiar with ABCA1 research to quickly understand the development process of ABCA1 and provide researchers with a possible future research focus on ABCA1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Hu J, Liu R, Yang Z, Pan X, Li Y, Gong Y, Guo D. Praeruptorin A inhibits the activation of NF-κB pathway and the expressions of inflammatory factors in poly (I:C)-induced RAW264.7 cells. Chem Biol Drug Des 2023; 102:1110-1120. [PMID: 37500542 DOI: 10.1111/cbdd.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1β, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 μM slightly affected cell viability, while PA at 6 and 7 μM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1β, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.
Collapse
Affiliation(s)
- Jiayan Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Roujun Liu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zhouxin Yang
- Laboratory of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Xinyu Pan
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuanjing Li
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yanghui Gong
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Dongyang Guo
- School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou, China
| |
Collapse
|
7
|
Huang K, Pitman M, Oladosu O, Echesabal-Chen J, Vojtech L, Esobi I, Larsen J, Jo H, Stamatikos A. The Impact of MiR-33a-5p Inhibition in Pro-Inflammatory Endothelial Cells. Diseases 2023; 11:88. [PMID: 37489440 PMCID: PMC10366879 DOI: 10.3390/diseases11030088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Evidence suggests cholesterol accumulation in pro-inflammatory endothelial cells (EC) contributes to triggering atherogenesis and driving atherosclerosis progression. Therefore, inhibiting miR-33a-5p within inflamed endothelium may prevent and treat atherosclerosis by enhancing apoAI-mediated cholesterol efflux by upregulating ABCA1. However, it is not entirely elucidated whether inhibition of miR-33a-5p in pro-inflammatory EC is capable of increasing ABCA1-dependent cholesterol efflux. In our study, we initially transfected LPS-challenged, immortalized mouse aortic EC (iMAEC) with either pAntimiR33a5p plasmid DNA or the control plasmid, pScr. We detected significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux in iMAEC transfected with pAntimiR33a5p when compared to iMAEC transfected with pScr. We subsequently used polymersomes targeting inflamed endothelium to deliver either pAntimiR33a5p or pScr to cultured iMAEC and showed that the polymersomes were selective in targeting pro-inflammatory iMAEC. Moreover, when we exposed LPS-challenged iMAEC to these polymersomes, we observed a significant decrease in miR-33a-5p expression in iMAEC incubated with polymersomes containing pAntimR33a5p versus control iMAEC. We also detected non-significant increases in both ABCA1 protein and apoAI-mediated cholesterol in iMAEC exposed to polymersomes containing pAntimR33a5p when compared to control iMAEC. Based on our results, inhibiting miR-33a-5p in pro-inflammatory EC exhibits atheroprotective effects, and so precisely delivering anti-miR-33a-5p to these cells is a promising anti-atherogenic strategy.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Mark Pitman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (M.P.); (J.L.)
| | - Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98109, USA;
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (M.P.); (J.L.)
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (O.O.); (J.E.-C.); (I.E.)
| |
Collapse
|
8
|
Barbosa-Gouveia S, Fernández-Crespo S, Lazaré-Iglesias H, González-Quintela A, Vázquez-Agra N, Hermida-Ameijeiras Á. Association of a Novel Homozygous Variant in ABCA1 Gene with Tangier Disease. J Clin Med 2023; 12:jcm12072596. [PMID: 37048678 PMCID: PMC10094818 DOI: 10.3390/jcm12072596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Tangier disease (TD) is a rare autosomal recessive disorder caused by a variant in the ABCA1 gene, characterized by significantly reduced levels of plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA-I). TD typically leads to accumulation of cholesterol in the peripheral tissues and early coronary disease but with highly variable clinical expression. Herein, we describe a case study of a 59-year-old male patient with features typical of TD, in whom a likely pathogenic variant in the ABCA1 gene was identified by whole-exome sequencing (WES), identified for the first time as homozygous (NM_005502.4: c.4799A>G (p. His1600Arg)). In silico analysis including MutationTaster and DANN score were used to predict the pathogenicity of the variant and a protein model generated by SWISS-MODEL was built to determine how the homozygous variant detected in our patient may change the protein structure and impact on its function. This case study describes a homozygous variant of the ABCA1 gene, which is responsible for a severe form of TD and underlines the importance of using bioinformatics and genomics for linking genotype to phenotype and better understanding and accounting for the functional impact of genetic variations.
Collapse
|
9
|
Shinozaki Y, Leung A, Namekata K, Saitoh S, Nguyen HB, Takeda A, Danjo Y, Morizawa YM, Shigetomi E, Sano F, Yoshioka N, Takebayashi H, Ohno N, Segawa T, Miyake K, Kashiwagi K, Harada T, Ohnuma SI, Koizumi S. Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy. SCIENCE ADVANCES 2022; 8:eabq1081. [PMID: 36332025 PMCID: PMC9635836 DOI: 10.1126/sciadv.abq1081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Astrocyte abnormalities have received great attention for their association with various diseases in the brain but not so much in the eye. Recent independent genome-wide association studies of glaucoma, optic neuropathy characterized by retinal ganglion cell (RGC) degeneration, and vision loss found that single-nucleotide polymorphisms near the ABCA1 locus were common risk factors. Here, we show that Abca1 loss in retinal astrocytes causes glaucoma-like optic neuropathy in aged mice. ABCA1 was highly expressed in retinal astrocytes in mice. Thus, we generated macroglia-specific Abca1-deficient mice (Glia-KO) and found that aged Glia-KO mice had RGC degeneration and ocular dysfunction without affected intraocular pressure, a conventional risk factor for glaucoma. Single-cell RNA sequencing revealed that Abca1 deficiency in aged Glia-KO mice caused astrocyte-triggered inflammation and increased the susceptibility of certain RGC clusters to excitotoxicity. Together, astrocytes play a pivotal role in eye diseases, and loss of ABCA1 in astrocytes causes glaucoma-like neuropathy.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Alex Leung
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan
- Department of Anatomy II and Cell Biology, Fujita Health University School of Medicine, Aichi, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, NIPS, Aichi, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh City, Vietnam
| | - Akiko Takeda
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yosuke M. Morizawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, NIPS, Aichi, Japan
- Department of Anatomy, Jichi Medical University, Tochigi, Japan
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shin-ichi Ohnuma
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
10
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
12
|
Vitamin D Counteracts Lipid Accumulation, Augments Free Fatty Acid-Induced ABCA1 and CPT-1A Expression While Reducing CD36 and C/EBPβ Protein Levels in Monocyte-Derived Macrophages. Biomedicines 2022; 10:biomedicines10040775. [PMID: 35453525 PMCID: PMC9028184 DOI: 10.3390/biomedicines10040775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
The biologically active form of vitamin D, calcitriol (VD3), has received great attention for its extraskeletal effects, such as a protective role on the cardiovascular system. The aim of the present work is to test the capacity of VD3 to affect lipid metabolism and fatty acid accumulation in an in vitro model of monocyte (THP-1)-derived macrophages. Cells were treated for 24 h with oleic/palmitic acid (500 μM, 2:1 ratio) and different VD3 concentrations (0.1, 1, 10, 50 and 100 nM). Lipid accumulation was quantified spectrophotometrically (excitation: 544 nm, emission: 590 nm). C/EBPβ, PPAR-γ1, CD36, CPT-1A, and ABCA1 protein levels were assessed by ELISA kits at different time-points (1, 2, 4, 8, and 24 h). VD3 at 50 and 100 nM significantly reduced fatty acids accumulation in macrophages by 27% and 32%, respectively. In addition, tested at 50 nM, VD3 decreased CD36, PPAR-γ1, and C/EBPβ, while it increased ABCA1 and CPT-1A protein levels in free fatty acid-exposed cells. In conclusion, VD3 reduced fatty acid accumulation in THP-1-derived macrophages exposed to lipid excess. The anti-atherogenic effect of VD3 could be ascribable to the regulation of proteins involved in lipid transport and clearance.
Collapse
|
13
|
A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 2022; 78:557-572. [DOI: 10.1007/s13105-021-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
|
14
|
Kotlyarov S, Kotlyarova A. Bioinformatic Analysis of ABCA1 Gene Expression in Smoking and Chronic Obstructive Pulmonary Disease. MEMBRANES 2021; 11:674. [PMID: 34564491 PMCID: PMC8464760 DOI: 10.3390/membranes11090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
UNLABELLED Smoking is a key modifiable risk factor for developing the chronic obstructive pulmonary disease (COPD). When smoking, many processes, including the reverse transport of cholesterol mediated by the ATP binding cassette transporter A1 (ABCA1) protein are disrupted in the lungs. Changes in the cholesterol content in the lipid rafts of plasma membranes can modulate the function of transmembrane proteins localized in them. It is believed that this mechanism participates in increasing the inflammation in COPD. METHODS Bioinformatic analysis of datasets from Gene Expression Omnibus (GEO) was carried out. Gene expression data from datasets of alveolar macrophages and the epithelium of the respiratory tract in smokers and COPD patients compared with non-smokers were used for the analysis. To evaluate differentially expressed genes, bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2), and the GEO2R and Phantasus tools (v. 1.11.0). RESULTS The conducted bioinformatic analysis showed changes in the expression of the ABCA1 gene associated with smoking. In the alveolar macrophages of smokers, the expression levels of ABCA1 were lower than in non-smokers. At the same time, in most of the airway epithelial datasets, gene expression did not show any difference between the groups of smokers and non-smokers. In addition, it was shown that the expression of ABCA1 in the epithelial cells of the trachea and large bronchi is higher than in small bronchi. CONCLUSIONS The conducted bioinformatic analysis showed that smoking can influence the expression of the ABCA1 gene, thereby modulating lipid transport processes in macrophages, which are part of the mechanisms of inflammation development.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
15
|
Valtierra-Alvarado MA, Lugo-Villarino G, Dueñas-Arteaga F, González-Contreras BE, Lugo-Sánchez A, Castañeda-Delgado JE, González-Amaro R, Venegas Gurrola OA, Del Rocío González Valadez A, Enciso-Moreno JA, Serrano CJ. Impact of Type 2 Diabetes on the capacity of human macrophages infected with Mycobacterium tuberculosis to modulate monocyte differentiation through a bystander effect. Immunol Cell Biol 2021; 99:1026-1039. [PMID: 34379824 DOI: 10.1111/imcb.12497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for the development of tuberculosis (TB) through mechanisms poorly understood. Monocytes and macrophages are key effector cells to control TB, but they are also subverted by Mycobacterium tuberculosis (Mtb). Specifically, Mtb can induce a bystander effect that skews monocyte differentiation towards macrophages with a permissive phenotype to infection. Here, we evaluated whether T2DM impacts this TB aspect. Our approach was to differentiate monocytes from healthy control (HC) subjects and T2DM patients into macrophages (MDM), and then assess their response to Mtb infection, including their secretome content and bystander effect capacity. Through flow cytometry analyses, we found a lower level of activation markers in MDM from T2DM patients in comparison to those from HC in response to mock (HLA-DR, CD86, and CD163) or Mtb challenge (CD14 and CD80). In spite of high TGF-β1 levels in mock-infected MDM from T2DM patients, cytometric bead arrays indicated there were no major differences in the secretome cytokine content in these cells relative to HC-MDM, even in response to Mtb. Mimicking a bystander effect, the secretome of Mtb-infected HC-MDM drove HC monocytes towards MDM with a permissive phenotype for Mtb intracellular growth. However, the secretome from Mtb-infected T2DM-MDM did not exacerbate the Mtb load compared to cmMTB-HC, possibly due to the high IL-1β production relative to Mtb-infected HC-MDM. Collectively, despite T2DM affecting the basal MDM activation, our approach revealed it has no major consequence on their response to Mtb or capacity to generate a bystander effect influencing monocyte differentiation.
Collapse
Affiliation(s)
- Monica Alejandra Valtierra-Alvarado
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México.,Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fátima Dueñas-Arteaga
- Hospital General No. 26, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Zacatecas, México
| | - Beatriz Elena González-Contreras
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México.,Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Anahí Lugo-Sánchez
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México.,Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Julio Enrique Castañeda-Delgado
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología (CONACyT- México), Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, México
| | - Roberto González-Amaro
- Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Omar Alberto Venegas Gurrola
- Hospital General No. 26, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Zacatecas, México
| | | | | | - Carmen Judith Serrano
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México
| |
Collapse
|
16
|
Lewandowski CT, Khan MW, BenAissa M, Dubrovskyi O, Ackerman-Berrier M, LaDu MJ, Layden BT, Thatcher GRJ. Metabolomic analysis of a selective ABCA1 inducer in obesogenic challenge provides a rationale for therapeutic development. EBioMedicine 2021; 66:103287. [PMID: 33752129 PMCID: PMC8010624 DOI: 10.1016/j.ebiom.2021.103287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Therapeutic agents with novel mechanisms of action are needed to combat the growing epidemic of type 2 diabetes (T2D) and related metabolic syndromes. Liver X receptor (LXR) agonists possess preclinical efficacy yet produce side effects due to excessive lipogenesis. Anticipating that many beneficial and detrimental effects of LXR agonists are mediated by ABCA1 and SREPB1c expression, respectively, we hypothesized that a phenotypic optimization strategy prioritizing selective ABCA1 induction would identify an efficacious lead compound with an improved side effect profile over existing LXRβ agonists. METHODS We synthesized and characterized a novel small molecule for selective induction of ABCA1 vs. SREBP1c in vitro. This compound was evaluated in both wild-type mice and a high-fat diet (HFD) mouse model of obesity-driven diabetes through functional, biochemical, and metabolomic analysis. FINDINGS Six weeks of oral administration of our lead compound attenuated weight gain, glucose intolerance, insulin signaling deficits, and adiposity. Global metabolomics revealed suppression of gluconeogenesis, free fatty acids, and pro-inflammatory metabolites. Target identification linked these beneficial effects to selective LXRβ agonism and PPAR/RXR antagonism. INTERPRETATION Our observations in the HFD model, combined with the absence of lipogenesis and neutropenia in WT mice, support this novel approach to therapeutic development for T2D and related conditions.
Collapse
Affiliation(s)
- Cutler T Lewandowski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Md Wasim Khan
- Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott St., Chicago, IL 60612, USA
| | - Manel BenAissa
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Oleksii Dubrovskyi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Martha Ackerman-Berrier
- Department of Pharmacology and Toxicology, University of Arizona, 1295N. Martin, Tucson, AZ 85721, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Layden
- Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott St., Chicago, IL 60612, USA.
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, University of Arizona, 1295N. Martin, Tucson, AZ 85721, USA.
| |
Collapse
|
17
|
Nabil-Adam A, Shreadah MA. Anti-inflammatory, Antioxidant, Lung and Liver Protective Activity of Galaxaura oblongata as Antagonistic Efficacy against LPS using Hematological Parameters and Immunohistochemistry as Biomarkers. Cardiovasc Hematol Agents Med Chem 2021; 20:148-165. [PMID: 33438570 DOI: 10.2174/1871525719666210112154800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study aimed to investigate the potential bioactivity and the ameliorative role of Galaxaura oblongata (G. oblongata) against LPS-induced toxicity by using hematological parameters. OBJECTIVE It is aimed also to examine its protective effect using the immunohistochemistry of liver and lungs as biomarkers in male BALB/C albino mice. MATERIALS AND METHODS The current study carried out using different in-vitro and in-vivo assays such as phytochemical, antioxidants, anti-inflammatory for in-vitro where the hematological and immunohistochemistry for lung and liver were investigated in vivo. RESULTS There are no previous studies were performed to investigate the in vivo and in vitro effects of the G. oblongata extracts as antioxidant and anti-inflammatory due to their rareness compared to other red algae. LPS treated mice revealed a significant decrease in total number of WBCs, RBCs, platelets, and HGB%, MPV, MCV and MCHC compared to the control group. On contrast, the HCT and MCHC were increased in the induction group which was treated with LPS compared to the control group. Furthermore, the immunohistochemistry results of the present study revealed the protective effect of G. oblongata compared to the induction group. G. oblongata can be used as protective marine natural products against the toxicity induced by LPS. CONCLUSION It exhibited a significant ameliorative role against the alterations in the hematological parameters and immunohistochemistry of liver and lungs, and helps to reduce as well as coordinate the acute inflammations caused by TNF.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria. Egypt
| | - Mohamed A Shreadah
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria. Egypt
| |
Collapse
|
18
|
ABCA1 Polymorphism Is Associated With the Warfarin-Induced Aortic Stiffness After Coronary Artery Bypass Surgery in the Chinese Population. J Cardiovasc Pharmacol 2020; 76:360-366. [PMID: 32902944 DOI: 10.1097/fjc.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Warfarin is the most widely prescribed oral anticoagulant and is recommended for patients recovering from coronary artery bypass graft (CABG) with atrial fibrillation. Increasing evidence suggested that warfarin increased arterial stiffness in those patients. We aimed to examine the effect of warfarin therapy on aortic stiffness in patients who underwent CABG with or without postoperative warfarin treatment and explored the potential relationships of warfarin therapy with ABCA1 polymorphisms. This was a retrospect observational study of 24 patients who were continuously treated with warfarin were selected as the warfarin group and matched them by age (±3 years) and gender to 48 patients with nonuse of warfarin as the control group. The aortic stiffness, cholesterol efflux capacity, and plasma level of PIVKA-II were measured. Two ABCA1 polymorphisms were genotyped. Compared with baseline, treatment with warfarin for 1 year significantly increased the plasma level of PIVKA-II and aortic stiffness in pulse pressure and pulse wave velocity in patients after CABG. The increase of pulse wave velocity and plasma PIVKA-II level in the TT genotype was significantly greater than the CC genotype when comparing the -565C/T genotypes. The capacity of cholesterol efflux was significantly lower in the TT genotype at baseline and 1-year follow-up than the CC genotype. Postoperative treatment of warfarin for 1 year significantly increased aortic stiffness in patients who underwent CABG. ABCA1 -565C/T polymorphisms affected the cholesterol efflux capacity and were associated with the vitamin K status and the increased aortic stiffness after warfarin treatment in those patients.
Collapse
|
19
|
Liao S, Zhou Q, Zhang Y. Elastic aortic wrap reduced aortic stiffness by partially alleviating the impairment of cholesterol efflux capacity in pigs. J Diabetes Metab Disord 2019; 17:101-109. [PMID: 30918842 DOI: 10.1007/s40200-018-0345-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
Purpose Metabolic syndrome patients exhibit impaired cholesterol efflux capacity. Previous studies have shown a positive association between aortic stiffness and metabolic syndrome. However, it is unknown whether cholesterol efflux capacity participates in the process of aortic stiffness. This study sought to determine the effect of metabolic syndrome on aortic stiffening, and to investigate the effectiveness of aortic wraps on aortic compliance and the underlying mechanisms. Methods In a swine model of metabolic syndrome, we compared the cholesterol efflux capacity and aortic compliance responding to diet modifications and aortic wrap applications. Results Metabolic syndrome induced by high cholesterol diet significantly decreased cholesterol efflux capacity and aortic compliance. Elastic aortic wrap application increased aortic compliance and partially restored cholesterol efflux capacity via ATP binding cassette transporter A1 (ABCA1) pathway. Conclusions Cholesterol efflux plays a role in aortic stiffening. Elastic aortic wrap application could be a potential treatment for aortic stiffness related to metabolic syndrome.
Collapse
Affiliation(s)
- Shutan Liao
- 1Rural Clinical School, University of New South Wales, Sydney, NSW Australia.,2The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Zhou
- 3Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, 53 Taohua Road, Nanchang, 330008 Jiangxi China
| | - Yang Zhang
- 3Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, 53 Taohua Road, Nanchang, 330008 Jiangxi China
| |
Collapse
|
20
|
Gu HF, Li N, Xu ZQ, Hu L, Li H, Zhang RJ, Chen RM, Zheng XL, Tang YL, Liao DF. Chronic Unpredictable Mild Stress Promotes Atherosclerosis via HMGB1/TLR4-Mediated Downregulation of PPARγ/LXRα/ABCA1 in ApoE -/- Mice. Front Physiol 2019; 10:165. [PMID: 30881312 PMCID: PMC6405526 DOI: 10.3389/fphys.2019.00165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Although our previous studies have confirmed that the activation of TLR4 is implicated in the development of atherosclerosis induced by chronic unpredicted mild stress (CUMS), the underling mechanism is largely unclear. Here, we hypothesized that CUMS accelerates atherosclerotic development through lowering PPARγ/LXRα-ABCA1 expression via HMGB1/TLR4 signaling. Methods: In present study, CUMS atherosclerotic animal models were established with AopE-/- mice, and CUMS Raw 264.7 macrophage models were mimicked by high corticosterone treatment, These models were treated with Ethyl pyruvate (EP, an inhibitor of HMGB1), TLR4 inhibitor TAK-242, and PPARγ agonist RSG (Rosiglitazone) to test our hypothesis, respectively. Results: Our results indicated that the protein levels of HMGB1, TLR4, and pro-inflammatory cytokines including IL-1β, TNF-α were elevated with the development of atherosclerosis in CUMS mice, while the expressions of PPARγ, LXRα, and ABCA1 declined. Notably, HMGB1 inhibition by EP reversed CUMS-induced atherosclerotic development, pro-inflammatory cytokines upregulation, and PPARγ/LXRα-ABCA1 downregulation. The same trend was observed in the stressed mice treatment with TAK-242. Further experimental evidences indicated that EP, TAK-242, and RSG treatment notably corrected foam cell formation, HMGB1 release, and down-regulation of LXRα and ABCA1 in CUMS Raw 264.7 macrophage model. Conclusion: These results indicate that CUMS exacerbates atherosclerosis is likely via HMGB1-mediated downregulation of PPARγ/LXRα-ABCA1 through TLR4. These data reveal a novel mechanism by which CUMS aggravates atherosclerosis and may offer a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Hong-Feng Gu
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Na Li
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Zhao-Qian Xu
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Lu Hu
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Hui Li
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Rong-Jie Zhang
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Ru-Meng Chen
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Xi-Long Zheng
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ling Tang
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China
| | - Duan-Fang Liao
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, China.,Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
21
|
Tumurkhuu G, Dagvadorj J, Porritt RA, Crother TR, Shimada K, Tarling EJ, Erbay E, Arditi M, Chen S. Chlamydia pneumoniae Hijacks a Host Autoregulatory IL-1β Loop to Drive Foam Cell Formation and Accelerate Atherosclerosis. Cell Metab 2018; 28:432-448.e4. [PMID: 29937375 PMCID: PMC6125162 DOI: 10.1016/j.cmet.2018.05.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/02/2018] [Accepted: 05/29/2018] [Indexed: 01/07/2023]
Abstract
Pathogen burden accelerates atherosclerosis, but the mechanisms remain unresolved. Activation of the NLRP3 inflammasome is linked to atherogenesis. Here we investigated whether Chlamydia pneumoniae (C.pn) infection engages NLRP3 in promoting atherosclerosis. C.pn potentiated hyperlipidemia-induced inflammasome activity in cultured macrophages and in foam cells in atherosclerotic lesions of Ldlr-/- mice. C.pn-induced acceleration of atherosclerosis was significantly dependent on NLRP3 and caspase-1. We discovered that C.pn-induced extracellular IL-1β triggers a negative feedback loop to inhibit GPR109a and ABCA1 expression and cholesterol efflux, leading to accumulation of intracellular cholesterol and foam cell formation. Gpr109a and Abca1 were both upregulated in plaque lesions in Nlrp3-/- mice in both hyperlipidemic and C.pn infection models. Mature IL-1β and cholesterol may compete for access to the ABCA1 transporter to be exported from macrophages. C.pn exploits this metabolic-immune crosstalk, which can be modulated by NLRP3 inhibitors to alleviate atherosclerosis.
Collapse
Affiliation(s)
- Gantsetseg Tumurkhuu
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jargalsaikhan Dagvadorj
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rebecca A Porritt
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Timothy R Crother
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kenichi Shimada
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ebru Erbay
- Department of Molecular Biology and Genetics and National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Moshe Arditi
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shuang Chen
- Departments of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Chithra PK, Jayalekshmy A, Helen A. Petroleum ether extract of Njavara rice (Oryza sativa) bran upregulates the JAK2-STAT3-mediated anti-inflammatory profile in macrophages and aortic endothelial cells promoting regression of atherosclerosis. Biochem Cell Biol 2017; 95:652-662. [PMID: 28700834 DOI: 10.1139/bcb-2017-0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
"Njavara" (Oryza sativa L.) is a unique rice variety grown in Kerala that is reported to have significantly higher antioxidant, anti-inflammatory, chemical indices, and bioactive components compared with staple rice varieties. However, the role of NBE in reversing the atherosclerosis development remains unclear. The present study aimed to elucidate the role of NBE in promoting atherosclerotic regression. Male New Zealand white breed rabbits were divided into three groups. Group I was the control, group II was the regression control, and group III was NBE treated (100 mg/kg body mass). Serum and tissue lipids, CRP, antioxidant enzyme activities, mRNA, and protein expression of genes of RTC and mRNA expression of cytokines were studied. The current study showed that hypercholesterolemic rabbits treated with NBE decreased the serum and tissue lipids concentrations, ApoB expression, and CRP levels and enhanced the activities of antioxidant enzymes and PON1expression, JAK2, STAT3, ABCA1, and ApoA. Our results indicate that NBE attenuates proinflammatory cytokine production (IL-1β), enhanced expression and interactions of ABCA1/ApoA1 leading to JAK2/STAT3 activation in macrophages switching to an anti-inflammatory milieu in the system, and enhanced expression of IL-10 and decreased expression of ApoB, indicating that treatment with NBE facilitates plaque regression.
Collapse
Affiliation(s)
- Pushpan K Chithra
- a Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - Ananthasankaran Jayalekshmy
- b Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Industrial Estate PO, Papanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Antony Helen
- a Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| |
Collapse
|
23
|
Bi X, Pashos EE, Cuchel M, Lyssenko NN, Hernandez M, Picataggi A, McParland J, Yang W, Liu Y, Yan R, Yu C, DerOhannessian SL, Phillips MC, Morrisey EE, Duncan SA, Rader DJ. ATP-Binding Cassette Transporter A1 Deficiency in Human Induced Pluripotent Stem Cell-Derived Hepatocytes Abrogates HDL Biogenesis and Enhances Triglyceride Secretion. EBioMedicine 2017; 18:139-145. [PMID: 28330813 PMCID: PMC5405159 DOI: 10.1016/j.ebiom.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/05/2022] Open
Abstract
Despite the recognized role of the ATP-binding Cassette Transporter A1 (ABCA1) in high-density lipoprotein (HDL) metabolism, our understanding of ABCA1 deficiency in human hepatocytes is limited. To define the functional effects of human hepatocyte ABCA1 deficiency, we generated induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) from Tangier disease (TD) and matched control subjects. Control HLCs exhibited robust cholesterol efflux to apolipoprotein A-I (apoA-I) and formed nascent HDL particles. ABCA1-deficient HLCs failed to mediate lipid efflux or nascent HDL formation, but had elevated triglyceride (TG) secretion. Global transcriptome analysis revealed significantly increased ANGPTL3 expression in ABCA1-deficient HLCs. Angiopoietin-related protein 3 (ANGPTL3) was enriched in plasma of TD relative to control subjects. These results highlight the required role of ABCA1 in cholesterol efflux and nascent HDL formation by hepatocytes. Furthermore, our results suggest that hepatic ABCA1 deficiency results in increased hepatic TG and ANGPTL3 secretion, potentially underlying the elevated plasma TG levels in TD patients. ABCA1 deficiency in human hepatocytes abolishes nascent HDL formation, but elevates triglyceride secretion ABCA1 deficiency increases hepatic ANGPTL3 expression and secretion Tangier disease patients display higher plasma ANGPTL3 levels relative to normal HDL control subjects
ATP-Binding Cassette Transporter A1 (ABCA1) is a key regulator of high-density lipoprotein metabolism, but the intrinsic functional impact of human hepatocyte ABCA1 deficiency is yet to be defined. We generated hepatocyte-like cells (HLCs) from induced pluripotent stem cell (iPSC) of patients with Tangier disease (TD), a rare genetic disorder caused by mutations in ABCA1. ABCA1 deficiency in HLCs abrogates lipid efflux and nascent HDL formation but increases triglyceride secretion. ANGPTL3 has also been uncovered as a potential mediator of hypertriglyceridemia in TD. This study thus highlights the utility of iPSC-derived cells in disease modeling.
Collapse
Affiliation(s)
- Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evanthia E Pashos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas N Lyssenko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mayda Hernandez
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonino Picataggi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James McParland
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruilan Yan
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Yu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie L DerOhannessian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Phillips
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, SC 29425, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|