1
|
Mondal DK, Xie C, Pascal GJ, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2317760121. [PMID: 38652741 PMCID: PMC11067011 DOI: 10.1073/pnas.2317760121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Dipon K. Mondal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Christopher Xie
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Gabriel J. Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
2
|
Safari Z, Sadeghizadeh M, Zavaran Hosseini A, Hazrati A, Soudi S. Intra-abdominal transplantation of PLGA/PCL/M13 phage electrospun scaffold induces self-assembly of lymphoid tissue-like structure. Biomed Pharmacother 2024; 173:116382. [PMID: 38460368 DOI: 10.1016/j.biopha.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Lymphoid organs are the main structural components of the immune system. In the current research, the mixture of poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), and M13 phage or its RGD-modified form was used in the construction of a fibrillar scaffold using the electrospinning method. The constructs were transplanted intra-abdominally and examined for the formation of lymphoid-like tissues at different time intervals. The confocal and scanning electron microscopy demonstrate that M13 phage-containing scaffolds provide a suitable environment for lymph node-isolated fibroblasts. Morphological analysis demonstrate the formation of lymph node-like tissues in the M13 phage-containing scaffolds after transplantation. Histological analysis confirm both blood and lymph angiogenesis in the implanted construct and migration of inflammatory cells to the M13 phage-containing scaffolds. In addition, flow cytometry and immunohistochemistry analysis showed the homing and compartmentalization of dendritic cells (DCs), B and T lymphocytes within the PLGA/PCL/M13 phage-RGD based scaffolds and similar to what is seen in the mouse lymphoid tissues. It seems that the application of M13 phage could improve the generation of functional lymphoid tissues in the electrospun scaffolds and could be used for lymphoid tissue regeneration.
Collapse
Affiliation(s)
- Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Saha S, Fan F, Alderfer L, Graham F, Hall E, Hanjaya-Putra D. Synthetic hyaluronic acid coating preserves the phenotypes of lymphatic endothelial cells. Biomater Sci 2023; 11:7346-7357. [PMID: 37789798 PMCID: PMC10628678 DOI: 10.1039/d3bm00873h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Lymphatic endothelial cells (LECs) play a critical role in the formation and maintenance of the lymphatic vasculature, which is essential for the immune system, fluid balance, and tissue repair. However, LECs are often difficult to study in vivo and in vitro models that accurately mimic their behaviors and phenotypes are limited. In particular, LECs have been shown to lose their lymphatic markers over time while being cultured in vitro, which reflect their plasticity and heterogeneity in vivo. Since LECs uniquely express lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), we hypothesized that surface coating with hyaluronic acid (HA) can preserve LEC phenotypes and functionalities. Dopamine conjugated hyaluronic acid (HA-DP) was synthesized with 42% degree of substitution to enable surface modification and conjugation onto standard tissue culture plates. Compared to fibronectin coating and tissue culture plate controls, surface coating with HA-DP was able to preserve lymphatic markers, such as prospero homeobox protein 1 (Prox1), podoplanin (PDPN), and LYVE-1 over several passages in vitro. LECs cultured on HA-DP expressed lower levels of focal adhesion kinase (FAK) and YAP/TAZ, which may be responsible for the maintenance of the lymphatic characteristics. Collectively, the HA-DP coating may provide a novel method for culturing human LECs in vitro toward more representative studies in basic lymphatic biology and lymphatic regeneration.
Collapse
Affiliation(s)
- Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Francine Graham
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Hägerling R, Van Zanten M, Behncke RY, Ulferts S, Hansmeier NR, Märkl B, Witzel C, Ho B, Keeley V, Riches K, Mansour S, Gordon K, Ostergaard P, Mortimer PS. Erythematous capillary-lymphatic malformations mimicking blood vascular anomalies. JCI Insight 2023; 8:e172179. [PMID: 37698920 PMCID: PMC10619487 DOI: 10.1172/jci.insight.172179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Superficial erythematous cutaneous vascular malformations are assumed to be blood vascular in origin, but cutaneous lymphatic malformations can contain blood and appear red. Management may be different and so an accurate diagnosis is important. Cutaneous malformations were investigated through 2D histology and 3D whole-mount histology. Two lesions were clinically considered as port-wine birthmarks and another 3 lesions as erythematous telangiectasias. The aims were (i) to demonstrate that cutaneous erythematous malformations including telangiectasia can represent a lymphatic phenotype, (ii) to determine if lesions represent expanded but otherwise normal or malformed lymphatics, and (iii) to determine if the presence of erythrocytes explained the red color. Microscopy revealed all lesions as lymphatic structures. Port-wine birthmarks proved to be cystic lesions, with nonuniform lymphatic marker expression and a disconnected lymphatic network suggesting a lymphatic malformation. Erythematous telangiectasias represented expanded but nonmalformed lymphatics. Blood within lymphatics appeared to explain the color. Blood-lymphatic shunts could be detected in the erythematous telangiectasia. In conclusion, erythematous cutaneous capillary lesions may be lymphatic in origin but clinically indistinguishable from blood vascular malformations. Biopsy is advised for correct phenotyping and management. Erythrocytes are the likely explanation for color accessing lymphatics through lympho-venous shunts.
Collapse
Affiliation(s)
- René Hägerling
- Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Malou Van Zanten
- Molecular and Clinical Sciences Institute, St George’s University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rose Yinghan Behncke
- Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Sascha Ulferts
- Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Nils R. Hansmeier
- Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bruno Märkl
- Institute of Pathology and Molecular Diagnostics, University Clinic Augsburg, Augsburg, Germany
| | - Christian Witzel
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernard Ho
- Dermatology and Lymphovascular Medicine, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Vaughan Keeley
- Lymphoedema Clinic, Derby Hospitals Foundation NHS Trust, Derby, United Kingdom
| | - Katie Riches
- Lymphoedema Clinic, Derby Hospitals Foundation NHS Trust, Derby, United Kingdom
| | - Sahar Mansour
- Molecular and Clinical Sciences Institute, St George’s University of London, London, United Kingdom
- SW Thames Regional Centre for Genomics, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Kristiana Gordon
- Molecular and Clinical Sciences Institute, St George’s University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St George’s University of London, London, United Kingdom
| | - Peter S. Mortimer
- Molecular and Clinical Sciences Institute, St George’s University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Tsukiji N, Suzuki-Inoue K. Impact of Hemostasis on the Lymphatic System in Development and Disease. Arterioscler Thromb Vasc Biol 2023; 43:1747-1754. [PMID: 37534465 DOI: 10.1161/atvbaha.123.318824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Lymphatic vessels form a systemic network that maintains interstitial fluid homeostasis and regulates immune responses and is strictly separated from the circulatory system. During embryonic development, lymphatic endothelial cells originate from blood vascular endothelial cells in the cardinal veins and form lymph sacs. Platelets are critical for separating lymph sacs from the cardinal veins through interactions between CLEC-2 (C-type lectin-like receptor-2) and PDPN (podoplanin) in lymphatic endothelial cells. Therefore, deficiencies of these genes cause blood-filled lymphatic vessels, leading to abnormal lymphatic vessel maturation. The junction between the thoracic duct and the subclavian vein has valves and forms physiological thrombi dependent on CLEC-2/PDPN signaling to prevent blood backflow into the thoracic duct. In addition, platelets regulate lymphangiogenesis and maintain blood/lymphatic separation in pathological conditions, such as wound healing and inflammatory diseases. More recently, it was reported that the entire hemostatic system is involved in lymphangiogenesis. Thus, the hemostatic system plays a crucial role in the establishment, maintenance, and rearrangement of lymphatic networks and contributes to body fluid homeostasis, which suggests that the hemostatic system is a potential target for treating lymphatic disorders. This review comprehensively summarizes the role of the hemostatic system in lymphangiogenesis and lymphatic vessel function and discusses challenges and future perspectives.
Collapse
Affiliation(s)
- Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Japan
| |
Collapse
|
7
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
8
|
Fuseya S, Izumi H, Hamano A, Murakami Y, Suzuki R, Koiwai R, Hayashi T, Kuno A, Takahashi S, Kudo T. Reduction in disialyl-T antigen levels in mice deficient for both St6galnac3 and St6galnac4 results in blood filling of lymph nodes. Sci Rep 2023; 13:10582. [PMID: 37386100 PMCID: PMC10310836 DOI: 10.1038/s41598-023-37363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Sialic acid (SA) is present at the terminal ends of carbohydrate chains in glycoproteins and glycolipids and is involved in various biological phenomena. The biological function of the disialyl-T (SAα2-3Galβ1-3(SAα2-6)GalNAcα1-O-Ser/Thr) structure is largely unknown. To elucidate the role of disialyl-T structure and determine the key enzyme from the N-acetylgalactosaminide α2,6-sialyltransferase (St6galnac) family involved in its in vivo synthesis, we generated St6galnac3- and St6galnac4-deficient mice. Both single-knockout mice developed normally without any prominent phenotypic abnormalities. However, the St6galnac3::St6galnact4 double knockout (DKO) mice showed spontaneous hemorrhage of the lymph nodes (LN). To identify the cause of bleeding in the LN, we examined podoplanin, which modifies the disialyl-T structures. The protein expression of podoplanin in the LN of DKO mice was similar to that in wild-type mice. However, the reactivity of MALII lectin, which recognizes disialyl-T, in podoplanin immunoprecipitated from DKO LN was completely abolished. Moreover, the expression of vascular endothelial cadherin was reduced on the cell surface of high endothelial venule (HEV) in the LN, suggesting that hemorrhage was caused by the structural disruption of HEV. These results suggest that podoplanin possesses disialyl-T structure in mice LN and that both St6galnac3 and St6galnac4 are required for disialyl-T synthesis.
Collapse
Affiliation(s)
- Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Hiroyuki Izumi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayane Hamano
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuka Murakami
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Rikako Koiwai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
9
|
Lim SE, Joseph MD, de Winde CM, Acton SE, Simoncelli S. Quantitative single molecule analysis of podoplanin clustering in fibroblastic reticular cells uncovers CD44 function. Open Biol 2023; 13:220377. [PMID: 37161290 PMCID: PMC10170195 DOI: 10.1098/rsob.220377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
Upon initial immune challenge, dendritic cells (DCs) migrate to lymph nodes and interact with fibroblastic reticular cells (FRCs) via C-type lectin-like receptor 2 (CLEC-2). CLEC-2 binds to the membrane glycoprotein podoplanin (PDPN) on FRCs, inhibiting actomyosin contractility through the FRC network and permitting lymph node expansion. The hyaluronic acid receptor CD44 is known to be required for FRCs to respond to DCs but the mechanism of action is not fully elucidated. Here, we use DNA-PAINT, a quantitative single molecule super-resolution technique, to visualize and quantify how PDPN clustering is regulated in the plasma membrane of FRCs. Our results indicate that CLEC-2 interaction leads to the formation of large PDPN clusters (i.e. more than 12 proteins per cluster) in a CD44-dependent manner. These results suggest that CD44 expression is required to stabilize large pools of PDPN at the membrane of FRCs upon CLEC-2 interaction, revealing the molecular mechanism through which CD44 facilitates cellular crosstalk between FRCs and DCs.
Collapse
Affiliation(s)
- Shu En Lim
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Megan D. Joseph
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Charlotte M. de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sabrina Simoncelli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| |
Collapse
|
10
|
Hsiao HY, Mackert GA, Chang YC, Liu JW, Chang FCS, Huang JJ. In vivo vascularized scaffold with different shear-exposed models for lymphatic tissue regeneration. J Tissue Eng 2023; 14:20417314231196212. [PMID: 37661967 PMCID: PMC10472829 DOI: 10.1177/20417314231196212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Current clinical treatments on lymphedema provide promising results, but also result in donor site morbidities. The establishment of a microenvironment optimized for lymphangiogenesis can be an alternative way to enhance lymphatic tissue formation. Hemodynamic flow stimuli have been confirmed to have an influential effect on angiogenesis in tissue engineering, but not on lymphatic vessel formation. Here, the three in vivo scaffolds generated from different blood stimuli in the subcutaneous layer, in the flow through pedicle, and in an arterio-venous (AV) loop model, were created to investigate potential of lymphangiogenesis of scaffolds containing lymphatic endothelial cells (LECs). Our results indicated that AV loop model displayed better lymphangiogenesis in comparison to the other two models with slower flow or no stimuli. Other than hemodynamic force, the supplement of LECs is required for lymphatic vessel regeneration. The in vivo scaffold generated from AV loop model provides an effective approach for engineering lymphatic tissue in the clinical treatment of lymphedema.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Department of Biomedical Sciences, Chang Gung University, Taoyuan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| | - Gina Alicia Mackert
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Department of Hand and Plastic Surgery, University of Heidelberg, Ludwigshafen, Germany
| | - Yung-Chun Chang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| | - Jia-Wei Liu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| | - Frank Chun-Shin Chang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
- College of Medicine, Chang Gung University, Taoyuan
| | - Jung-Ju Huang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
- College of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
11
|
He Y, Kim J, Tacconi C, Moody J, Dieterich LC, Anzengruber F, Maul JT, Gousopoulos E, Restivo G, Levesque MP, Lindenblatt N, Shin JW, Hon CC, Detmar M. Mediators of Capillary-to-Venule Conversion in the Chronic Inflammatory Skin Disease Psoriasis. J Invest Dermatol 2022; 142:3313-3326.e13. [PMID: 35777499 DOI: 10.1016/j.jid.2022.05.1089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and hyperkeratosis, immune cell infiltration and vascular remodeling. Despite the emerging recognition of vascular normalization as a potential strategy for managing psoriasis, an in-depth delineation of the remodeled dermal vasculature has been missing. In this study, we exploited 5' single-cell RNA sequencing to investigate the transcriptomic alterations in different subpopulations of blood vascular and lymphatic endothelial cells directly isolated from psoriatic and healthy human skin. Individual subtypes of endothelial cells underwent specific molecular repatterning associated with cell adhesion and extracellular matrix organization. Blood capillaries, in particular, showed upregulation of the melanoma cell adhesion molecule as well as its binding partners and adopted postcapillary venule‒like characteristics during chronic inflammation that are more permissive to leukocyte transmigration. We also identified psoriasis-specific interactions between cis-regulatory enhancers and promoters for each endothelial cell subtype, revealing the dysregulated gene regulatory networks in psoriasis. Together, our results provide more insights into the specific transcriptional responses and epigenetic signatures of endothelial cells lining different vessel compartments in chronic skin inflammation.
Collapse
Affiliation(s)
- Yuliang He
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland; Department of Biosciences, University of Milan, Milan, Italy
| | - Jonathan Moody
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland; Department of Internal Medicine - Dermatology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | | | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital, Zürich, Switzerland
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Chung-Chau Hon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Jeong DP, Hall E, Neu E, Hanjaya-Putra D. Podoplanin is Responsible for the Distinct Blood and Lymphatic Capillaries. Cell Mol Bioeng 2022; 15:467-478. [PMID: 36444348 PMCID: PMC9700554 DOI: 10.1007/s12195-022-00730-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
Abstract
Introduction
Controlling the formation of blood and lymphatic vasculatures is crucial for engineered tissues. Although the lymphatic vessels originate from embryonic blood vessels, the two retain functional and physiological differences even as they develop in the vicinity of each other. This suggests that there is a previously unknown molecular mechanism by which blood (BECs) and lymphatic endothelial cells (LECs) recognize each other and coordinate to generate distinct capillary networks.
Methods
We utilized Matrigel and fibrin assays to determine how cord-like structures (CLS) can be controlled by altering LEC and BEC identity through podoplanin (PDPN) and folliculin (FLCN) expressions. We generated BECΔFLCN and LECΔPDPN, and observed cell migration to characterize loss lymphatic and blood characteristics due to respective knockouts.
Results
We observed that LECs and BECs form distinct CLS in Matrigel and fibrin gels despite being cultured in close proximity with each other. We confirmed that the LECs and BECs do not recognize each other through paracrine signaling, as proliferation and migration of both cells were unaffected by paracrine signals. On the other hand, we found PDPN to be the key surface protein that is responsible for LEC-BEC recognition, and LECs lacking PDPN became pseudo-BECs and vice versa. We also found that FLCN maintains BEC identity through downregulation of PDPN.
Conclusions
Overall, these observations reveal a new molecular pathway through which LECs and BECs form distinct CLS through physical contact by PDPN which in turn is regulated by FLCN, which has important implications toward designing functional engineered tissues.
Collapse
|
13
|
Individual and joint effects of borderline ankle-brachial index and high plasma total homocysteine on all-cause death in hypertensive adults. J Geriatr Cardiol 2022; 19:522-530. [PMID: 35975022 PMCID: PMC9361165 DOI: 10.11909/j.issn.1671-5411.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The cardiovascular hazards of total homocysteine (tHcy) are long known. In addition, despite the acknowledgment on the importance of low ankle-brachial index (ABI) (< 0.9), borderline ABI (0.91-0.99) was once commonly overlooked. This study aims to explore the independent and joint effect of tHcy level and borderline ABI on all-cause death in hypertensive population. METHODS This study included 10,538 participants from China H-type Hypertension Registry Study. ABI was described into two groups: normal ABI (1.00-1.40) and borderline ABI. tHcy level was also divided into two groups: < 15.02 and ≥ 15.02 μmo/L. Four groups were analyzed, using COX proportional hazard regression model, separately and pairwise to observe the independent and joint effect on all-cause death. RESULTS A total of 126 (1.2%) deaths were observed in the 1.7 years follow-up time. Borderline ABI has a higher predicted risk of death than normal ABI (HR = 1.87, 95%CI: 1.17-3.00) after adjusting for potential covariates. Compare with tHcy level < 15.02 μmo/L (low tHcy), those with tHcy ≥ 15.02 μmo/L (high tHcy) had higher risk to event outcome (HR = 1.99, 95% CI: 1.30-3.05). According to the cumulative hazard curve, group with borderline ABI and high tHcy level has significantly higher altitude and larger increasing rate over follow-up period compare to other groups. Among those with borderline ABI, participants with high tHcy had higher death risk than those with low tHcy, nevertheless, no significant different between borderline and normal ABI among those with low tHcy levels. CONCLUSIONS Borderline ABI and tHcy level both have independent predictive value on all-cause death. The combined group of borderline ABI and high tHcy has highest risk factor of outcomes, which suggested the mutual additive value of borderline ABI and tHcy. More attention should be given to the importance of borderline ABI in hypertensive population, especially with elevated tHcy level.
Collapse
|
14
|
Immunomodulatory Responses of Subcapsular Sinus Floor Lymphatic Endothelial Cells in Tumor-Draining Lymph Nodes. Cancers (Basel) 2022; 14:cancers14153602. [PMID: 35892863 PMCID: PMC9330828 DOI: 10.3390/cancers14153602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor-draining lymph nodes (LNs), composed of lymphocytes, antigen-presenting cells, and stromal cells, are highly relevant for tumor immunity and the efficacy of immunotherapies. Lymphatic endothelial cells (LECs) represent an important stromal cell type within LNs, and several distinct subsets of LECs that interact with various immune cells and regulate immune responses have been identified. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize LECs from LNs draining B16F10 melanomas compared to non-tumor-draining LNs. Several upregulated genes with immune-regulatory potential, especially in LECs lining the subcapsular sinus floor (fLECs), were identified and validated. Interestingly, some of these genes, namely, podoplanin, CD200, and BST2, affected the adhesion of macrophages to LN LECs in vitro. Congruently, lymphatic-specific podoplanin deletion led to a decrease in medullary sinus macrophages in tumor-draining LNs in vivo. In summary, our data show that tumor-derived factors induce transcriptional changes in LECs of the draining LNs, especially the fLECs, and that these changes may affect tumor immunity. We also identified a new function of podoplanin, which is expressed on all LECs, in mediating macrophage adhesion to LECs and their correct localization in LN sinuses.
Collapse
|
15
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Hsu M, Laaker C, Madrid A, Herbath M, Choi YH, Sandor M, Fabry Z. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat Immunol 2022; 23:581-593. [PMID: 35347285 PMCID: PMC8989656 DOI: 10.1038/s41590-022-01158-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Andy Madrid
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun Hwa Choi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
The Role of Podoplanin in Skin Diseases. Int J Mol Sci 2022; 23:ijms23031310. [PMID: 35163233 PMCID: PMC8836045 DOI: 10.3390/ijms23031310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/05/2023] Open
Abstract
Podoplanin is a sialomucin-like type I transmembrane receptor glycoprotein that is expressed specifically in lymphatic vessels, sebaceous glands, and hair follicles in normal skin. However, under pathological conditions podoplanin expression is upregulated in various cells, such as keratinocytes, fibroblasts, tumor cells, and inflammatory cells, and plays pivotal roles in different diseases. In psoriasis, podoplanin expression is induced in basal keratinocytes via the JAK-STAT pathway and contributes toward epidermal hyperproliferation. Podoplanin expression on keratinocytes can also promote IL-17 secretion from lymphocytes, promoting chronic inflammation. During wound healing, the podoplanin/CLEC-2 interaction between keratinocytes and platelets regulates re-epithelialization at the wound edge. In skin cancers, podoplanin expresses on tumor cells and promotes their migration and epithelial-mesenchymal transition, thereby accelerating invasion and metastasis. Podoplanin is also expressed in normal peritumoral cells, such as cancer-associated fibroblasts in melanoma and keratinocytes in extramammary Paget's disease, which promote tumor progression and predict aggressive behavior and poor prognosis. This review provides an overview of our current understanding of the mechanisms via which podoplanin mediates these pathological skin conditions.
Collapse
|
18
|
An RNA helicase swirls in lymphangiogenesis. Nat Cell Biol 2021; 23:1109-1110. [PMID: 34750580 DOI: 10.1038/s41556-021-00789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Front Cell Neurosci 2021; 15:683676. [PMID: 34248503 PMCID: PMC8261156 DOI: 10.3389/fncel.2021.683676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
20
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
21
|
Paulson D, Harms R, Ward C, Latterell M, Pazour GJ, Fink DM. Loss of Primary Cilia Protein IFT20 Dysregulates Lymphatic Vessel Patterning in Development and Inflammation. Front Cell Dev Biol 2021; 9:672625. [PMID: 34055805 PMCID: PMC8160126 DOI: 10.3389/fcell.2021.672625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Microenvironmental signals produced during development or inflammation stimulate lymphatic endothelial cells to undergo lymphangiogenesis, in which they sprout, proliferate, and migrate to expand the vascular network. Many cell types detect changes in extracellular conditions via primary cilia, microtubule-based cellular protrusions that house specialized membrane receptors and signaling complexes. Primary cilia are critical for receipt of extracellular cues from both ligand-receptor pathways and physical forces such as fluid shear stress. Here, we report the presence of primary cilia on immortalized mouse and primary adult human dermal lymphatic endothelial cells in vitro and on both luminal and abluminal domains of mouse corneal, skin, and mesenteric lymphatic vessels in vivo. The purpose of this study was to determine the effects of disrupting primary cilia on lymphatic vessel patterning during development and inflammation. Intraflagellar transport protein 20 (IFT20) is part of the transport machinery required for ciliary assembly and function. To disrupt primary ciliary signaling, we generated global and lymphatic endothelium-specific IFT20 knockout mouse models and used immunofluorescence microscopy to quantify changes in lymphatic vessel patterning at E16.5 and in adult suture-mediated corneal lymphangiogenesis. Loss of IFT20 during development resulted in edema, increased and more variable lymphatic vessel caliber and branching, as well as red blood cell-filled lymphatics. We used a corneal suture model to determine ciliation status of lymphatic vessels during acute, recurrent, and tumor-associated inflammatory reactions and wound healing. Primary cilia were present on corneal lymphatics during all of the mechanistically distinct lymphatic patterning events of the model and assembled on lymphatic endothelial cells residing at the limbus, stalk, and vessel tip. Lymphatic-specific deletion of IFT20 cell-autonomously exacerbated acute corneal lymphangiogenesis resulting in increased lymphatic vessel density and branching. These data are the first functional studies of primary cilia on lymphatic endothelial cells and reveal a new dimension in regulation of lymphatic vascular biology.
Collapse
Affiliation(s)
- Delayna Paulson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Rebecca Harms
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Cody Ward
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Mackenzie Latterell
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Darci M. Fink
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
- *Correspondence: Darci M. Fink,
| |
Collapse
|
22
|
Dieterich LC, Tacconi C, Menzi F, Proulx ST, Kapaklikaya K, Hamada M, Takahashi S, Detmar M. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis 2020; 23:411-423. [PMID: 32307629 PMCID: PMC7311381 DOI: 10.1007/s10456-020-09721-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
MAFB is a transcription factor involved in the terminal differentiation of several cell types, including macrophages and keratinocytes. MAFB is also expressed in lymphatic endothelial cells (LECs) and is upregulated by VEGF-C/VEGFR-3 signaling. Recent studies have revealed that MAFB regulates several genes involved in lymphatic differentiation and that global Mafb knockout mice show defects in patterning of lymphatic vessels during embryogenesis. However, it has remained unknown whether this effect is LEC-intrinsic and whether MAFB might also be involved in postnatal lymphangiogenesis. We established conditional, lymphatic-specific Mafb knockout mice and found comparable lymphatic patterning defects during embryogenesis as in the global MAFB knockout. Lymphatic MAFB deficiency resulted in increased lymphatic branching in the diaphragm at P7, but had no major effect on lymphatic patterning or function in healthy adult mice. By contrast, tumor-induced lymphangiogenesis was enhanced in mice lacking lymphatic MAFB. Together, these data reveal that LEC-expressed MAFB is involved in lymphatic vascular morphogenesis during embryonic and postnatal development as well as in pathological conditions. Therefore, MAFB could represent a target for therapeutic modulation of lymphangiogenesis.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Franziska Menzi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Kübra Kapaklikaya
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland.
- ETH Zurich, HCI H303, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
23
|
Jafree DJ, Long DA. Beyond a Passive Conduit: Implications of Lymphatic Biology for Kidney Diseases. J Am Soc Nephrol 2020; 31:1178-1190. [PMID: 32295825 DOI: 10.1681/asn.2019121320] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kidney contains a network of lymphatic vessels that clear fluid, small molecules, and cells from the renal interstitium. Through modulating immune responses and via crosstalk with surrounding renal cells, lymphatic vessels have been implicated in the progression and maintenance of kidney disease. In this Review, we provide an overview of the development, structure, and function of lymphatic vessels in the healthy adult kidney. We then highlight the contributions of lymphatic vessels to multiple forms of renal pathology, emphasizing CKD, transplant rejection, and polycystic kidney disease and discuss strategies to target renal lymphatics using genetic and pharmacologic approaches. Overall, we argue the case for lymphatics playing a fundamental role in renal physiology and pathology and treatments modulating these vessels having therapeutic potential across the spectrum of kidney disease.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,MB/PhD Programme, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
24
|
Suzuki-Inoue K, Tsukiji N, Otake S. Crosstalk between hemostasis and lymphangiogenesis. J Thromb Haemost 2020; 18:767-770. [PMID: 32233027 DOI: 10.1111/jth.14726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shimon Otake
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
25
|
Haining EJ, Lowe KL, Wichaiyo S, Kataru RP, Nagy Z, Kavanagh DP, Lax S, Di Y, Nieswandt B, Ho-Tin-Noé B, Mehrara BJ, Senis YA, Rayes J, Watson SP. Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets 2020; 32:352-367. [PMID: 32129691 PMCID: PMC8443399 DOI: 10.1080/09537104.2020.1734784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.
Collapse
Affiliation(s)
- Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kate L Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Surasak Wichaiyo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean Pj Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sian Lax
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Experimental Biomedicine, University of Würzburg and University Hospital of Würzburg, Würzburg, Germany
| | - Benoît Ho-Tin-Noé
- Institut National de la Santé et de la Recherche Médicale, UMR_S1148, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, Paris, France
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
26
|
Abstract
The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
28
|
Norman TA, Gower AC, Chen F, Fine A. Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation. PLoS One 2019; 14:e0216795. [PMID: 31083674 PMCID: PMC6513083 DOI: 10.1371/journal.pone.0216795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The genetic programs responsible for pulmonary lymphatic maturation prior to birth are not known. To address this gap in knowledge, we developed a novel cell sorting strategy to collect fetal pulmonary lymphatic endothelial cells (PLECs) for global transcriptional profiling. We identified PLECs based on their unique cell surface immunophenotype (CD31+/Vegfr3+/Lyve1+/Pdpn+) and isolated them from murine lungs during late gestation (E16.5, E17.5, E18.5). Gene expression profiling was performed using whole-genome microarrays, and 1,281 genes were significantly differentially expressed with respect to time (FDR q < 0.05) and grouped into six clusters. Two clusters containing a total of 493 genes strongly upregulated at E18.5 were significantly enriched in genes with functional annotations corresponding to innate immune response, positive regulation of angiogenesis, complement & coagulation cascade, ECM/cell-adhesion, and lipid metabolism. Gene Set Enrichment Analysis identified several pathways coordinately upregulated during late gestation, the strongest of which was the type-I IFN-α/β signaling pathway. Upregulation of canonical interferon target genes was confirmed by qRT-PCR and in situ hybridization in E18.5 PLECs. We also identified transcriptional events consistent with a prenatal PLEC maturation program. This PLEC-specific program included individual genes (Ch25h, Itpkc, Pcdhac2 and S1pr3) as well as a set of chemokines and genes containing an NF-κB binding site in their promoter. Overall, this work reveals transcriptional insights into the genes, signaling pathways and biological processes associated with pulmonary lymphatic maturation in the fetal lung.
Collapse
Affiliation(s)
- Timothy A Norman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Felicia Chen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Boston Veteran's Hospital, West Roxbury, Massachusetts, United States of America
| |
Collapse
|
29
|
Janardhan HP, Trivedi CM. Establishment and maintenance of blood-lymph separation. Cell Mol Life Sci 2019; 76:1865-1876. [PMID: 30758642 PMCID: PMC6482084 DOI: 10.1007/s00018-019-03042-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Hippocratic Corpus, a collection of Greek medical literature, described the functional anatomy of the lymphatic system in the fifth century B.C. Subsequent studies in cadavers and surgical patients firmly established that lymphatic vessels drain extravasated interstitial fluid, also known as lymph, into the venous system at the bilateral lymphovenous junctions. Recent advances revealed that lymphovenous valves and platelet-mediated hemostasis at the lymphovenous junctions maintain life-long separation of the blood and lymphatic vascular systems. Here, we review murine models that exhibit failure of blood-lymph separation to highlight the novel mechanisms and molecular targets for the modulation of lymphatic disorders. Specifically, we focus on the transcription factors, cofactors, and signaling pathways that regulate lymphovenous valve development and platelet-mediated lymphovenous hemostasis, which cooperate to maintain blood-lymph separation.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, The Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, The Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA, 01605, USA.
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- The Li-Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Ward LSC, Sheriff L, Marshall JL, Manning JE, Brill A, Nash GB, McGettrick HM. Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. J Cell Sci 2019; 132:jcs.222067. [PMID: 30745334 PMCID: PMC6432720 DOI: 10.1242/jcs.222067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) upregulate podoplanin at sites of infection, chronic inflammation and cancer. Here, we investigated the functional consequences of podoplanin expression on the migratory potential of MSCs and their interactions with circulating platelets. Expression of podoplanin significantly enhanced the migration of MSCs compared to MSCs lacking podoplanin. Rac-1 inhibition altered the membrane localisation of podoplanin and in turn significantly reduced MSC migration. Blocking Rac-1 activity had no effect on the migration of MSCs lacking podoplanin, indicating that it was responsible for regulation of migration through podoplanin. When podoplanin-expressing MSCs were seeded on the basal surface of a porous filter, they were able to capture platelets perfused over the uncoated apical surface and induce platelet aggregation. Similar microthrombi were observed when endothelial cells (ECs) were co-cultured on the apical surface. Confocal imaging shows podoplanin-expressing MSCs extending processes into the EC layer, and these processes could interact with circulating platelets. In both models, platelet aggregation induced by podoplanin-expressing MSCs was inhibited by treatment with recombinant soluble C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b). Thus, podoplanin may enhance the migratory capacity of tissue-resident MSCs and enable novel interactions with cells expressing CLEC-2. Summary: Podoplanin enhances the migration of mesenchymal stromal cells in a Rac-1-dependent manner, enabling direct interactions of subendothelial stroma with circulating platelets.
Collapse
Affiliation(s)
- Lewis S C Ward
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Lozan Sheriff
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre of Membrane and Protein and Receptors (COMPARE), Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Gerard B Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Bergsma A, Ganguly SS, Wiegand ME, Dick D, Williams BO, Miranti CK. Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Rep 2019; 10:100196. [PMID: 30788390 PMCID: PMC6369370 DOI: 10.1016/j.bonr.2019.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
We used a myeloid-specific Cre to conditionally delete CD82 in mouse osteoclasts and their precursors. In contrast to global loss of CD82 (gKO), conditional loss of CD82 (cKO) in osteoclasts does not affect cortical bone, osteoblasts, or adipocytes. CD82 loss results in greater trabecular volume and trabecular number but reduced trabecular space in 6-month old male mice. Though this trend is present in females it did not reach significance; whereas there was an increase in osteoclast numbers and eroded surface area only in female cKO mice. In vitro, there is an increase in osteoclast fusion and defects in actin assembly in both gKO and cKO mice, irrespective of sex. This is accompanied by altered osteoclast morphology and decreased release of CTX in vitro. Integrin αvβ3 expression is reduced, while integrin β1 is increased. Signaling to Src, Syk, and Vav are also compromised. We further discovered that expression of Clec2 and its ligand, Podoplanin, molecules that also signal to Syk and Vav, are increased in differentiated osteoclasts. Loss of CD82 reduces their expression. Thus, CD82 is required for correct assembly of the cytoskeleton and to limit osteoclast fusion, both needed for normal osteoclast function.
Collapse
Affiliation(s)
- Alexis Bergsma
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Sourik S Ganguly
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Mollie E Wiegand
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Daniel Dick
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Cindy K Miranti
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
32
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Trost A, Runge C, Bruckner D, Kaser-Eichberger A, Bogner B, Strohmaier C, Reitsamer HA, Schroedl F. Lymphatic markers in the human optic nerve. Exp Eye Res 2018; 173:113-120. [PMID: 29746818 DOI: 10.1016/j.exer.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022]
Abstract
Tissues of the central nervous system (CNS), including the optic nerve (ON), are considered a-lymphatic. However, lymphatic structures have been described in the dura mater of human ON sheaths. Since it is known that lymphatic markers are also expressed by single non-lymphatic cells, these results need confirmation according to the consensus statement for the use of lymphatic markers in ophthalmologic research. The aim of this study was to screen for the presence of lymphatic structures in the adult human ON using a combination of four lymphatic markers. Cross and longitudinal cryo-sections of human optic nerve tissue (n = 12, male and female, postmortem time = 15.8 ± 5.5 h, age = 66.5 ± 13.8 years), were obtained from cornea donors of the Salzburg eye bank, and analyzed using immunofluorescence with the following markers: FOXC2, CCL21, LYVE-1 and podoplanin (PDPN; lymphatic markers), Iba1 (microglia), CD68 (macrophages), CD31 (endothelial cell, EC), NF200 (neurofilament), as well as GFAP (astrocytes). Human skin sections served as positive controls and confocal microscopy in single optical section mode was used for documentation. In human skin, lymphatic structures were detected, showing a co-localization of LYVE-1/PDPN/FOXC2 and CCL21/LYVE-1. In the human ON however, single LYVE-1+ cells were detected, but were not co-localized with any other lymphatic marker tested. Instead, LYVE-1+ cells displayed immunopositivity for Iba1 and CD68, being more pronounced in the periphery of the ON than in the central region. However, Iba1+/LYVE-1- cells outnumbered Iba1+/LYVE-1+ cells. PDPN, revealed faint labeling in human ON tissue despite strong immunoreactivity in rat ON controls, showing co-localization with GFAP in the periphery. In addition, pronounced autofluorescent dots were detected in the ON, showing inter-individual differences in numbers. In the adult human ON no lymphatic structures were detected, although distinct lymphatic structures were identified in human skin tissue by co-localization of four lymphatic markers. However, single LYVE-1+ cells, also positive for Iba1 and CD68 were present, indicating LYVE-1+ macrophages. Inter-individual differences in the number of LYVE-1+ as well as Iba1+ cells were obvious within the ONs, most likely resulting from diverse medical histories of the donors.
Collapse
Affiliation(s)
- A Trost
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria.
| | - C Runge
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - D Bruckner
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - A Kaser-Eichberger
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - B Bogner
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - C Strohmaier
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - H A Reitsamer
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Austria
| | - F Schroedl
- Dept Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria; Department of Anatomy, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
34
|
Zhang Y, Daubel N, Stritt S, Mäkinen T. Transient loss of venous integrity during developmental vascular remodeling leads to red blood cell extravasation and clearance by lymphatic vessels. Development 2018; 145:dev.156745. [PMID: 29361560 PMCID: PMC5818000 DOI: 10.1242/dev.156745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Maintenance of blood vessel integrity is crucial for vascular homeostasis and is mainly controlled at the level of endothelial cell (EC) junctions. Regulation of endothelial integrity has largely been investigated in the mature quiescent vasculature. Less is known about how integrity is maintained during vascular growth and remodeling involving extensive junctional reorganization. Here, we show that embryonic mesenteric blood vascular remodeling is associated with a transient loss of venous integrity and concomitant extravasation of red blood cells (RBCs), followed by their clearance by the developing lymphatic vessels. In wild-type mouse embryos, we observed activated platelets extending filopodia at sites of inter-EC gaps. In contrast, embryos lacking the activatory C-type lectin domain family 1, member b (CLEC1B) showed extravascular platelets and an excessive number of RBCs associated with and engulfed by the first lymphatic EC clusters that subsequently form lumenized blood-filled vessels connecting to the lymphatic system. These results uncover novel functions of platelets in maintaining venous integrity and lymphatic vessels in clearing extravascular RBCs during developmental remodeling of the mesenteric vasculature. They further provide insight into how vascular abnormalities characterized by blood-filled lymphatic vessels arise.
Collapse
Affiliation(s)
- Yang Zhang
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Nina Daubel
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Simon Stritt
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| |
Collapse
|
35
|
Janardhan HP, Milstone ZJ, Shin M, Lawson ND, Keaney JF, Trivedi CM. Hdac3 regulates lymphovenous and lymphatic valve formation. J Clin Invest 2017; 127:4193-4206. [PMID: 29035278 PMCID: PMC5663362 DOI: 10.1172/jci92852] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Lymphedema, the most common lymphatic anomaly, involves defective lymphatic valve development; yet the epigenetic modifiers underlying lymphatic valve morphogenesis remain elusive. Here, we showed that during mouse development, the histone-modifying enzyme histone deacetylase 3 (Hdac3) regulates the formation of both lymphovenous valves, which maintain the separation of the blood and lymphatic vascular systems, and the lymphatic valves. Endothelium-specific ablation of Hdac3 in mice led to blood-filled lymphatic vessels, edema, defective lymphovenous valve morphogenesis, improper lymphatic drainage, defective lymphatic valve maturation, and complete lethality. Hdac3-deficient lymphovenous valves and lymphatic vessels exhibited reduced expression of the transcription factor Gata2 and its target genes. In response to oscillatory shear stress, the transcription factors Tal1, Gata2, and Ets1/2 physically interacted with and recruited Hdac3 to the evolutionarily conserved E-box–GATA–ETS composite element of a Gata2 intragenic enhancer. In turn, Hdac3 recruited histone acetyltransferase Ep300 to form an enhanceosome complex that promoted Gata2 expression. Together, these results identify Hdac3 as a key epigenetic modifier that maintains blood-lymph separation and integrates both extrinsic forces and intrinsic cues to regulate lymphatic valve development.
Collapse
Affiliation(s)
| | | | - Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine.,Department of Medicine, and
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine.,Department of Medicine, and.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Blei F. Update September 2017. Lymphat Res Biol 2017; 15:297-313. [PMID: 28937924 DOI: 10.1089/lrb.2017.29030.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Tatin F, Renaud-Gabardos E, Godet AC, Hantelys F, Pujol F, Morfoisse F, Calise D, Viars F, Valet P, Masri B, Prats AC, Garmy-Susini B. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight 2017; 2:93887. [PMID: 28614788 DOI: 10.1172/jci.insight.93887] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
Lymphatic endothelium serves as a barrier to control fluid balance and immune cell trafficking to maintain tissue homeostasis. Long-term alteration of lymphatic vasculature promotes edema and fibrosis, which is an aggravating factor in the onset of cardiovascular diseases such as myocardial infarction. Apelin is a bioactive peptide that plays a central role in angiogenesis and cardiac contractility. Despite an established role of apelin in lymphangiogenesis, little is known about its function in the cardiac lymphatic endothelium. Here, we show that apelin and its receptor APJ were exclusively expressed on newly formed lymphatic vasculature in a pathological model of myocardial infarction. Using an apelin-knockout mouse model, we identified morphological and functional defects in lymphatic vasculature associated with a proinflammatory status. Surprisingly, apelin deficiency increased the expression of lymphangiogenic growth factors VEGF-C and VEGF-D and exacerbated lymphangiogenesis after myocardial infarction. Conversely, the overexpression of apelin in ischemic heart was sufficient to restore a functional lymphatic vasculature and to reduce matrix remodeling and inflammation. In vitro, the expression of apelin prevented the alteration of cellular junctions in lymphatic endothelial cells induced by hypoxia. In addition, we demonstrated that apelin controls the secretion of the lipid mediator sphingosine-1-phosphate in lymphatic endothelial cells by regulating the level of expression of sphingosine kinase 2 and the transporter SPNS2. Taken together, our results show that apelin plays a key role in lymphatic vessel maturation and stability in pathological settings. Thus, apelin may represent a novel candidate to prevent pathological lymphatic remodeling in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fanny Viars
- MetaToul-Lipidomique Core Facility, I2MC INSERM 1048, Toulouse, France
| | | | | | | | | |
Collapse
|
38
|
Cimini M, Cannatá A, Pasquinelli G, Rota M, Goichberg P. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium. PLoS One 2017; 12:e0173927. [PMID: 28333941 PMCID: PMC5363820 DOI: 10.1371/journal.pone.0173927] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development.
Collapse
Affiliation(s)
- Maria Cimini
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonio Cannatá
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gianandrea Pasquinelli
- Unit of Surgical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Marcello Rota
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Polina Goichberg
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|