1
|
Wagle SR, Kovacevic B, Sen LY, Diress M, Foster T, Ionescu CM, Lim P, Brunet A, James R, Carvalho L, Mooranian A, Al-Salami H. Revolutionizing drug delivery strategies with probucol to combat oxidative stress in retinal degeneration: A comprehensive review. Eur J Pharm Biopharm 2025; 210:114695. [PMID: 40089074 DOI: 10.1016/j.ejpb.2025.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Localized oxidative stress plays a key role in the development of retinal degenerative diseases, with diabetic retinopathy (DR) being one of them, contributing significantly to this vision-threatening complication of diabetes. Increased oxidative burden leads to dysfunction across various retinal cell types, including vascular endothelial cells, neurons, glial cells and pericytes. Importantly, even after achieving normalized glycemia, the detrimental effects of oxidative stress persist. Nonetheless, growing data highlights the therapeutic potential of antioxidants in safeguarding vision. However, extensive clinical trials using traditional antioxidants have produced mixed results. Therefore, probucol, known for its ability to limit vascular oxidative stress, decrease superoxide generation, and improve endogenous antioxidant activity, is a promising candidate explored in this review. In addition to describing probucol, this review will explore novel therapeutic formulation strategies by incorporating bile acid into probucol-loaded nanoparticles to enhance drug delivery to the posterior segment of the eye for more effective management of DR. The integration of bio-nanotechnology with probucol and bile acids represents a promising avenue for developing effective therapies for DR, addressing the limitations of traditional antioxidant treatments.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Le Yang Sen
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Rebekah James
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021; 141:111918. [PMID: 34328095 DOI: 10.1016/j.biopha.2021.111918] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is not only one of the main complications of diabetes, but also the leading cause of the end-stage renal disease (ESRD). The occurrence and development of DKD have always been a serious clinical problem that leads to the increase of morbidity and mortality and the severe damage to the quality of life of human beings. Controlling blood glucose, blood pressure, blood lipids, and improving lifestyle can help slow the progress of DKD. In recent years, with the extensive research on the pathological mechanism and molecular mechanism of DKD, there are more and more new drugs based on this, such as new hypoglycemic drugs sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors with good efficacy in clinical treatment. Besides, there are some newly developed drugs, including protein kinase C (PKC) inhibitors, advanced glycation end product (AGE) inhibitors, aldosterone receptor inhibitors, endothelin receptor (ETR) inhibitors, transforming growth factor-β (TGF-β) inhibitors, Rho kinase (ROCK) inhibitors and so on, which show positive effects in animal or clinical trials and bring hope for the treatment of DKD. In this review, we sort out the progress in the treatment of DKD in recent years, the research status of some emerging drugs, and the potential drugs for the treatment of DKD in the future, hoping to provide some directions for clinical treatment of DKD.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|
4
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
5
|
Kar S, Paglialunga S, Islam R. Cystatin C Is a More Reliable Biomarker for Determining eGFR to Support Drug Development Studies. J Clin Pharmacol 2018; 58:1239-1247. [PMID: 29775220 DOI: 10.1002/jcph.1132] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 11/12/2022]
Abstract
Glomerular filtration rate (GFR) is routinely used as a surrogate endpoint for the development of investigational drugs in clinical trials. GFR and staging of chronic kidney disease are typically assessed by measuring the concentration of endogenous serum biomarkers such as albumin and creatinine. However, creatinine is subject to high biological variability, and levels of creatinine do not rise until nearly 50% of kidney function is damaged, leading to inaccurate chronic kidney disease staging and false negatives. A newer biomarker for GFR, cystatin C, has been shown to be subject to less biological interference and more sensitive to early declines in kidney function. Cystatin C has also been shown to outperform creatinine as an indicator of true GFR and to add information about the occurrence of acute kidney injury. Comparison studies of cystatin C and creatinine continue to demonstrate its increased accuracy and sensitivity for changes in true GFR. While challenges remain for use of cystatin C, international agencies and working groups continue to validate cystatin C as a biomarker and accompanying GFR estimating equations for diagnostic and drug development use. In this review, we summarize these comparison studies, regulatory and industry guidelines, and clinical trial case studies for use of cystatin C in drug development.
Collapse
Affiliation(s)
- Sumit Kar
- Global Bioanalytical Services, Celerion, Lincoln, NE, USA
| | | | - Rafiqul Islam
- Global Bioanalytical Services, Celerion, Lincoln, NE, USA
| |
Collapse
|
6
|
Lacava V, Pellicanò V, Ferrajolo C, Cernaro V, Visconti L, Conti G, Buemi M, Santoro D. Novel avenues for treating diabetic nephropathy: new investigational drugs. Expert Opin Investig Drugs 2017; 26:445-462. [PMID: 28277032 DOI: 10.1080/13543784.2017.1293039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
At present, treatment of diabetic kidney disease (DKD) is still mainly based on drugs acting on glycemic and blood pressure control, as there is no validated therapy able to halt the progression of renal failure. Because of the high incidence of DKD, due to the increase of diabetes mellitus in general population, new therapeutic strategies are needed. Areas covered: We analysed ongoing and already completed clinical trials, from clinicaltrials.gov and PubMed, dealing with new therapies for DKD. Expert opinion: Among the drugs currently being explored, the most promising molecules are those that interfere with glucose-dependent pathways, in particular polyol, protein kinase, hexosamine and AGEs metabolic pathways, and impaired renal vascular regulation. One of the recent goals achieved by molecular biology is the development of monoclonal antibodies able to interfere with extracellular matrix accumulation and fibrosis. Other interesting therapies are under investigation and further studies with a greater number of patients will establish a better approach for diabetic nephropathy.
Collapse
Affiliation(s)
- Viviana Lacava
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Vincenzo Pellicanò
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Carmen Ferrajolo
- b Department of Experimental Medicine , Second University of Naples , Napoli , Italy
| | - Valeria Cernaro
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Luca Visconti
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Giovanni Conti
- c Unit of Pediatric Nephrology and Rheumatology , University of Messina , Messina , Italy
| | - Michele Buemi
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Domenico Santoro
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| |
Collapse
|