1
|
Mu YF, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P, Gao ZX. Macrophage-driven inflammation in acute kidney injury: Therapeutic opportunities and challenges. Transl Res 2025; 278:1-9. [PMID: 39954848 DOI: 10.1016/j.trsl.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Acute kidney injury (AKI) is increasingly being recognized as a systemic disorder associated with significant morbidity and mortality. AKI manifests with extensive cellular damage, necrosis, and an intense inflammatory response, often leading to late-stage interstitial fibrosis. Although the mechanisms underlying renal injury and repair remain poorly understood, macrophages (pivotal inflammatory cells) play central roles in AKI. They undergo polarization into pro-inflammatory and anti-inflammatory phenotypes, contributing dynamically to both the injury and repair processes while maintaining homeostasis. Macrophages modulate microenvironmental inflammation by releasing extracellular vesicles (EVs) containing pro- or anti-inflammatory signaling molecules, thereby influencing the regulation of tissue injury. The injured tissue cells release EVs and activate local macrophages to initiate these responses. Our bibliometric analysis indicated that a shift has occurred in AKI macrophage research towards therapeutic strategies and clinical translation, focusing on macrophage-targeted therapies, including exosomes and nanoparticles. This review highlights the roles and mechanisms of macrophage activation, phenotypic polarization, and trans-differentiation in AKI and discusses macrophage-based approaches for AKI prevention and treatment. Understanding the involvement of macrophages in AKI contributes to the comprehension of related immune mechanisms and lays the groundwork for novel diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Ya-Fan Mu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
2
|
Oe Y, Tanaka T, Takahashi N. The Many Faces of Protease-Activated Receptor 2 in Kidney Injury. Biomedicines 2025; 13:414. [PMID: 40002827 PMCID: PMC11852827 DOI: 10.3390/biomedicines13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Protease-activated receptor 2 (PAR2) is a seven-transmembrane, G-protein-coupled receptor that is activated by coagulation proteases such as factor VIIa and factor Xa and other serine proteases. It is a potential therapeutic target for kidney injury, as it enhances inflammatory and fibrotic responses via the nuclear factor-kappa B and mitogen-activated protein kinase cascades. The body of knowledge regarding the role of PAR2 in kidney disease is currently growing, and its role in various kidney disease models, such as acute kidney injury, renal fibrosis, diabetic kidney disease, aging, and thrombotic microangiopathy, has been reported. Here, we review the literature to better understand the various aspects of PAR2 in kidney disease.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-0845, Japan
| |
Collapse
|
3
|
Lim CG, Gradinariu V, Liang Y, Rebholz CM, Talegawkar S, Temprosa M, Min YI, Sim X, Wilson JG, van Dam RM. Proteomic analysis identifies novel biological pathways that may link dietary quality to type 2 diabetes risk: evidence from African American and Asian cohorts. Am J Clin Nutr 2025; 121:100-110. [PMID: 39566683 PMCID: PMC11747191 DOI: 10.1016/j.ajcnut.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Diet affects the development of chronic diseases such as type 2 diabetes, but the underlying biological mechanisms are only partly understood. OBJECTIVES This study aimed to identify proteomic markers of the Alternative Healthy Eating Index (AHEI) and the Dietary Approaches to Stop Hypertension (DASH) diet and their association with type 2 diabetes risk. METHODS We examined the associations between the AHEI and DASH diet quality scores and 1317 plasma proteins in African American participants of the Jackson Heart Study (JHS, n = 1878). These findings were validated in a Singapore Multi-Ethnic Cohort (n = 2395) and examined in relation to type 2 diabetes incidence (n = 539 cases). We adjusted for multiple testing by using false discovery rate-adjusted q values. RESULTS We identified 13 proteins consistently associated with the AHEI or DASH scores with the strongest associations for the AHEI score and epidermal growth factor receptor (β:0.089; SE: 0.017; q < 0.001) and for the DASH score and tissue factor (β: -0.114; SE: 0.022; q < 0.001). Most of these proteins were related to inflammation, thrombosis, adipogenesis, and glucose metabolism. Concentrations of myeloperoxidase, epidermal growth factor receptor, hepatocyte growth factor receptor, coagulation factor Xa, contactin 4, kynureninase, neurogenic locus notch homolog protein 1, and vesicular integral-membrane protein VIP36 were associated with the risk of type 2 diabetes in the Asian cohort. The diabetes odds ratio for a 2-fold higher protein abundance concentration ranged from 0.03 (95% CI: 0.01, 0.08) for neurogenic locus notch homolog protein 1 to 3.04 (95% CI: 2.13, 4.33) for kynureninase. Furthermore, genetic markers for myeloperoxidase and hepatocyte growth factor receptor were significantly associated with diabetes risk. CONCLUSIONS Our study across geographically and ethnically diverse populations identified robust protein biomarkers for healthy dietary patterns. Furthermore, our findings suggest novel biological mechanisms linking dietary patterns with type 2 diabetes development.
Collapse
Affiliation(s)
- Charlie Gy Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Vlad Gradinariu
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Newark, Washington, DC, United States
| | - Yujian Liang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sameera Talegawkar
- Biostatistics Center and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD, United States
| | - Marinella Temprosa
- Biostatistics Center and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD, United States
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson Medical Mall, Jackson, MS, United States
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Newark, Washington, DC, United States.
| |
Collapse
|
4
|
Noone D, Preston RJS, Rehill AM. The Role of Myeloid Cells in Thromboinflammatory Disease. Semin Thromb Hemost 2024; 50:998-1011. [PMID: 38547918 DOI: 10.1055/s-0044-1782660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.
Collapse
Affiliation(s)
- David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
5
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
6
|
Maeda K, Kuriyama N, Noguchi D, Ito T, Gyoten K, Hayasaki A, Fujii T, Iizawa Y, Murata Y, Tanemura A, Kishiwada M, Mizuno S. Xa inhibitor edoxaban ameliorates hepatic ischemia-reperfusion injury via PAR-2-ERK 1/2 pathway. PLoS One 2024; 19:e0292628. [PMID: 38748746 PMCID: PMC11095713 DOI: 10.1371/journal.pone.0292628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2023] [Indexed: 05/19/2024] Open
Abstract
Hepatic ischemia-reperfusion injury causes liver damage during surgery. In hepatic ischemia-reperfusion injury, the blood coagulation cascade is activated, causing microcirculatory incompetence and cellular injury. Coagulation factor Xa (FXa)- protease-activated receptor (PAR)-2 signaling activates inflammatory reactions and the cytoprotective effect of FXa inhibitor in several organs. However, no studies have elucidated the significance of FXa inhibition on hepatic ischemia-reperfusion injury. The present study elucidated the treatment effect of an FXa inhibitor, edoxaban, on hepatic ischemia-reperfusion injury, focusing on FXa-PAR-2 signaling. A 60 min hepatic partial-warm ischemia-reperfusion injury mouse model and a hypoxia-reoxygenation model of hepatic sinusoidal endothelial cells were used. Ischemia-reperfusion injury mice and hepatic sinusoidal endothelial cells were treated and pretreated, respectively with or without edoxaban. They were incubated during hypoxia/reoxygenation in vitro. Cell signaling was evaluated using the PAR-2 knockdown model. In ischemia-reperfusion injury mice, edoxaban treatment significantly attenuated fibrin deposition in the sinusoids and liver histological damage and resulted in both anti-inflammatory and antiapoptotic effects. Hepatic ischemia-reperfusion injury upregulated PAR-2 generation and enhanced extracellular signal-regulated kinase 1/2 (ERK 1/2) activation; however, edoxaban treatment reduced PAR-2 generation and suppressed ERK 1/2 activation in vivo. In the hypoxia/reoxygenation model of sinusoidal endothelial cells, hypoxia/reoxygenation stress increased FXa generation and induced cytotoxic effects. Edoxaban protected sinusoidal endothelial cells from hypoxia/reoxygenation stress and reduced ERK 1/2 activation. PAR-2 knockdown in the sinusoidal endothelial cells ameliorated hypoxia/reoxygenation stress-induced cytotoxicity and suppressed ERK 1/2 phosphorylation. Thus, edoxaban ameliorated hepatic ischemia-reperfusion injury in mice by protecting against micro-thrombosis in sinusoids and suppressing FXa-PAR-2-induced inflammation in the sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Koki Maeda
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naohisa Kuriyama
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daisuke Noguchi
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahiro Ito
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuyuki Gyoten
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Aoi Hayasaki
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takehiro Fujii
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yusuke Iizawa
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Murata
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akihiro Tanemura
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masashi Kishiwada
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
7
|
Al-Saidi A, Alzaim IF, Hammoud SH, Al Arab G, Abdalla S, Mougharbil N, Eid AH, El-Yazbi AF. Interruption of perivascular and perirenal adipose tissue thromboinflammation rescues prediabetic cardioautonomic and renovascular deterioration. Clin Sci (Lond) 2024; 138:289-308. [PMID: 38381744 DOI: 10.1042/cs20231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.
Collapse
Affiliation(s)
- Aya Al-Saidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim F Alzaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Ghida Al Arab
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samaya Abdalla
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh, Egypt
| |
Collapse
|
8
|
Xiao M, Tang D, Luan S, Hu B, Gong W, Pommer W, Dai Y, Yin L. Dysregulated coagulation system links to inflammation in diabetic kidney disease. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1270028. [PMID: 38143793 PMCID: PMC10748384 DOI: 10.3389/fcdhc.2023.1270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Donge Tang
- Shenzhen People’s Hospital/The Second Clinical School of Jinan University, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyu Gong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wolfgang Pommer
- KfH Kuratoriumfuer Dialyse und Nierentransplantatione.V., Bildungszentrum, Neu-Isenburg, Germany
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Liu MC, Niu WQ, Wang YF, Meng Y, Zheng GM, Cai Z, Shen C, Zhu XG, Wang MD, Li JL, Zhao WJ, Wang YX. Coagulation Function and Type 2 Diabetic Kidney Disease: A Real-World Observational Study. J Diabetes Res 2023; 2023:8848096. [PMID: 38094871 PMCID: PMC10719035 DOI: 10.1155/2023/8848096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Objectives Type 2 diabetic kidney disease (DKD), a chronic microvascular complication of diabetes, may exhibit a complex interrelation with coagulation function. This study is aimed at elucidating the association between coagulation function and DKD. Methods This was a real-world observational study conducted in Beijing, involving 2,703 participants. All patients with diabetes were classified into two groups, viz., DKD and non-DKD groups. Effect magnitudes are denoted as odds ratios (OR) with a 95% confidence interval (CI). To mitigate potential bias in group comparisons, we employed propensity score matching (PSM). Results After adjusting for variables such as age, gender, systolic blood pressure (SBP), hemoglobin A1c (HbA1c), triglyceride (TG), c-reactive protein (CRP), platelet (PLT), and serum albumin (sALB), it was discerned that fibrinogen (FIB) (OR, 95% CI, P: 1.565, 1.289-1.901, <0.001) and fibrinogen degradation products (FDP) (1.203, 1.077-1.344, 0.001) were significantly correlated with an increased risk of DKD. To facilitate clinical applications, a nomogram prediction model was established, demonstrating commendable accuracy for DKD prediction. Conclusions Our findings suggest that elevated levels of FIB and FDP serve as potential risk indicators for DKD, and coagulation function may play an important role in the occurrence and development of DKD.
Collapse
Affiliation(s)
- Meng-chao Liu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wen-quan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| | - Yue-fen Wang
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuan Meng
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Gui-min Zheng
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhen Cai
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cun Shen
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiang-gang Zhu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Meng-di Wang
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jia-lin Li
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wen-jing Zhao
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yao-xian Wang
- Henan University of Chinese Medicine, China
- The First Clinical Medical College, Beijing University of Chinese Medicine, China
| |
Collapse
|
10
|
Yu Y, Zhu C, Lin Y, Qian Q, Shen X, Zou W, Wang M, Gong J, Chen M, Liu L, Yu R, Shen Q, Shao L, Zhu B. Plasma D-dimer levels are associated with disease progression in diabetic nephropathy: a two-center cohort study. Ren Fail 2023; 45:2285868. [PMID: 38013428 PMCID: PMC11001365 DOI: 10.1080/0886022x.2023.2285868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between plasma D-dimer levels, clinicopathological features, and clinical outcomes in patients with biopsy-proven diabetic nephropathy (DN). METHODS A total of 137 patients with biopsy-proven DN were enrolled in this two-center cohort study. Patients were stratified into tertiles based on plasma D-dimer levels. We investigated the relationship between plasma D-dimer levels and clinical outcomes, including a composite of death, a 40% decline in estimated glomerular filtration rate (e-GFR) from baseline, or end-stage renal disease (ESRD) (defined as e-GFR < 15 mL/min/1.73 m2 or need for renal replacement therapy including hemodialysis, peritoneal dialysis, or kidney transplantation), assessed using Cox regression models with adjustment for confounders. RESULTS At baseline, the mean age was 52.61 ± 11.63 years, and the mean e-GFR was 58.02 ± 28.77 mL/min/1.73 m2. During a median 26-month follow-up period, 65 (47% of patients) achieved clinical outcomes. Compared with the low plasma D-dimer level group, those with higher plasma D-dimer levels were more likely to have higher 24-h proteinuria (p = .002), lower e-GFR (p = .001), lower hemoglobin (p = .001), a higher glomerular lesion class (p = .03), and higher interstitial fibrosis and tubular atrophy (IFTA) scores (p = .002). After adjustment for demographic, DN-specific covariates, and treatments, it was observed that a higher tertile of plasma D-dimer was nonlinearly associated with an increased risk of the clinical outcomes (Hazard Ratio (HR) for tertile 2 vs. 1, 1.7; 95% Confidence Interval (CI), 0.80-3.75; HR for tertile 3 vs. 1, 2.2; 95% CI, 0.93-5.27; p for trend = .001) in the Cox proportional hazards models. CONCLUSION In this study, DN patients with higher levels of plasma D-dimer had higher 24-h proteinuria, lower e-GFR, a higher glomerular lesion class, and higher IFTA scores. Furthermore, a high level of plasma D-dimer was nonlinearly associated with DN progression.
Collapse
Affiliation(s)
- Yedong Yu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Caifeng Zhu
- Department of Nephrology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Lin
- Department of Nephrology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qian Qian
- Department of Nephrology, Lin’an Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaogang Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenli Zou
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minmin Wang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianguang Gong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Maosheng Chen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Liu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rizhen Yu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Quanquan Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lina Shao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Iwata Y, Deng Q, Kakizoe Y, Nakagawa T, Miyasato Y, Nakagawa M, Nishiguchi K, Nagayoshi Y, Narita Y, Izumi Y, Kuwabara T, Adachi M, Mukoyama M. A Serine Protease Inhibitor, Camostat Mesilate, Suppresses Urinary Plasmin Activity and Alleviates Hypertension and Podocyte Injury in Dahl Salt-Sensitive Rats. Int J Mol Sci 2023; 24:15743. [PMID: 37958726 PMCID: PMC10650472 DOI: 10.3390/ijms242115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.
Collapse
Affiliation(s)
- Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Miyuki Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yuki Narita
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
12
|
Cheng KH, Tu HP, Cheng KC, Scherrer-Crosbie M, Hsu TY. Cardiovascular and Neurological Outcomes in Patients Treated with Edoxaban for Atrial Fibrillation and Characteristics in Patients with Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.25.23297577. [PMID: 37961728 PMCID: PMC10635200 DOI: 10.1101/2023.10.25.23297577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Direct oral anticoagulants (DOACs) outperform warfarin in vascular and bleeding events in atrial fibrillation (AF) patients. Yet, effects of DOACs on congestive heart failure (CHF) and Alzheimer's disease (AD) remain less explored. METHODS Using the Taiwan National Health Insurance Research Database, a nationwide retrospective cohort study was conducted. The study matched 5,683 non-valvular atrial fibrillation (NVAF) edoxaban patients with 11,366 warfarin patients, and 703 NVAF with cancer (NVAF-C) edoxaban patients with 1,406 warfarin patients. Vasular and non-vascular outcomes, with focuses on CHF and AD, were compared between the edoxaban and warfarin users. RESULTS Edoxaban significantly lowered adjusted hazrad ratio (aHR) of all-cause mortality, hospitalization for gastrointestinal bleeding, and CHF (0.37, 0.74, and 0.26, respectively, in NVAF; 0.39, 0.67, and 0.31, respectively, in NVAF-C, all p < 0.05), compared to warfarin. Edoxaban was associated with significantly lower aHRs of acute myocardial infarction, peripheral artery disease, venous thromboembolism, pulmonary embolism, and AD (0.71, 0.48, 0.55, 0.20, and 0.66, respectively; all p < 0.05) in NVAF patients versus warfarin. However, edoxaban had higher aHR of hospitalized bleeding (1.19, p = 0.002) than warfarin in NVAF patients, but not in NVAF-C patients. CONCLUSIONS Edoxaban demonstrated lowered CHF risks in both NVAF and NVAF-C patients, and reduced AD occurrence in NVAF patients versus warfarin. These findings advocate for edoxaban's use in AF cases. CLINICAL PERSPECTIVE What Is New?: The study reveals that in patients with atrial fibrillation (AF), edoxaban, a direct oral anticoagulant (DOAC), demonstrates significant advantages over warfarin. Notably, edoxaban is associated with a reduced risk of congestive heart failure (CHF) and Alzheimer's disease (AD) when compared to warfarin.Clinical Implications?: These findings have important clinical implications. Edoxaban appears to be a superior anticoagulant choice for AF patients, as it lowers the risk of CHF and AD. This highlights the potential of edoxaban to improve patient outcomes and underscores its relevance for managing AF cases.
Collapse
|
13
|
Sui X, Xie T, Xu Y, Zhang A, Zhang Y, Gu F, Li L, Xu Z, Chen J. Protease-Activated Receptor-2 and Phospholipid Metabolism Analysis in Hyperuricemia-Induced Renal Injury. Mediators Inflamm 2023; 2023:5007488. [PMID: 37484603 PMCID: PMC10359134 DOI: 10.1155/2023/5007488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/30/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Interstitial inflammation is an important mechanism of pathological damage in renal injury caused by hyperuricemia. Protease-activated receptor-2 (PAR2) is a class of targets that act upstream of the PI3K/AKT/NF-κB pathway and is involved in various inflammatory diseases. We induced a hyperuricemia model in rats by adenine and ethambutol gavage in an in vivo experiment. We demonstrated that PAR2 and PI3K/AKT/NF-κB pathway expression were significantly upregulated in renal tissues, with massive inflammatory cell infiltration in the renal interstitium and renal tissue injury. Treating hyperuricemic rats with AZ3451, a selective metabotropic antagonist of PAR2, we demonstrated that PAR2 antagonism inhibited the PI3K/AKT/NF-κB pathway and attenuated tubular dilation and tubulointerstitial inflammatory cell infiltration. The phospholipid metabolism profiles provided a perfect separation between the normal and hyperuricemic rats. In addition, we also found that AZ3451 can affect phospholipid metabolism. Our work suggests that PAR2 may mediate hyperuricemia-mediated renal injury by activating the PI3K/AKT/NF-κB pathway. The PAR2 antagonist AZ3451 may be a promising therapeutic strategy for hyperuricemia-induced inflammatory responses.
Collapse
Affiliation(s)
- Xiaolu Sui
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Tingfei Xie
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen 518000, Guangdong, China
| | - Yunpeng Xu
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Aisha Zhang
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Yanzi Zhang
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Fengjuan Gu
- Department of Nephrology, Shenzhen Baoan People's Hospital (Group) The Second People's Hospital, Shenzhen 518000, Guangdong, China
| | - Lixiang Li
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Zibin Xu
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen 518000, Guangdong, China
| | - Jihong Chen
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
14
|
Hu Y, Yu Y, Dong H, Jiang W. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. PeerJ 2023; 11:e15437. [PMID: 37250717 PMCID: PMC10225123 DOI: 10.7717/peerj.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diabetic nephropathy (DN), the most intractable complication in diabetes patients, can lead to proteinuria and progressive reduction of glomerular filtration rate (GFR), which seriously affects the quality of life of patients and is associated with high mortality. However, the lack of accurate key candidate genes makes diagnosis of DN very difficult. This study aimed to identify new potential candidate genes for DN using bioinformatics, and elucidated the mechanism of DN at the cellular transcriptional level. Methods The microarray dataset GSE30529 was downloaded from the Gene Expression Omnibus Database (GEO), and the differentially expressed genes (DEGs) were screened by R software. We used Gene Ontology (GO), gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify the signal pathways and genes. Protein-protein interaction (PPI) networks were constructed using the STRING database. The GSE30122 dataset was selected as the validation set. Receiver operating characteristic (ROC) curves were applied to evaluate the predictive value of genes. An area under curve (AUC) greater than 0.85 was considered to be of high diagnostic value. Several online databases were used to predict miRNAs and transcription factors (TFs) capable of binding hub genes. Cytoscape was used for constructing a miRNA-mRNA-TF network. The online database 'nephroseq' predicted the correlation between genes and kidney function. The serum level of creatinine, BUN, and albumin, and the urinary protein/creatinine ratio of the DN rat model were detected. The expression of hub genes was further verified through qPCR. Data were analyzed statistically using Student's t-test by the 'ggpubr' package. Results A total of 463 DEGs were identified from GSE30529. According to enrichment analysis, DEGs were mainly enriched in the immune response, coagulation cascades, and cytokine signaling pathways. Twenty hub genes with the highest connectivity and several gene cluster modules were ensured using Cytoscape. Five high diagnostic hub genes were selected and verified by GSE30122. The MiRNA-mRNA-TF network suggested a potential RNA regulatory relationship. Hub gene expression was positively correlated with kidney injury. The level of serum creatinine and BUN in the DN group was higher than in the control group (unpaired t test, t = 3.391, df = 4, p = 0.0275, r = 0.861). Meanwhile, the DN group had a higher urinary protein/creatinine ratio (unpaired t test, t = 17.23, df = 16, p < 0.001, r = 0.974). QPCR results showed that the potential candidate genes for DN diagnosis included C1QB, ITGAM, and ITGB2. Conclusions We identified C1QB, ITGAM and ITGB2 as potential candidate genes for DN diagnosis and therapy and provided insight into the mechanisms of DN development at transcriptome level. We further completed the construction of miRNA-mRNA-TF network to propose potential RNA regulatory pathways adjusting disease progression in DN.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Dong
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Mehranfard N, Rezazadeh H, Soltani N, Dastgerdi AH, Ghanbari Rad M, Ghasemi M. Changes in Protease-Activated Receptor and Trypsin-1 Expression Are Involved in the Therapeutic Effect of Mg 2+ Supplementation in Type 2 Diabetes-Induced Gastric Injury in Male Adult Rats. Adv Pharmacol Pharm Sci 2023; 2023:5703718. [PMID: 37228689 PMCID: PMC10205415 DOI: 10.1155/2023/5703718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Purpose Gastric inflammation is common and usually severe in patients with type 2 diabetes mellitus (T2DM). Evidence suggests protease-activated receptors (PARs) are a link between inflammation and gastrointestinal dysfunction. Given that magnesium (Mg2+) deficiency is a highly prevalent condition in T2DM patients, we assessed the therapeutic role of Mg2+ on the factors involved in gastric inflammation in T2DM. Methods A rat model of T2DM gastropathy was established using a long-term high-fat diet + a low dose of streptozocin. Twenty-four rats were divided into control, T2DM , T2DM + insulin (positive control), and T2DM + Mg2+ groups. At the end of 2-month therapies, changes in the expression of gastric trypsin-1, PAR1, PAR2, PAR3, PI3K/Akt, and COX-2 proteins were measured by western blot. Hematoxylin and eosin and Masson's trichrome staining were used to detect gastric mucosal injury and fibrosis. Results The expression of trypsin-1, PAR1, PAR2, PAR3, and COX-2 increased in diabetes, and Mg2+/insulin treatment strongly decreased their expression. The PI3K/p-Akt significantly decreased in T2DM, and treatment with Mg2+/insulin improved PI3K in T2DM rats. Staining of the gastric antrum tissue of the insulin/Mg2+-treated T2DM rats showed a significantly minimal mucosal and fibrotic injury compared with those of rats from the T2DM group. Conclusion Mg2+ supplement, comparable to insulin, via decreasing PARs expression, mitigating COX-2 activity, and decreasing collagen deposition could exert a potent gastroprotective effect against inflammation, ulcer, and fibrotic development in T2DM patients.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahtab Ghanbari Rad
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Goette A, Mollenhauer M, Rudolph V, Lamparter M, Meier M, Böhm M. Pleiotropic effects of NOACs with focus on edoxaban: scientific findings and potential clinical implications. Herzschrittmacherther Elektrophysiol 2023; 34:142-152. [PMID: 37140824 DOI: 10.1007/s00399-023-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Non-vitamin K antagonist oral anticoagulants (NOACs) are well-established as inhibitors of factor Xa (FXa) and thrombin in the treatment and prevention of thrombosis. However, there is growing evidence that beneficial outcomes might be based on additional pleiotropic effects beyond anticoagulation. FXa and thrombin are also known to activate protease-activated receptors (PARs), which can mediate pro-inflammatory and pro-fibrotic effects. Since PAR‑1 and PAR‑2 play an important role in the development of atherosclerosis, the inhibition of this pathway represents an interesting potential target for preventing the progression of atherosclerosis and fibrosis. This review focuses on potential pleiotropic effects of FXa inhibition with edoxaban seen in a variety of studies in different in vitro and in vivo test systems. As common findings from these experiments, edoxaban was able to attenuate FXa- and thrombin-induced pro-inflammatory and pro-fibrotic effects and decrease pro-inflammatory cytokine expression. In some, but not all experiments edoxaban was also shown to decrease the levels of PAR‑1 and PAR‑2 expression. Further studies are required to clarify the clinical implications of the pleiotropic effects mediated by NOACs.
Collapse
Affiliation(s)
- Andreas Goette
- Medizinische Klinik II: Kardiologie und Intensivmedizin, St. Vincenz-Krankenhaus Paderborn, Am Busdorf 2, 33098, Paderborn, Germany.
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bochum, Germany
| | | | - Martin Meier
- Daiichi Sankyo Deutschland GmbH, Munich, Germany
| | - Michael Böhm
- Innere Medizin III-Kardiologie, Angiologie und internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
| |
Collapse
|
17
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
18
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
19
|
Hara T, Sata M, Fukuda D. Emerging roles of protease-activated receptors in cardiometabolic disorders. J Cardiol 2023; 81:337-346. [PMID: 36195252 DOI: 10.1016/j.jjcc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis, share sterile chronic inflammation as a major cause; however, the precise underlying mechanisms of chronic inflammation in cardiometabolic disorders are not fully understood. Accumulating evidence suggests that several coagulation proteases, including thrombin and activated factor X (FXa), play an important role not only in the coagulation cascade but also in the proinflammatory responses through protease-activated receptors (PARs) in many cell types. Four members of the PAR family have been cloned (PAR 1-4). For instance, thrombin activates PAR-1, PAR-3, and PAR-4. FXa activates both PAR-1 and PAR-2, while it has no effect on PAR-3 or PAR-4. Previous studies demonstrated that PAR-1 and PAR-2 activated by thrombin or FXa promote gene expression of inflammatory molecules mainly via the NF-κB and ERK1/2 pathways. In obese adipose tissue and atherosclerotic vascular tissue, various stresses increase the expression of tissue factor and procoagulant activity. Recent studies indicated that the activation of PARs in adipocytes and vascular cells by coagulation proteases promotes inflammation in these tissues, which leads to the development of cardiometabolic diseases. This review briefly summarizes the role of PARs and coagulation proteases in the pathogenesis of inflammatory diseases and describes recent findings (including ours) on the potential participation of this system in the development of cardiometabolic disorders. New insights into PARs may ensure a better understanding of cardiometabolic disorders and suggest new therapeutic options for these major health threats.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
20
|
Wang W, Wu S, Wang AY, Wu T, Luo H, Zhao JW, Chen J, Li Y, Ding H. Thrombomodulin activation driven by LXR agonist attenuates renal injury in diabetic nephropathy. Front Med (Lausanne) 2023; 9:916620. [PMID: 36698821 PMCID: PMC9870310 DOI: 10.3389/fmed.2022.916620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023] Open
Abstract
Objective Inflammation and thrombosis are recognized as interrelated biological processes. Both thrombomodulin (TM) and factor XIII-A (FXIII-A) are involved in inflammation and coagulation process. However, their role in the pathogenesis of diabetic nephropathy (DN) remains unclear. In vitro study, the liver X receptor (LXR) agonist T0901317 can up-regulate the expression of TM in glomerular endothelial cells. Now we evaluated the interaction between TM activation and FXIII-A and their effects against renal injury. Methods We first evaluated the serum levels of FXIII-A and TM and the expression of TM, LXR-α and FXIII-A in renal tissues of patients with biopsy-proven DN. We then analyzed the expression of TM, LXR-α and FXIII-A in renal tissues of db/db DN mice after upregulating TM expression via T0901317 or downregulating its expression via transfection of TM shRNA-loaded adenovirus. We also investigated the serum levels of Tumor necrosis factor (TNF)-α, Interleukin (IL)-6, creatinine, and urinary microalbumin level in db/db mice. Results Our study showed that elevations in serum levels of FXIII-A positively correlated to the serum levels of TM and were also associated with end-stage kidney disease in patients with DN. The number of TM+ cells in the renal tissues of patients with DN negatively correlated with the number of FXIII-A+ cells and positively correlated with the number of LXR-α+ cells and estimated glomerular filtration rate (eGFR), whereas the number of FXIII-A+ cells negatively correlated with the eGFR. Conclusion Thrombomodulin activation with T0901317 downregulated FXIII-A expression in the kidney tissue and alleviated renal injury in db/db mice.
Collapse
Affiliation(s)
- Wei Wang
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Song Wu
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Amanda Y. Wang
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales Australia, Newtown, NSW, Australia,Department of Renal Medicine, Concord Repatriation General Hospital, Concord Clinical School, University of Sydney, Camperdown, NSW, Australia,Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia,*Correspondence: Amanda Y. Wang ✉
| | - Tao Wu
- Internal Medicine, Louisiana State University Health Science at Shreveport, Shreveport, LA, United States
| | - Haojun Luo
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jia Wei Zhao
- The Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Jin Chen
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Li
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hanlu Ding
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,Hanlu Ding ✉
| |
Collapse
|
21
|
Oe Y, Takahashi N. Tissue Factor, Thrombosis, and Chronic Kidney Disease. Biomedicines 2022; 10:2737. [PMID: 36359257 PMCID: PMC9687479 DOI: 10.3390/biomedicines10112737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2023] Open
Abstract
Coagulation abnormalities are common in chronic kidney disease (CKD). Tissue factor (TF, factor III) is a master regulator of the extrinsic coagulation system, activating downstream coagulation proteases, such as factor Xa and thrombin, and promoting fibrin formation. TF and coagulation proteases also activate protease-activated receptors (PARs) and are implicated in various organ injuries. Recent studies have shown the mechanisms by which thrombotic tendency is increased under CKD-specific conditions. Uremic toxins, such as indoxyl sulfate and kynurenine, are accumulated in CKD and activate TF and coagulation; in addition, the TF-coagulation protease-PAR pathway enhances inflammation and fibrosis, thereby exacerbating renal injury. Herein, we review the recent research studies to understand the role of TF in increasing the thrombotic risk and CKD progression.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Saraswat M, Przybyla B, Joenvaara S, Tohmola T, Strandin T, Puhka M, Jouppila A, Lassila R, Renkonen R. Urinary extracellular vesicles carry multiple activators and regulators of coagulation. Front Cell Dev Biol 2022; 10:967482. [PMID: 36158187 PMCID: PMC9489905 DOI: 10.3389/fcell.2022.967482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cells shape their extracellular milieu by secreting intracellular products into the environment including extracellular vesicles which are lipid-bilayer limited membrane particles. These vesicles carry out a range of functions, including regulation of coagulation, via multiple contributor mechanisms. Urinary extracellular vesicles are secreted by various cells, lining the urinary space, including the nephron and bladder. They are known to have procoagulant properties, however, the details of this function, beyond tissue factor are not well known. The aim of the study was to access the role of urinary extracellular vesicles in impacting coagulation upon supplementation to plasma. This could indicate their physiological function upon kidney injury or pathology. Supplementation to standard human plasma and plasmas deficient in various coagulation factors was used for this purpose, and calibrated automated thrombogram (CAT®) was the major technique applied. We found that these vesicles contain multiple coagulation-related factors, and their lipid composition affects coagulation activities of plasma upon supplementation. Remarkably, these vesicles can restore thrombin generation in FVII, FVIII, FIX and FXI -deficient plasmas. This study explores the multiple roles of urinary extracellular vesicles in coagulation in in vitro blood coagulation and implies their importance in its regulation by several mechanisms.
Collapse
Affiliation(s)
- Mayank Saraswat
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
- *Correspondence: Mayank Saraswat,
| | - Beata Przybyla
- Coagulation Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Sakari Joenvaara
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Tiialotta Tohmola
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Univeristy of Helsinki, Helsinki, Finland
| | - Maija Puhka
- EV Core and Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Annukka Jouppila
- Helsinki University Hospital Research Institute, Helsinki, Finland
| | - Riitta Lassila
- Research Program Unit in Systems Oncology, Coagulation Disorders Unit, Hematology and Cancer Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Ha S, Yang Y, Kim BM, Kim J, Son M, Kim D, Yu HS, Im DS, Chung HY, Chung KW. Activation of PAR2 promotes high-fat diet-induced renal injury by inducing oxidative stress and inflammation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166474. [PMID: 35772632 DOI: 10.1016/j.bbadis.2022.166474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
A high-fat diet (HFD) is a major risk factor for chronic kidney disease. Although HFD promotes renal injury, characterized by increased inflammation and oxidative stress leading to fibrosis, the underlying mechanism remains elusive. Here, we investigated the role and mechanism of protease-activating receptor 2 (PAR2) activation during HFD-induced renal injury in C57/BL6 mice. HFD for 16 weeks resulted in kidney injury, manifested by increased blood levels of blood urea nitrogen, increased levels of oxidative stress with inflammation, and structural changes in the kidney tubules. HFD-fed kidneys showed elevated PAR2 expression level in the tubular epithelial region. To elucidate the role of PAR2, PAR2 knockout mice and their littermates were administered HFD. PAR2 deficient kidneys showed reduced extent of renal injury. PAR2 deficient kidneys showed significantly decreased levels of inflammatory gene expression and macrophage infiltration, followed by reduced accumulation of extracellular matrix proteins. Using NRK52E kidney epithelial cells, we further elucidated the mechanism and role of PAR2 activation during renal injury. Palmitate treatment increased PAR2 expression level in NRK52E cells and scavenging of oxidative stress blocked PAR2 expression. Under palmitate-treated conditions, PAR2 agonist-induced NF-κB activation level was higher with increased chemokine expression level in the cells. These changes were attenuated by the depletion of oxidative stress. Taken together, our results suggest that HFD-induced PAR2 activation is associated with increased levels of renal oxidative stress, inflammatory response, and fibrosis.
Collapse
Affiliation(s)
- Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yejin Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Byeong Moo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongwon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Minjung Son
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Doyeon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
24
|
Li Q, Yang XT, Wei W, Hu XP, Li XX, Xu M. Favorable effect of rivaroxaban against vascular dysfunction in diabetic mice by inhibiting NLRP3 inflammasome activation. J Cell Physiol 2022; 237:3369-3380. [PMID: 35675485 DOI: 10.1002/jcp.30807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in various complications of type 2 diabetes mellitus (T2DM). Rivaroxaban (Xarelto; Bayer), an oral direct factor Xa (FXa) inhibitor, prevents the activation of the coagulation cascade in CVD. Considering its anticoagulant and anti-inflammatory effects, we assessed the hypothesis that rivaroxaban treatment may attenuate the vascular lesion and dysfunction in T2DM mice. C57BL/6, BKS-db/db, BKS-db/+, wild-type (WT), and NLRP3-/- mice were fed with standard chow or high-fat diet (HFD). Biochemical indexes, vascular lesions, and protein expression were evaluated using Western blot analysis, immunofluorescent staining, and RNA interference. Rivaroxaban presented favorable protection of vascular dysfunction in T2DM mice with significantly relieved vascular tension, intima-media thickness, and collagen deposition. Similar improvements in NLR family pyrin domain containing 3 (NLRP3) knockout groups and rivaroxaban pointed to the positive role of rivaroxaban against vascular dysfunction in diabetic mice by ameliorating NLRP3 inflammasome activation. Furthermore, the augmentation of inflammation and cell dysfunction in mice aortic endothelial cells (MAECs) and smooth muscle cells (MOVASs) induced by soluble FXa may be blocked by rivaroxaban via protease-activated receptors (PAR-1, PAR-2), mitogen-activated protein kinase (MAPK), and nuclear factor κ-B (NF-κB) pathway. The data indicate that the development of vascular dysfunction and inflammation in T2DM mice may be blocked by rivaroxaban in vivo and in vitro. Rivaroxaban treatment may also attenuate NLRP3 inflammasome activation via PARs, MAPK, and NF-κB pathway. This study provides mechanistic evidence of rivaroxaban therapies for vascular complications of T2DM.
Collapse
Affiliation(s)
- Qing Li
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Tong Yang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wei
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Peng Hu
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Chan KW, Yu KY, Yiu WH, Xue R, Lok SWY, Li H, Zou Y, Ma J, Lai KN, Tang SCW. Potential Therapeutic Targets of Rehmannia Formulations on Diabetic Nephropathy: A Comparative Network Pharmacology Analysis. Front Pharmacol 2022; 13:794139. [PMID: 35387335 PMCID: PMC8977554 DOI: 10.3389/fphar.2022.794139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Previous retrospective cohorts showed that Rehmannia-6 (R-6, Liu-wei-di-huang-wan) formulations were associated with significant kidney function preservation and mortality reduction among chronic kidney disease patients with diabetes. This study aimed to investigate the potential mechanism of action of common R-6 variations in a clinical protocol for diabetic nephropathy (DN) from a system pharmacology approach. Study Design and Methods: Disease-related genes were retrieved from GeneCards and OMIM by searching “Diabetic Nephropathy” and “Macroalbuminuria”. Variations of R-6 were identified from a published existing clinical practice guideline developed from expert consensus and pilot clinical service program. The chemical compound IDs of each herb were retrieved from TCM-Mesh and PubChem. Drug targets were subsequently revealed via PharmaMapper and UniProtKB. The disease gene interactions were assessed through STRING, and disease–drug protein–protein interaction network was integrated and visualized by Cytoscape. Clusters of disease–drug protein–protein interaction were constructed by Molecular Complex Detection (MCODE) extension. Functional annotation of clusters was analyzed by DAVID and KEGG pathway enrichment. Differences among variations of R-6 were compared. Binding was verified by molecular docking with AutoDock. Results: Three hundred fifty-eight genes related to DN were identified, forming 11 clusters which corresponded to complement and coagulation cascades and signaling pathways of adipocytokine, TNF, HIF-1, and AMPK. Five variations of R-6 were analyzed. Common putative targets of the R-6 variations on DN included ACE, APOE, CCL2, CRP, EDN1, FN1, HGF, ICAM1, IL10, IL1B, IL6, INS, LEP, MMP9, PTGS2, SERPINE1, and TNF, which are related to regulation of nitric oxide biosynthesis, lipid storage, cellular response to lipopolysaccharide, inflammatory response, NF-kappa B transcription factor activity, smooth muscle cell proliferation, blood pressure, cellular response to interleukin-1, angiogenesis, cell proliferation, peptidyl-tyrosine phosphorylation, and protein kinase B signaling. TNF was identified as the seed for the most significant cluster of all R-6 variations. Targets specific to each formulation were identified. The key chemical compounds of R-6 have good binding ability to the putative protein targets. Conclusion: The mechanism of action of R-6 on DN is mostly related to the TNF signaling pathway as a core mechanism, involving amelioration of angiogenesis, fibrosis, inflammation, disease susceptibility, and oxidative stress. The putative targets identified could be validated through clinical trials.
Collapse
Affiliation(s)
- Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kam Yan Yu
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rui Xue
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sarah Wing-Yan Lok
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hongyu Li
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yixin Zou
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jinyuan Ma
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
26
|
Sohaim S, Mohammed S, Amin E, Ali HM, Abdelbakky M. Date palm seed extract and herbal mixture mitigate gentamicin-induced renal injury in mice: Role of Protease-activated receptors (PARs) and Retinoid X receptor alpha (RXR-α). JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Gentamicin (Gen) causes renal toxicity by inhibiting protein synthesis in kidney cells, causing proximal tubule cell necrosis and renal failure. Herein, we examined the nephroprotective effect of date palm seed extract (DPSE) and one herbal mixture (HM; composed of Tribulus terrestris, Aerva lanata, Andrographis paniculata, and Raphanus sativus) against Gen-induced renal toxicity in mice with special reference to the possible role of retinoid X receptor alpha (RXR-α) and protease-activated receptor 2 (PAR-2) in this effect. Methods: Thirty-two male Balb/c mice divided randomly into four groups were either treated with saline, Gen (225 mg/kg/i.p., daily from day 3 to day 10), Gen (225 mg/kg i.p.) daily from day 3 to day 10 and DPSE (100 mg/kg/p.o.) daily for 10 days, or Gen (225 mg/kg i.p.) daily from day 3 to day 10 and HM (100 mg/kg/p.o., daily for 10 days). Mice were sacrificed 24 hours after the last dose administration, and kidney tissues were dissected out, weighed, and subjected to histological, immunofluorescence, and biochemical assays. Results: The Gen-induced renal toxicity group demonstrated a significant decrease in RXR-α and a significant increase in PAR-2 protein expression. Treatment with DPSE or HM significantly improved Gen-induced effects on serum creatinine, blood urea nitrogen (BUN), white blood cells (WBCs), platelets, RXR-α extracellular matrix deposition, and PAR-2. Conclusion: The present study stated the nephroprotective effects of DPSE and HM and revealed, for the first time, the involvement of retinoid receptors and PAR-2 in Gen-induced renal toxicity as well as in the protective effects of the two tested natural products.
Collapse
Affiliation(s)
- Suliman Sohaim
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Salman Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hussein M Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed Abdelbakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| |
Collapse
|
27
|
Renal tubular PAR2 promotes interstitial fibrosis by increasing inflammatory responses and EMT process. Arch Pharm Res 2022; 45:159-173. [PMID: 35334088 DOI: 10.1007/s12272-022-01375-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
Renal fibrosis is defined by excessive extracellular matrix (ECM) accumulation and is associated with a decreased kidney function. Increased inflammation and infiltration of inflammatory cells are the key features of renal fibrosis development; however, the mechanism of how inflammation starts is still un-known. Here, we show that the activation of epithelial Protease-activating receptor 2 (PAR2) signaling plays an important role in the initiation of inflammation via increased chemokine expression and inflammatory cell induction. In the adenine diet-induced renal fibrosis mouse model, PAR2 expression was significantly increased in the renal tubule region. Kidneys from PAR2-knockout mice were protected from adenine diet-induced renal fibrosis, kidney dysfunction, and inflammation. Using NRK52E kidney epithelial cells, we further elucidated the mechanisms underlying these processes. Activation of PAR2 signaling pathway by PAR2 agonist specifically increased the levels of chemokines, including MCP1 and MCP3, via the MAPK-NF-κB signaling pathway. Inhibition of the MAPK signaling pathway attenuated PAR2 agonist-induced NF-κB activation, chemokine expression, and macrophage cell induction. Furthermore, PAR2 activation directly increased mesenchymal cell markers in epithelial cells. Taken together, we found that increased PAR2 expression and the PAR2/MAPK signaling pathway promote renal fibrosis by increasing the inflammatory responses and promoting EMT process.
Collapse
|
28
|
Abstract
Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-based therapy for preventing AKI-to-CKD transition is also discussed.
Collapse
|
29
|
Fang L, Ohashi K, Ogawa H, Otaka N, Kawanishi H, Takikawa T, Ozaki Y, Takahara K, Tatsumi M, Takefuji M, Murohara T, Ouchi N. Factor Xa inhibitor, edoxaban ameliorates renal injury after subtotal nephrectomy by reducing epithelial-mesenchymal transition and inflammatory response. Physiol Rep 2022; 10:e15218. [PMID: 35262272 PMCID: PMC8905573 DOI: 10.14814/phy2.15218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 05/31/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing and life-threatening disease worldwide. Recent evidence indicates that blood coagulation factors promote renal dysfunction in CKD patients. Activated factor X (FXa) inhibitors are safe and first-line drugs for the prevention of thrombosis in patients with atrial fibrillation. Here, we investigated the therapeutic effects of edoxaban on CKD using the mouse 5/6 nephrectomy model. Eight-week-old wild-type mice were subjected to 5/6 nephrectomy surgery and randomly assigned to two groups, edoxaban or vehicle admixture diet. Edoxaban treatment led to reduction of urinary albumin excretion and plasma UN levels compared with vehicle group, which was accompanied with reduced glomerular cross-sectional area and cell number. Edoxaban treatment also attenuated fibrinogen positive area in the remnant kidneys after subtotal nephrectomy. Moreover, edoxaban treatment resulted in attenuated tubulointerstitial fibrosis after 5/6 nephrectomy, which was accompanied by reduced expression levels of epithelial-mesenchymal transition (EMT) markers, inflammatory mediators, and oxidative stress markers in the remnant kidneys. Treatment of cultured proximal tubular cells, HK-2 cells, with FXa protein led to increased expression levels of EMT markers, inflammatory mediators, and oxidative stress markers, which were abolished by pretreatment with edoxaban. Treatment of HK-2 cells with edoxaban attenuated FXa-stimulated phosphorylation levels of extracellular signal-regulated kinase (ERK) and NF-κB. Our findings indicate that edoxaban can improve renal injury after subtotal nephrectomy by reducing EMT and inflammatory response, suggesting that FXa inhibition could be a novel therapeutic target for CKD patients with atrial fibrillation.
Collapse
Affiliation(s)
- Lixin Fang
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hayato Ogawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Naoya Otaka
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroshi Kawanishi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomonobu Takikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuta Ozaki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kunihiko Takahara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Minako Tatsumi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
30
|
Hara T, Uemoto R, Sekine A, Mitsui Y, Masuda S, Kurahashi K, Yoshida S, Otoda T, Yuasa T, Kuroda A, Ikeda Y, Endo I, Honda S, Yoshimoto K, Kondo A, Tamaki T, Matsumoto T, Matsuhisa M, Abe M, Aihara K. Plasma heparin cofactor II activity is inversely associated with albuminuria and its annual deterioration in patients with diabetes. J Diabetes Investig 2021; 12:2172-2182. [PMID: 34043882 PMCID: PMC8668075 DOI: 10.1111/jdi.13602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022] Open
Abstract
AIMS/INTRODUCTION Thrombin exerts various pathophysiological functions by activating protease-activated receptors (PARs). Recent data have shown that PARs influence the development of glomerular diseases including diabetic kidney disease (DKD) by regulating inflammation. Heparin cofactor II (HCII) specifically inactivates thrombin; thus, we hypothesized that low plasma HCII activity correlates with DKD development, as represented by albuminuria. MATERIALS AND METHODS Plasma HCII activity and spot urine biomarkers, including albumin and liver-type fatty acid-binding protein (L-FABP), were determined as the urine albumin-to-creatinine ratio (uACR) and the urine L-FABP-to-creatinine ratio (uL-FABPCR) in 310 Japanese patients with diabetes mellitus (176 males and 134 females). The relationships between plasma HCII activities and those DKD urine biomarkers were statistically evaluated. In addition, the relationship between plasma HCII activities and annual uACR changes was statistically evaluated for 201/310 patients (115 males and 86 females). RESULTS The mean plasma HCII activity of all participants was 93.8 ± 17.7%. Multivariate-regression analysis including confounding factors showed that plasma HCII activity independently contributed to the suppression of the uACR and log-transformed uACR values (P = 0.036 and P = 0.006, respectively) but not uL-FABPCR (P = 0.541). In addition, plasma HCII activity significantly and inversely correlated with annual uACR and log-transformed uACR increments after adjusting for confounding factors (P = 0.001 and P = 0.014, respectively). CONCLUSIONS The plasma HCII activity was inversely and specifically associated with glomerular injury in patients with diabetes. The results suggest that HCII can serve as a novel predictive factor for early-stage DKD development, as represented by albuminuria.
Collapse
Affiliation(s)
- Tomoyo Hara
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Ryoko Uemoto
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Akiko Sekine
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yukari Mitsui
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Shiho Masuda
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Toshiki Otoda
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Tomoyuki Yuasa
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Akio Kuroda
- Diabetes Therapeutics and Research CenterInstitute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Yasumasa Ikeda
- Department of PharmacologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Itsuro Endo
- Department of Bioregulatory SciencesTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Soichi Honda
- Minami Municipal National Insurance HospitalMinami‐choJapan
| | - Katsuhiko Yoshimoto
- Department of Medical PharmacologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Kondo Naika HospitalTokushimaJapan
| | | | | | - Toshio Matsumoto
- Fujii Memorial Institute of Medical SciencesTokushima UniversityTokushimaJapan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research CenterInstitute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Ken‐ichi Aihara
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| |
Collapse
|
31
|
Oe Y, Miyazaki M, Takahashi N. Coagulation, Protease-Activated Receptors, and Diabetic Kidney Disease: Lessons from eNOS-Deficient Mice. TOHOKU J EXP MED 2021; 255:1-8. [PMID: 34511578 DOI: 10.1620/tjem.255.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) dysfunction is known to exacerbate the progression and prognosis of diabetic kidney disease (DKD). One of the mechanisms through which this is achieved is that low eNOS levels are associated with hypercoagulability, which promotes kidney injury. In the extrinsic coagulation cascade, the tissue factor (factor III) and downstream coagulation factors, such as active factor X (FXa), exacerbate inflammation through activation of the protease-activated receptors (PARs). Recently, it has been shown that the lack of or reduced eNOS expression in diabetic mice, as a model of advanced DKD, increases renal tissue factor levels and PAR1 and 2 expression in their kidneys. Furthermore, pharmaceutical inhibition or genetic deletion of coagulation factors or PARs ameliorated inflammation in DKD in mice lacking eNOS. In this review, we summarize the relationship between eNOS, coagulation, and PARs and propose a novel therapeutic option for the management of patients with DKD.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences
| |
Collapse
|
32
|
Humphries TLR, Shen K, Iyer A, Johnson DW, Gobe GC, Nikolic-Paterson D, Fairlie DP, Vesey DA. PAR2-Induced Tissue Factor Synthesis by Primary Cultures of Human Kidney Tubular Epithelial Cells Is Modified by Glucose Availability. Int J Mol Sci 2021; 22:ijms22147532. [PMID: 34299151 PMCID: PMC8304776 DOI: 10.3390/ijms22147532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Coagulopathies common to patients with diabetes and chronic kidney disease (CKD) are not fully understood. Fibrin deposits in the kidney suggest the local presence of clotting factors including tissue factor (TF). In this study, we investigated the effect of glucose availability on the synthesis of TF by cultured human kidney tubular epithelial cells (HTECs) in response to activation of protease-activated receptor 2 (PAR2). PAR2 activation by peptide 2f-LIGRLO-NH2 (2F, 2 µM) enhanced the synthesis and secretion of active TF (~45 kDa) which was blocked by a PAR2 antagonist (I-191). Treatment with 2F also significantly increased the consumption of glucose from the cell medium and lactate secretion. Culturing HTECs in 25 mM glucose enhanced TF synthesis and secretion over 5 mM glucose, while addition of 5 mM 2-deoxyglucose (2DOG) significantly decreased TF synthesis and reduced its molecular weight (~40 kDa). Blocking glycosylation with tunicamycin also reduced 2F-induced TF synthesis while reducing its molecular weight (~36 kDa). In conclusion, PAR2-induced TF synthesis in HTECs is enhanced by culture in high concentrations of glucose and suppressed by inhibiting either PAR2 activation (I-191), glycolysis (2DOG) or glycosylation (tunicamycin). These results may help explain how elevated concentrations of glucose promote clotting abnormities in diabetic kidney disease. The application of PAR2 antagonists to treat CKD should be investigated further.
Collapse
Affiliation(s)
- Tyrone L. R. Humphries
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
| | - Kunyu Shen
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.I.); (D.P.F.)
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland at the Translational Research Institute, Brisbane, QLD 4072, Australia
| | - David Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, VIC 3168, Australia;
| | - David P. Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.I.); (D.P.F.)
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Correspondence: ; Tel.: +61-7-3443-8013
| |
Collapse
|
33
|
Botto GL, Ameri P, De Caterina R. Many Good Reasons to Switch from Vitamin K Antagonists to Non-Vitamin K Antagonists in Patients with Non-Valvular Atrial Fibrillation. J Clin Med 2021; 10:jcm10132866. [PMID: 34203416 PMCID: PMC8268480 DOI: 10.3390/jcm10132866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) are the first choice for prophylaxis of cardioembolism in patients with non-valvular atrial fibrillation (AF) who are anticoagulant-naïve, as well as the preferable anticoagulation strategy in those who are on vitamin K antagonists (VKAs), but with a low time in therapeutic range (TTR). Nonetheless, there are many good reasons to consider switching from VKAs to NOACs also when TTR is >70%. From the pharmacological standpoint, anticoagulation with VKAs may remain erratic even in those patients who have high TTR values, owing to the mode of action of this drug class. Furthermore, experimental data suggest that, unlike VKAs, NOACs favorably modulate the effects of factor Xa and thrombin in the cardiovascular system through the protease-activated receptor family. Clinically, the most striking advantage provided by NOACs over VKAs, irrespective of the TTR, is the substantially lower risk of intracranial hemorrhage. NOACs have also been associated with less deterioration of renal function as compared with VKAs and may confer protection against cardiovascular events not strictly related to AF, especially the acute complications of peripheral artery disease. In this narrative review, we discuss the evidence according to which it is warranted to systematically substitute NOACs for VKAs for the prevention of AF-related stroke and systemic embolism.
Collapse
Affiliation(s)
- Giovanni Luca Botto
- Department of Cardiology—Electrophysiology, ASST Rhodense, Garbagnate Milanese, 20024 Milan, Italy; or
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- Correspondence: ; Tel.: +39-010-353-8928; Fax: +39-010-555-6513
| | - Raffaele De Caterina
- Division of Cardiology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy;
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, 65103 Pescara, Italy
| |
Collapse
|
34
|
Myeloid cell-derived coagulation tissue factor is associated with renal tubular damage in mice fed an adenine diet. Sci Rep 2021; 11:12159. [PMID: 34108522 PMCID: PMC8190319 DOI: 10.1038/s41598-021-91586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) commonly exhibit hypercoagulability. Increased levels of uremic toxins cause thrombogenicity by increasing tissue factor (TF) expression and activating the extrinsic coagulation cascade. TF is induced in monocytes and macrophages under pathological conditions, such as inflammatory diseases. However, the role of monocyte myeloid cell TF in CKD progression remains unclear. We aimed to clarify this issue, and the present study found that patients with CKD had elevated levels of D-dimer, a marker of fibrin degradation, which was associated with decreased estimated glomerular filtration rate and increased serum levels of uremic toxins, such as indoxyl sulfate. In vitro studies showed that several uremic toxins increased cellular TF levels in monocytic THP-1 cells. Mice with TF specifically deleted in myeloid cells were fed an adenine diet to cause uremic kidney injury. Myeloid TF deletion reduced tubular injury and pro-inflammatory gene expression in the kidneys of adenine-induced CKD but did not improve renal function as measured by plasma creatinine or blood urea nitrogen. Collectively, our findings suggest a novel concept of pathogenesis of coagulation-mediated kidney injury, in which elevated TF levels in monocytes under uremic conditions is partly involved in the development of CKD.
Collapse
|
35
|
Trindade F, Barros AS, Silva J, Vlahou A, Falcão-Pires I, Guedes S, Vitorino C, Ferreira R, Leite-Moreira A, Amado F, Vitorino R. Mining the Biomarker Potential of the Urine Peptidome: From Amino Acids Properties to Proteases. Int J Mol Sci 2021; 22:5940. [PMID: 34073067 PMCID: PMC8197949 DOI: 10.3390/ijms22115940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Native biofluid peptides offer important information about diseases, holding promise as biomarkers. Particularly, the non-invasive nature of urine sampling, and its high peptide concentration, make urine peptidomics a useful strategy to study the pathogenesis of renal conditions. Moreover, the high number of detectable peptides as well as their specificity set the ground for the expansion of urine peptidomics to the identification of surrogate biomarkers for extra-renal diseases. Peptidomics further allows the prediction of proteases (degradomics), frequently dysregulated in disease, providing a complimentary source of information on disease pathogenesis and biomarkers. Then, what does urine peptidomics tell us so far? In this paper, we appraise the value of urine peptidomics in biomarker research through a comprehensive analysis of all datasets available to date. We have mined > 50 papers, addressing > 30 different conditions, comprising > 4700 unique peptides. Bioinformatic tools were used to reanalyze peptide profiles aiming at identifying disease fingerprints, to uncover hidden disease-specific peptides physicochemical properties and to predict the most active proteases associated with their generation. The molecular patterns found in this study may be further validated in the future as disease biomarker not only for kidney diseases but also for extra-renal conditions, as a step forward towards the implementation of a paradigm of predictive, preventive and personalized (3P) medicine.
Collapse
Affiliation(s)
- Fábio Trindade
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - António S. Barros
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Jéssica Silva
- iBiMED—Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Inês Falcão-Pires
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Sofia Guedes
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Adelino Leite-Moreira
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Francisco Amado
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Rui Vitorino
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
- iBiMED—Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal;
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| |
Collapse
|
36
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
37
|
Iyer A, Humphries TLR, Owens EP, Zhao KN, Masci PP, Johnson DW, Nikolic-Paterson D, Gobe GC, Fairlie DP, Vesey DA. PAR2 Activation on Human Kidney Tubular Epithelial Cells Induces Tissue Factor Synthesis, That Enhances Blood Clotting. Front Physiol 2021; 12:615428. [PMID: 33776786 PMCID: PMC7987918 DOI: 10.3389/fphys.2021.615428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coagulation abnormalities and increased risk of atherothrombosis are common in patients with chronic kidney diseases (CKD). Mechanisms that alter renal hemostasis and lead to thrombotic events are not fully understood. Here we show that activation of protease activated receptor-2 (PAR2) on human kidney tubular epithelial cells (HTECs), induces tissue factor (TF) synthesis and secretion that enhances blood clotting. PAR-activating coagulation-associated protease (thrombin), as well as specific PAR2 activators (matriptase, trypsin, or synthetic agonist 2f-LIGRLO-NH2 (2F), induced TF synthesis and secretion that were potently inhibited by PAR2 antagonist, I-191. Thrombin-induced TF was also inhibited by a PAR1 antagonist, Vorapaxar. Peptide activators of PAR1, PAR3, and PAR4 failed to induce TF synthesis. Differential centrifugation of the 2F-conditoned medium sedimented the secreted TF, together with the exosome marker ALG-2 interacting protein X (ALIX), indicating that secreted TF was associated with extracellular vesicles. 2F-treated HTEC conditioned medium significantly enhanced blood clotting, which was prevented by pre-incubating this medium with an antibody for TF. In summary, activation of PAR2 on HTEC stimulates synthesis and secretion of TF that induces blood clotting, and this is attenuated by PAR2 antagonism. Thrombin-induced TF synthesis is at least partly mediated by PAR1 transactivation of PAR2. These findings reveal how underlying hemostatic imbalances might increase thrombosis risk and subsequent chronic fibrin deposition in the kidneys of patients with CKD and suggest PAR2 antagonism as a potential therapeutic strategy for intervening in CKD progression.
Collapse
Affiliation(s)
- Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tyrone L. R. Humphries
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
| | - Evan P. Owens
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kong-Nan Zhao
- Centre for Venomics Research, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Paul P. Masci
- Centre for Venomics Research, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - David Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, VIC, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - David P. Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
38
|
Ding Y, Li X, Zhou M, Cai L, Tang H, Xie T, Shi Z, Fu W. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation. Vascul Pharmacol 2021; 136:106818. [PMID: 33227452 DOI: 10.1016/j.vph.2020.106818] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Rivaroxaban is a specific factor Xa (FXa) inhibitor for venous thromboembolism treatment. Recently, increasing evidence have reported the beneficial effects of rivaroxaban on treating cardiovascular disorders such as coronary and peripheral artery disease. However, its potential influence on abdominal aortic aneurysm (AAA) remains unclear. This study aims to investigate whether rivaroxaban treatment could attenuate experimental AAA progression and its related mechanisms. APPROACHES AND RESULTS In human aneurysmal aorta, FXa protein expression was significantly upregulated. Further investigations identified a positive correlation among plasma FXa level, AAA severity (the maximal aortic diameter), and intra-aneurysmal thrombus percentage. In Ang II (angiotensin II)-infused ApoE-/- mice, the administration of high dose rivaroxaban (15 mg/kg/d) for 14 days significantly reduced the maximal aortic diameter, while low dose rivaroxaban (5 mg/kg/d) did not display such a protective role. Although rivaroxaban treatments reduced the incidence of AAA and thrombus formation, these differences did not reach statistical significance. Immunohistochemistry revealed a pronounced aortic remodeling including increased collagen content and enhanced elastin degradation in Ang II-induced AAAs, which was inhibited by high dose rivaroxaban treatment. Further analysis demonstrated that rivaroxaban exerted its protective effects by decreasing leukocyte infiltration, inflammatory cytokines expression, and matrix metalloproteinases (MMPs) expression in the aortic wall. The inhibitory effect of rivaroxaban on aneurysm development was also observed in calcium chloride-induced AAA model. Mechanistically, in human aortic endothelial cells, FXa stimulation increased the expression of inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-8, monocyte chemoattractant protein-1) and adhesive molecules, which were all reversed by the cotreatment of rivaroxaban. Subsequent monocyte-endothelial cell interaction was enhanced after FXa stimulation and was alleviated by rivaroxaban cotreatment. In addition, FXa induced a significantly heightened expression of MMP2 in human aortic endothelial cells, which was ameliorated by rivaroxaban coadministration. CONCLUSIONS Rivaroxaban attenuated both angiotensin II- and calcium chloride-induced abdominal aortic aneurysm (AAA) progressions, through inhibiting aortic remodeling and inflammation. Rivaroxaban could be a promising therapeutic agent in attenuating AAA development by counteracting FXa-induced aortic wall inflammation.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortitis/chemically induced
- Aortitis/metabolism
- Aortitis/pathology
- Aortitis/prevention & control
- Calcium Chloride
- Cell Adhesion Molecules/metabolism
- Cytokines/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Disease Progression
- Factor Xa Inhibitors/pharmacology
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Knockout, ApoE
- Retrospective Studies
- Rivaroxaban/pharmacology
- Signal Transduction
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Yong Ding
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Min Zhou
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Liang Cai
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Tianchen Xie
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China.
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Maruyama-Fumoto K, McGuire JJ, Fairlie DP, Shinozuka K, Kagota S. Activation of protease-activated receptor 2 is associated with blood pressure regulation and proteinuria reduction in metabolic syndrome. Clin Exp Pharmacol Physiol 2021; 48:211-220. [PMID: 33124085 DOI: 10.1111/1440-1681.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) increases the risk of kidney disease. In SHRSP.Z-Leprfa /IzmDmcr (SHRSP.ZF) rats with MetS, protease-activated receptor 2 (PAR2)-mediated vasorelaxation is preserved in the aorta at 20 weeks of age (weeks) via enhancement of nitric oxide production but impaired at 30 weeks by oxidative stress. However, impairment of PAR2-mediated vasorelaxation of renal arteries and its possible implications for kidney disease are unclear. We used organ baths to assess PAR2-mediated vasorelaxation of isolated renal arteries, colorimetric methods to measure urinary protein levels as an index of renal function, and western blot to determine expression of PAR2 and nephrin proteins in the kidneys of SHRSP.ZF rats at 10, 20, and 30 weeks. We assessed renal arteries and kidney function for effects of orally administered GB88, a pathway-dependent PAR2 antagonist, from 10 to 18 weeks, and azilsartan, an angiotensin II type 1 receptor blocker, from 13 to 23 weeks. PAR2-mediated vasorelaxation was slightly lower at 20 weeks and attenuated significantly at 30 weeks compared with those at 10 weeks. Urinary protein levels were increased at 20 and 30 weeks. Decreased protein expression of PAR2 and nephrin in the kidney were observed at 30 weeks. Administration of GB88 increased blood pressure (BP) and proteinuria. Azilsartan reduced the high BP and the impaired PAR2-mediated vasorelaxation, but did not restore the increase in urinary protein levels and decreased PAR2 and nephrin protein expression in the kidney. PAR2 activation in the kidney may be associated with maintenance of BP and urinary protein excretion in MetS.
Collapse
Affiliation(s)
- Kana Maruyama-Fumoto
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | - Kazumasa Shinozuka
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
40
|
Daci A, Da Dalt L, Alaj R, Shurdhiqi S, Neziri B, Ferizi R, Danilo Norata G, Krasniqi S. Rivaroxaban improves vascular response in LPS-induced acute inflammation in experimental models. PLoS One 2020; 15:e0240669. [PMID: 33301454 PMCID: PMC7728205 DOI: 10.1371/journal.pone.0240669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rivaroxaban (RVX) was suggested to possess anti-inflammatory and vascular tone modulatory effects. The goal of this study was to investigate whether RVX impacts lipopolysaccharide (LPS)-induced acute vascular inflammatory response. Male rats were treated with 5 mg/kg RVX (oral gavage) followed by 10 mg/kg LPS i.p injection. Circulating levels of IL-6, MCP-1, VCAM-1, and ICAM-1 were measured in plasma 6 and 24 hours after LPS injection, while isolated aorta was used for gene expression analysis, immunohistochemistry, and vascular tone evaluation. RVX pre-treatment significantly reduced LPS mediated increase after 6h and 24h for IL-6 (4.4±2.2 and 2.8±1.7 fold), MCP-1 (1.4±1.5 and 1.3±1.4 fold) VCAM-1 (1.8±2.0 and 1.7±2.1 fold). A similar trend was observed in the aorta for iNOS (5.5±3.3 and 3.3±1.9 folds reduction, P<0.01 and P<0.001, respectively), VCAM-1 (1.3±1.2 and 1.4±1.3 fold reduction, P<0.05), and MCP-1 (3.9±2.2 and 1.9±1.6 fold reduction, P<0.01). Moreover, RVX pre-treatment, improved LPS-induced PE contractile dysfunction in aortic rings (Control vs LPS, Emax reduction = 35.4 and 31.19%, P<0.001; Control vs LPS+RVX, Emax reduction = 10.83 and 11.48%, P>0.05, respectively), resulting in 24.5% and 19.7% change in maximal constriction in LPS and LPS+RVX respectively. These data indicate that RVX pre-treatment attenuates LPS-induced acute vascular inflammation and contractile dysfunction.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Lorenzo Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rame Alaj
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Shpejtim Shurdhiqi
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Burim Neziri
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Rrahman Ferizi
- Department of Premedical Courses-Biology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- * E-mail:
| |
Collapse
|
41
|
Abstract
Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug–drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125-1089, USA.
| |
Collapse
|
42
|
Humphries TLR, Johnson LA, Masci PP, Gobe GC, Vesey DA. Progress curve analysis of microtitre plate plasma clotting assays. Assessment of tissue factor levels. Anal Biochem 2020; 614:114060. [PMID: 33271154 DOI: 10.1016/j.ab.2020.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
MTP plasma clotting assays monitor the time course of fibrin formation in re-calcified plasma by absorbance measurements and are increasingly used as alternatives to traditional one-point clot time assays employed in clinical laboratories to detect thrombotic disorders. The parameters derived from these analyses are analogous to thromboelastography viz. time, rate and maximum extent of clot formation. The derived parameters, based on the whole course of the clotting reaction are more robust, informative and quantitative than single-point clot time assays. However, the parameters themselves are usually obtained arbitrarily by crude graphical analysis of subjectively selected points of progress curves. The current work aimed to investigate the sensitivity and reproducibility of an MTP clotting assay and examine its suitability for measuring tissue factor (TF) levels in cell culture medium and patient urine. The results demonstrate that progress curves can be analysed by fitting a logistic equation, derived from a simplified autocatalytic clot formation model. The parameters, maximum amplitude (Fm), rate constant (k), time to half-maximum amplitude (tm) and maximum rate of clot formation (vm), fit a power curve showing limiting effects with increasing TF concentration. Log/log plots of tm and k against TF concentration provide standard curves for assessment of unknowns.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Lambro A Johnson
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Paul P Masci
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
43
|
Oe Y, Mitsui S, Sato E, Shibata N, Kisu K, Sekimoto A, Miyazaki M, Sato H, Ito S, Takahashi N. Lack of Endothelial Nitric Oxide Synthase Accelerates Ectopic Calcification in Uremic Mice Fed an Adenine and High Phosphorus Diet. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:283-293. [PMID: 33159888 DOI: 10.1016/j.ajpath.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Ectopic calcification is a risk of cardiovascular disease in chronic kidney disease (CKD) patients, and impaired endothelial nitric oxide synthase (eNOS) is involved in the CKD complications. However, whether eNOS dysfunction is a cause of ectopic calcification in CKD remains to be elucidated. To address this issue, we investigated the role of eNOS in ectopic calcification in mice with renal injury caused by an adenine and high-phosphorus (Ade + HP) diet. DBA/2J mice, a calcification-sensitive strain, were fed Ade + HP for 3 weeks. Expression levels of eNOS-related genes were reduced significantly in their calcified aorta. C57BL/6J is a calcification-resistant strain, and wild-type mice showed mild calcified lesions in the aorta and kidney when given an Ade + HP diet for 4 weeks. In contrast, a lack of eNOS led to the development of severe aortic calcification accompanied by an increase in runt-related transcription factor 2, an osteochondrogenic marker. Increased renal calcium deposition and the tubular injury score were remarkable in mice lacking eNOS-fed Ade + HP. Exacerbation of ectopic calcification by a lack of eNOS is associated with increased oxidative stress markers such as nicotinamide adenine dinucleotide phosphate oxidases. In conclusion, eNOS is critically important in preventing ectopic calcification. Therefore, the maintenance of eNOS is useful to reduce cardiovascular disease events and to improve prognosis in CKD patients.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shohei Mitsui
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Emiko Sato
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Naoko Shibata
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyomi Kisu
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Sato
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Takahashi
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.
| |
Collapse
|
44
|
Iio A, Kaji K, Kaji N, Hori M, Yonezawa T, Momoi Y, Maeda S. Expression analysis of protease-activated receptor-2 in cats. Vet Immunol Immunopathol 2020; 229:110115. [PMID: 32932190 DOI: 10.1016/j.vetimm.2020.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Chronic kidney disease (CKD) is a common disease in geriatric cats. Despite its high prevalence, the pathogenesis of feline CKD is poorly understood. Recently, there has been increasing evidence for the role of protease-activated receptor-2 (PAR-2) in the progression of CKD in humans and rodents. However, the role of PAR-2 in feline CKD has not been evaluated. In this study, we determined nucleotide sequence of feline PAR-2 from the kidney, evaluated PAR-2 mRNA and protein expression in normal feline tissues, and analyzed functional expression in the feline kidney epithelial cell line Crandell-Rees Feline Kidney (CRFK). The open reading frame of feline PAR-2 comprised 1,194 bp and encoded 397 amino acids, showing 90%, 90%, and 85% identities to human, dog, and mouse PAR-2, respectively. In healthy cats, expression levels of the PAR-2 mRNA and protein were relatively higher in the gastrointestinal tract and kidney, and was lowest in the heart. The feline PAR-2 protein expression was confirmed, and stimulation of trypsin and PAR-2 agonists induced a prompt increase in the intracellular calcium ion concentration in CRFK cells. The present study will provide fundamental information for investigation of the involvement of PAR-2 in the pathogenesis of CKD in cats.
Collapse
Affiliation(s)
- Aki Iio
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenjiro Kaji
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
45
|
Yu Q, Yang X, Zhang C, Zhang X, Wang C, Chen L, Liu X, Gu Y, He X, Hu L, Liu WT, Li Y. AMPK activation by ozone therapy inhibits tissue factor-triggered intestinal ischemia and ameliorates chemotherapeutic enteritis. FASEB J 2020; 34:13005-13021. [PMID: 32776374 DOI: 10.1096/fj.201902717rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Chemotherapeutic enteritis is a major dose-limiting adverse reaction to chemotherapy, with few effective drugs in clinic. Intestinal ischemic injury plays prominent role in chemotherapeutic enteritis clinically. However, mechanism is not clear. In this article, irinotecan (CPT-11) was used to establish chemotherapeutic enteritis mice model. Western blotting, gelatin zymography, immunohistochemistry (IHC), Laser Doppler flowmetry (LDF) were used to detect the pathogenesis of ischemia-hypoxia injury. CPT-11 increased levels of tissue factor (TF) both in the blood and in intestines, and decreased the intestinal blood flow in mice. Interestingly, the elevation of TF in the blood displayed "double-peak," which was consistent with the intestinal mucosal "double-strike" injury trend. Intestinal microthrombus and mixed thrombus formation were detectable in chemotherapeutic enteritis. Furthermore, ozone therapy relieved chemotherapeutic enteritis in mice. Ozone inhibited TF expression induced by CPT-11 via activating AMPK/SOCS3, and effectively ameliorated the intestinal mucosal injury in mice. Moreover, ozone autotransfusion therapy effectively attenuated chemotherapeutic enteritis and the blood hypercoagulability in patients. For the first time, we proposed that TF-induced thrombotic intestinal ischemic injury is a core trigger pathological mechanism of chemotherapeutic enteritis, and provided a new treatment strategy, ozone therapy, to suppress TF expression and treat chemotherapeutic enteritis.
Collapse
Affiliation(s)
- Qingqing Yu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China.,Department of Oncology, Jining No.1 People's Hospital, Jining, P.R. China
| | - Xing Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China
| | - Chen Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaotao Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China.,Department of Radiation Oncology, Qingdao Central Hospital, Qingdao, P.R. China
| | - Chaoyu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China
| | - Lu Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaolin Liu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, P.R. China
| | - Yufeng Gu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China
| | - Xueming He
- Center for Clinical Research and Translational Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, P.R. China.,Institute of Translational Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China.,Department of Oncology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, P.R. China
| |
Collapse
|
46
|
Ichikawa H, Shimada M, Narita M, Narita I, Kimura Y, Tanaka M, Osanai T, Okumura K, Tomita H. Rivaroxaban, a Direct Factor Xa Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of the Inflammatory Response Mediated by Protease-Activated Receptor Pathway. J Am Heart Assoc 2020; 8:e012195. [PMID: 30957622 PMCID: PMC6507187 DOI: 10.1161/jaha.119.012195] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background An enhanced renin‐angiotensin system causes hypertensive renal damage. Factor Xa not only functions in the coagulation cascade but also activates intracellular signaling through protease‐activated receptors (PAR). We investigated the effects of rivaroxaban, a factor Xa inhibitor, on hypertensive renal damage in hypertensive mice overexpressing renin (Ren‐TG). Methods and Results The 12‐ to 16‐week‐old Ren‐TG and wild‐type mice were orally administered with or without 6 or 12 mg/kg of rivaroxaban for 1 or 4 months. Plasma factor Xa was significantly increased in the Ren‐TG compared with the wild‐type mice and was reduced by 12 mg/kg of rivaroxaban (P<0.05). Urinary albumin excretion (UAE) was higher in the nontreated 8‐month‐old Ren‐TG than in the wild‐type mice (69.6±29 versus 20.1±8.2 μg/day; P<0.01). Treatment with 12 mg/kg of rivaroxaban for 4 months decreased the UAE to 38.1±13.2 μg/day (P<0.01). Moreover, rivaroxaban treatment attenuated histologic changes of glomerular hypertrophy, mesangial matrix expansion, effacement of the podocyte foot process, and thickened glomerular basement membrane in the Ren‐TG. The renal expression of PAR‐2 was increased in the Ren‐TG, but was inhibited with rivaroxaban treatment. In vitro study using the human podocytes showed that the expressions of PAR‐2 and inflammatory genes and nuclear factor–‐κB activation were induced by angiotensin II stimulation, but were inhibited by rivaroxaban. PAR‐2 knockdown by small interfering RNA also attenuated the PAR‐2‐related inflammatory gene expressions. Conclusions These findings indicate that rivaroxaban exerts protective effects against angiotensin II–induced renal damage, partly through inhibition of the PAR‐2 signaling‐mediated inflammatory response.
Collapse
Affiliation(s)
- Hiroaki Ichikawa
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Michiko Shimada
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masato Narita
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Ikuyo Narita
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yoshihiro Kimura
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Makoto Tanaka
- 2 Department of Stroke and Cerebrovascular Medicine Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomohiro Osanai
- 3 Department of Nursing Science Hirosaki University Graduate School of Health Sciences Hirosaki Japan
| | - Ken Okumura
- 4 Division of Cardiology Saiseikai Kumamoto Hospital Kumamoto Japan
| | - Hirofumi Tomita
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan.,2 Department of Stroke and Cerebrovascular Medicine Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
47
|
Protease-activated receptor 2 contributes to placental development and fetal growth in mice. Thromb Res 2020; 193:173-179. [PMID: 32717642 DOI: 10.1016/j.thromres.2020.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) is activated by serine proteases such as coagulation tissue factor/VIIa complex, factor Xa or trypsin and is pro-angiogenic in several disease models. Impaired angiogenesis in placenta causes placental dysfunction and fetal growth restriction. PAR2 is expressed in the placenta trophoblast. However, the role of PAR2 in pregnancy remains unknown. OBJECTIVE The present study aimed to examine the role of PAR2 in placental development and fetal growth using a murine model. METHODS PAR2-/- or PAR2+/+ mice in the ICR background were used. Female PAR2-/- mice were mated with male PAR2-/- mice, and female PAR2+/+ mice were mated with male PAR2+/+ mice to obtain PAR2-/- and PAR2+/+ fetuses, respectively. The day a virginal plug was observed in the morning was determined as 0.5-day post-coitum (dpc). Pregnant mice were sacrificed on 13.5 or 18.5 dpc to collect samples. RESULTS A deficiency of PAR2 significantly reduced the fetal and placental weight and impaired placental labyrinth development in mice on 18.5 dpc. Collagen IV expression in placenta labyrinth was smaller in PAR2 knockout mice compared to that of wild-type mice. A deficiency of PAR2 also reduced the expression levels of genes related to angiogenesis and coagulation in placenta. CONCLUSION Our data suggest that PAR2 is required for fetal growth and angiogenesis in the placenta and is thus important for a normal pregnancy.
Collapse
|
48
|
Zhang B, Zhang XL, Zhang CY, Sun GB, Sun XB. Shenkang Injection protects against diabetic nephropathy in streptozotocin (STZ)-induced mice through enhancement of anti-oxidant and anti-inflammatory activities. CHINESE HERBAL MEDICINES 2020; 12:289-296. [PMID: 36119010 PMCID: PMC9476641 DOI: 10.1016/j.chmed.2020.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the protective effects and possible mechanisms of Shenkang Injection (SKI) on the diabetic nephropathy in streptozotocin-induced mice. Methods STZ with the feeding of high fat diet (HFD) was used to induce diabetic mice. The balb/c mice and diabetic mice were then randomly divided into five groups: (1) control group, (2) model group, (3) alprostadil (Alp, 1.5 μg/kg) group, (4) SKI (30 ml/kg) group, (5) Alp (1.5 μg/kg) + SKI (15 ml/kg) group. After six weeks' treatment, blood, urine and kidney tissues were collected for biochemical assay, ELISA assay, and pathological analysis. Results Diabetic mice exhibited evident manifestations of diabetic nephropathy (DN), as indicated by increased 24-h urine volume, urinary albumin and kidney weight index (P < 0.01), which could be attenuated by SKI treatment (P < 0.01). SKI was further found to improve abnormal morphology in glomerulus with increased glomerular volume and to decrease urinary N-acetyl-b-D-glucpsaminidase (NAG), β2-microglobulin (β2-MG), and kidney injury molecules-1 (KIM-1) levels (P < 0.05, P < 0.01). Plasma levels of anti-oxidant enzymes significantly reduced in the diabetic mice, and those decreases could be reversed by SKI and Alp treatments. Additionally, SKI obviously suppressed the diabetes-induced increases of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) (P < 0.01). Meanwhile, SKI was found to effectively attenuate the diabetes-induced coagulation dysfunction, as evidenced by lengthening prothrombin and thrombin time, and decreasing plasma levels of fibrinogen (FIB), 6-K-PGF1α and thromboxane B2 (TXB2) (P < 0.05, P < 0.01). With SKI and Alp combined treatment, the anti-oxidant activities and improvements of coagulation dysfunction were enhanced. Conclusion SKI possesses a remarkable property to prevent diabetic nephropathy. The improvements of kidney function and hypercoagulability by SKI were enhanced with Alp combined treatment. The molecular mechanisms underlying the protection of SKI against DN may be related to enhancing the anti-oxidant and anti-inflammatory activities, and improving the coagulation dysfunction.
Collapse
|
49
|
Mitsui S, Oe Y, Sekimoto A, Sato E, Hashizume Y, Yamakage S, Kumakura S, Sato H, Ito S, Takahashi N. Dual blockade of protease-activated receptor 1 and 2 additively ameliorates diabetic kidney disease. Am J Physiol Renal Physiol 2020; 318:F1067-F1073. [PMID: 32200667 DOI: 10.1152/ajprenal.00595.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protease-activated receptors (PARs) are coagulation protease targets, and they increase expression of inflammatory cytokines and chemokines in various diseases. Of all PARs, previous reports have shown that PAR1 or PAR2 inhibition is protective against diabetic glomerular injury. However, how PAR1 and PAR2 cooperatively contribute to diabetic kidney disease (DKD) pathogenesis and whether dual blockade of PARs is more effective in DKD remain elusive. To address this issue, male type I diabetic Akita mice heterozygous for endothelial nitric oxide synthase were used as a model of DKD. Mice (4 mo old) were divided into four treatment groups and administered vehicle, PAR1 antagonist (E5555, 60 mg·kg-1·day-1), PAR2 antagonist (FSLLRY, 3 mg·kg-1·day-1), or E5555 + FSLLRY for 4 wk. The results showed that the urinary albumin creatinine ratio was significantly reduced when both PAR1 and PAR2 were blocked with E5555 + FSLLRY compared with the vehicle-treated group. Dual blockade of PAR1 and PAR2 by E5555 + FSLLRY additively ameliorated histological injury, including mesangial expansion, glomerular macrophage infiltration, and collagen type IV deposition. Marked reduction of inflammation- and fibrosis-related gene expression in the kidney was also observed. In vitro, PAR1 and PAR2 agonists additively increased mRNA expression of macrophage chemoattractant protein 1 or plasminogen activator inhibitor-1 in human endothelial cells. Changes induced by the PAR1 agonist were blocked by a NF-κB inhibitor, whereas those of the PAR2 agonist were blocked by MAPK and/or NF-κB inhibitors. These findings suggest that PAR1 and PAR2 additively contribute to DKD pathogenesis and that dual blockade of both could be a novel therapeutic option for treatment of patients with DKD.
Collapse
Affiliation(s)
- Shohei Mitsui
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Yuji Oe
- Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yamato Hashizume
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan
| | - Shu Yamakage
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Kumakura
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Sendai, Japan.,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
50
|
Kanazawa N, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T, Iseri K, Shibata T. Therapeutic Potential of Thrombomodulin in Renal Fibrosis of Nephrotoxic Serum Nephritis in Wistar-Kyoto Rats. Kidney Blood Press Res 2020; 45:391-406. [PMID: 32146474 DOI: 10.1159/000506286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recombinant human soluble thrombomodulin (rhTM) was approved in 2008 and has been used for treatment of disseminated intravascular coagulation in Japan. The antifibrotic effects of rhTM in acute exacerbation of idiopathic pulmonary fibrosis are well established, but the therapeutic potential of rhTM in renal fibrosis remains poorly understood. METHODS Nephrotoxic serum nephritis (NTS-N) was induced in 22 female Wistar-Kyoto (WKY) rats on day 0. Rats were administered either rhTM or vehicle intraperitoneally, every day from day 4 to day 55. Rats were sacrificed on day 56 when renal fibrosis was established and renal morphological investigations were performed. In vitro, rat renal fibroblasts (NRK-49F) were pretreated with rhTM or saline, and expression levels of profibrogenic gene induced by thrombin were analyzed by real-time reverse transcription polymerase chain reaction. RESULTS Compared to WKY-GN-vehicle rats, the body weights of WKY-GN-rhTM rats were significantly greater on day 55. By day 56, rhTM had significantly reduced serum creatinine levels in NTS-N. On the other hand, urinary protein excretion was comparable between the two treatment groups throughout the study. The percentage of Masson trichrome-positive areas in WKY-GN-rhTM rats was significantly lower compared to that in WKY-GN-vehicle rats. Glomerular fibrin deposition was significantly reduced in WKY-GN-rhTM rats. In addition, rhTM significantly reduced the renal cortical mRNA expression levels of TNF-α, Toll-like receptor 4, MYD88, TGF-β, αSMA, collagen I, collagen III, fibronectin, and protease-activated receptor 1 (PAR1), a thrombin receptor. In vitro, thrombin stimulation of NRK-49F cells significantly enhanced the mRNA expression levels of αSMA and PAR1, and these upregulations were significantly reduced by pretreatment with rhTM. CONCLUSIONS Administration of rhTM after establishment of crescentic glomerulonephritis (GN) attenuated the subsequent development of renal fibrosis in NTS-N, possibly in part by inhibiting thrombin-mediated fibrogenesis. Our results suggest that rhTM may offer a therapeutic option for limiting the progression of chronic kidney disease in crescentic GN.
Collapse
Affiliation(s)
- Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan,
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|