1
|
Li L, Yuan Y, Zhang C, Li Y, Xu R, Zhang X, Shang W. Melatonin Promotes Cerebral Angiogenesis in Ischemic Mice via BMP6/Smad1/5/9 Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04969-4. [PMID: 40274709 DOI: 10.1007/s12035-025-04969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Angiogenesis facilitates the reinstatement of blood supply to cerebral tissues after stroke by reconstructing the vascular network, thereby rescuing the penumbra region and restoring neural functions. Melatonin can modulate angiogenesis under a variety of biological and disease-related states, and bone morphogenetic protein 6 (BMP6) targets regulators associated with angiogenesis. The specific functions of melatonin and BMP6 in angiogenesis following cerebral infarction, along with the potential intrinsic regulatory interactions between them, are currently unclear and need further investigation. Melatonin was given to the mice from the 1st day through the 28th day post permanent distal middle cerebral artery occlusion (dMCAO). Our research revealed that melatonin enhanced neurological performance and decreased the size of the brain infarction. Additionally, it boosted blood circulation and fostered angiogenesis in the penumbra area. Meanwhile, melatonin facilitated endothelial cells migration and tube formation after oxygen-glucose deprivation (OGD). Melatonin promoted the expression of BMP6 and its downstream targets, Smad1/5/9, as well as factors associated with angiogenesis Vascular Endothelial Growth Factor (VEGF) and Angiopoietin-1 (Ang1) in vivo and in vitro, which was counteracted or partially inhibited by suppression of BMP6 expression. Our research provides strong evidence that melatonin promotes angiogenesis after cerebral infarction through BMP6/Smad1/5/9 signaling pathway, supporting the restoration of neural function.
Collapse
Affiliation(s)
- Linlin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ying Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China.
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| |
Collapse
|
2
|
Kaviyaprabha R, Miji TV, Suseela R, Muthusami S, Thangaleela S, Almoallim HS, Sivakumar P, Bharathi M. Screening miRNAs to Hinder the Tumorigenesis of Renal Clear Cell Carcinoma Associated with KDR Expression. Curr Cancer Drug Targets 2025; 25:183-203. [PMID: 39289946 DOI: 10.2174/0115680096321287240826065718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION This study delved to understand the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant. METHODS Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBase, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients' samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200c-3p and KDR. RESULTS The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance (P = 1.63e-12). Likely, the KDR expression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could alter the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC. DISCUSSION Upon examining the outcome, it became evident that miR-200c-3p was significantly downregulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsamiR- 200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progression. CONCLUSION The in-silico analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This finding holds promise for future research endeavors. Concurrent administration of the FDA-approved 5- fluorouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to enhance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further in vitro studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treatment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying preventative mechanisms.
Collapse
Affiliation(s)
- Rangaraj Kaviyaprabha
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Thandaserry Vasudevan Miji
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Rangaraj Suseela
- Centre for Cancer Research, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sridhar Muthusami
- Centre for Cancer Research, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh -11545, Saudi Arabia
| | - Priyadarshini Sivakumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| |
Collapse
|
3
|
Miladinovic O, Canto PY, Pouget C, Piau O, Radic N, Freschu P, Megherbi A, Brujas Prats C, Jacques S, Hirsinger E, Geeverding A, Dufour S, Petit L, Souyri M, North T, Isambert H, Traver D, Jaffredo T, Charbord P, Durand C. A multistep computational approach reveals a neuro-mesenchymal cell population in the embryonic hematopoietic stem cell niche. Development 2024; 151:dev202614. [PMID: 38451068 PMCID: PMC11057820 DOI: 10.1242/dev.202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.
Collapse
Affiliation(s)
- Olivera Miladinovic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre-Yves Canto
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Olivier Piau
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
- Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, Sorbonne Université, Inserm, UMR-S 938,F-75012 Paris, France
| | - Nevenka Radic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Priscilla Freschu
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Alexandre Megherbi
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Carla Brujas Prats
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Sebastien Jacques
- Plateforme de génomique, Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Estelle Hirsinger
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Audrey Geeverding
- Service de microscopie électronique, Fr3631 Institut de Biologie Paris Seine, Sorbonne Université, CNRS, 7-9Quai St-Bernard, 75005 Paris, France
| | - Sylvie Dufour
- Université Paris-Est Créteil, Inserm, IMRB, F94010 Créteil, France
| | - Laurence Petit
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Michele Souyri
- Université de Paris, Inserm UMR 1131, Institut de Recherche Saint Louis, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Trista North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Hervé Isambert
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - David Traver
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre Charbord
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Charles Durand
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
4
|
Shi Y, Qiu J, Li X, Lin Y, Li W, Hou J, Fu Y. Role of Thyroid Hormone in Dynamic Variation of gdf6a Gene during Metamorphosis of Paralichthys olivaceus. Int J Mol Sci 2023; 25:23. [PMID: 38203198 PMCID: PMC10779056 DOI: 10.3390/ijms25010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
The Japanese flounder (Paralichthys olivaceus) is a marine fish that undergoes a dramatic postembryonic metamorphosis, with the right eye shifting to the left and its lifestyle transitioning from planktonic to benthic. As the light environment of the habitat changes from bright to dim, its photoreceptor system also undergoes adaptive change. Growth differentiation factor 6a (Gdf6a) is a member of the BMP family, which plays a key role in regulating the dorsal-ventral pattern of the retina and photoreceptor fate, and the differentiation of different photoreceptors is also modulated by a thyroid hormone (TH) binding its receptor (TR). However, the relationship between gdf6a and TH and its role in the regulation of photoreceptors during flounder metamorphosis is still poorly understood. In this study, bioinformatics analysis showed that Gdf6a had a conserved TGFB structural domain and clusters with fishes. The expression analysis showed that the expression of gdf6a was highest in the eye tissue of adult flounder and tended to increase and then decrease during metamorphosis, reaching its highest levels at the peak of metamorphosis. Moreover, the expression of gdf6a increased in the early stages of metamorphosis after exogenous TH treatment, while it was inhibited after exogenous thiourea (a TH inhibitor, TU) treatment. To further investigate the targeting role of TH and gdf6a in the metamorphosis of flounder, the results of the Dual-Luciferase revealed that triiodothyronine (T3) may regulate the expression of gdf6a through TRβ. In conclusion, we speculate that TH influences the development of cone photoreceptors during the metamorphosis of the flounder by regulating the expression of gdf6a.
Collapse
Affiliation(s)
- Yaxin Shi
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xike Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Lin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Lou R, Chen J, Zhou F, Zhang T, Chen X, Wang C, Guo B, Lin L. Exosomal miRNA-155-5p from M1-polarized macrophages suppresses angiogenesis by targeting GDF6 to interrupt diabetic wound healing. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102074. [PMID: 38074896 PMCID: PMC10701080 DOI: 10.1016/j.omtn.2023.102074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2024]
Abstract
Unprogrammed macrophage polarization, especially prolonged activation of proinflammatory macrophages, is associated with delayed wound healing in diabetic objectives. Macrophage-derived exosomes cargo a variety of microRNAs (miRNAs), participating in different stages in wound healing. Here, exosomes were isolated from naive bone marrow-derived macrophages (BMDMs) (M0-Exos), interferon-γ plus lipopolysaccharide-polarized BMDMs (M1-Exos), and interleukin-4-polarized BMDMs (M2-Exos). M1-Exos impaired migration and tube formation in human umbilical vein endothelial cells (HUVECs) compared to M0-Exos, whereas M2-Exos exhibited the opposite effects. High-throughput sequencing was performed to decipher the miRNA expression profiles in M0-Exos, M1-Exos, and M2-Exos. A total of 63 miRNAs were identified to be differentially expressed in exosomes derived from polarized BMDMs. Among them, miRNA-155-5p is highly expressed in M1-Exos, which interrupted angiogenesis in HUVECs. Furthermore, miRNA-155-5p directly binds to the 3' UTR of growth differentiation factor 6 (GDF6) mRNA to suppress its protein expression. Lastly, local administration of a temperature-sensitive hydrogel Pluronic F-127 loading miRNA-155-5p antagomiR promoted angiogenesis and accelerated wound healing in diabetic db/db mice via enhancing GDF6. In summary, this study deciphered the miRNA expression profiles in exosomes from polarized macrophages. M2-like macrophage-derived exosomes and miRNA-155-5p inhibitors could be promising therapeutics against diabetic foot ulcers.
Collapse
Affiliation(s)
- Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Tian Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
6
|
Pulkkinen HH, Kivistö-Rahnasto A, Korpela H, Heikkilä M, Järveläinen N, Siimes S, Kilpeläinen L, Laham-Karam N, Ylä-Herttuala S, Laakkonen JP. BMP2 gene transfer induces pericardial effusion and inflammatory response in the ischemic porcine myocardium. Front Cardiovasc Med 2023; 10:1279613. [PMID: 38028463 PMCID: PMC10655027 DOI: 10.3389/fcvm.2023.1279613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Pro-angiogenic gene therapy is being developed to treat coronary artery disease (CAD). We recently showed that bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor-A synergistically regulate endothelial cell sprouting in vitro. BMP2 was also shown to induce endocardial angiogenesis in neonatal mice post-myocardial infarction. In this study, we investigated the potential of BMP2 gene transfer to improve cardiomyocyte function and neovessel formation in a pig chronic myocardial infarction model. Ischemia was induced in domestic pigs by placing a bottleneck stent in the proximal part of the left anterior descending artery 14 days before gene transfer. Intramyocardial gene transfers with adenovirus vectors (1 × 1012 viral particles/pig) containing either human BMP2 (AdBMP2) or beta-galactosidase (AdLacZ) control gene were performed using a needle injection catheter. BMP2 transgene expression in the myocardium was detected with immunofluorescence staining in the gene transfer area 6 days after AdBMP2 administration. BMP2 gene transfer did not induce angiogenesis or cardiomyocyte proliferation in the ischemic pig myocardium as determined by the quantitations of CD31 or Ki-67 stainings, respectively. Accordingly, no changes in heart contractility were detected in left ventricular ejection fraction and strain measurements. However, BMP2 gene transfer induced pericardial effusion (AdBMP2: 9.41 ± 3.17 mm; AdLacZ: 3.07 ± 1.33 mm) that was measured by echocardiography. Furthermore, an increase in the number of immune cells and CD3+ T cells was found in the BMP2 gene transfer area. No changes were detected in the clinical chemistry analysis of pig serum or histology of the major organs, implicating that the gene transfer did not induce general toxicity, myocardial injury, or off-target effects. Finally, the levels of fibrosis and cardiomyocyte apoptosis detected by Sirius red or caspase 3 stainings, respectively, remained unaltered between the groups. Our results demonstrate that BMP2 gene transfer causes inflammatory changes and pericardial effusion in the adult ischemic myocardium, which thus does not support its therapeutic use in chronic CAD.
Collapse
Affiliation(s)
- H. H. Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A. Kivistö-Rahnasto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H. Korpela
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M. Heikkilä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Järveläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Siimes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L. Kilpeläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - J. P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Rosowski S, Remmert C, Marder M, Akishiba M, Bushe J, Feuchtinger A, Platen A, Ussar S, Theis F, Wiedenmann S, Meier M. Single-cell characterization of neovascularization using hiPSC-derived endothelial cells in a 3D microenvironment. Stem Cell Reports 2023; 18:1972-1986. [PMID: 37714147 PMCID: PMC10656300 DOI: 10.1016/j.stemcr.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
The formation of vascular structures is fundamental for in vitro tissue engineering. Vascularization can enable the nutrient supply within larger structures and increase transplantation efficiency. We differentiated human induced pluripotent stem cells toward endothelial cells in 3D suspension culture. To investigate in vitro neovascularization and various 3D microenvironmental approaches, we designed a comprehensive single-cell transcriptomic study. Time-resolved single-cell transcriptomics of the endothelial and co-evolving mural cells gave insights into cell type development, stability, and plasticity. Transfer to a 3D hydrogel microenvironment induced neovascularization and facilitated tracing of migrating, coalescing, and tubulogenic endothelial cell states. During maturation, we monitored two pericyte subtypes evolving mural cells. Profiling cell-cell interactions between pericytes and endothelial cells revealed angiogenic signals during tubulogenesis. In silico discovered ligands were tested for their capability to attract endothelial cells. Our data, analyses, and results provide an in vitro roadmap to guide vascularization in future tissue engineering.
Collapse
Affiliation(s)
- Simon Rosowski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Misao Akishiba
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Judith Bushe
- Research Unit Analytical Pathology, Helmholtz München, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz München, 85764 Neuherberg, Germany
| | - Alina Platen
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| | - Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany; University Leipzig, Center for Biotechnology and Biomedicine, Institute of Biochemistry, Leipzig, Germany.
| |
Collapse
|
8
|
Potential Biomarkers and the Molecular Mechanism Associated with DLL4 During Renal Cell Carcinoma Progression. Am J Med Sci 2022; 364:220-228. [DOI: 10.1016/j.amjms.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/07/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
9
|
Wu R, Hu W, Chen H, Wang Y, Li Q, Xiao C, Fan L, Zhong Z, Chen X, Lv K, Zhong S, Shi Y, Chen J, Zhu W, Zhang J, Hu X, Wang J. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004629. [PMID: 34319658 PMCID: PMC8456203 DOI: 10.1002/advs.202004629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wangxing Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yingchao Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Qingju Li
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Changchen Xiao
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Lin Fan
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Zhiwei Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Xiaoying Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Kaiqi Lv
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Shuhan Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Yanna Shi
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jinghai Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wei Zhu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamSchool of Medicine and School of EngineeringBirminghamAL35294USA
| | - Xinyang Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jian'an Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|
10
|
Subramaniam S, Ogoti Y, Hernandez I, Zogg M, Botros F, Burns R, DeRousse JT, Dockendorff C, Mackman N, Antoniak S, Fletcher C, Weiler H. A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Adv 2021; 5:2760-2774. [PMID: 34242391 PMCID: PMC8288670 DOI: 10.1182/bloodadvances.2021004360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of blood coagulation and endothelial inflammation are hallmarks of respiratory infections with RNA viruses that contribute significantly to the morbidity and mortality of patients with severe disease. We investigated how signaling by coagulation proteases affects the quality and extent of the response to the TLR3-ligand poly(I:C) in human endothelial cells. Genome-wide RNA profiling documented additive and synergistic effects of thrombin and poly(I:C) on the expression level of many genes. The most significantly active genes exhibiting synergistic induction by costimulation with thrombin and poly(I:C) included the key mediators of 2 critical biological mechanisms known to promote endothelial thromboinflammatory functions: the initiation of blood coagulation by tissue factor and the control of leukocyte trafficking by the endothelial-leukocyte adhesion receptors E-selectin (gene symbol, SELE) and VCAM1, and the cytokines and chemokines CXCL8, IL-6, CXCL2, and CCL20. Mechanistic studies have indicated that synergistic costimulation with thrombin and poly(I:C) requires proteolytic activation of protease-activated receptor 1 (PAR1) by thrombin and transactivation of PAR2 by the PAR1-tethered ligand. Accordingly, a small-molecule PAR2 inhibitor suppressed poly(I:C)/thrombin-induced leukocyte-endothelial adhesion, cytokine production, and endothelial tissue factor expression. In summary, this study describes a positive feedback mechanism by which thrombin sustains and amplifies the prothrombotic and proinflammatory function of endothelial cells exposed to the viral RNA analogue, poly(I:C) via activation of PAR1/2.
Collapse
Affiliation(s)
| | - Yamini Ogoti
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Irene Hernandez
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Mark Zogg
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Fady Botros
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Robert Burns
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | | | - Chris Dockendorff
- Department of Chemistry, Marquette University, Milwaukee, WI
- Function Therapeutics LLC, Milwaukee, WI; and
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, and
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Craig Fletcher
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| |
Collapse
|
11
|
Schickling BM, Miller FJ. Outside-in Signaling by Adventitial Fibroblasts. Arterioscler Thromb Vasc Biol 2021; 41:711-713. [PMID: 33762812 DOI: 10.1161/atvbaha.120.315466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC.,Wake Forest University, Winston-Salem, NC.,Veterans Affairs Medical Center, Salisbury, NC
| |
Collapse
|
12
|
Harrison CB, Trevelin SC, Richards DA, Santos CX, Sawyer G, Markovinovic A, Zhang X, Zhang M, Brewer AC, Yin X, Mayr M, Shah AM. Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:698-710. [PMID: 33054395 PMCID: PMC7837692 DOI: 10.1161/atvbaha.120.315322] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The superoxide-generating Nox2 (NADPH oxidase-2) is expressed in multiple cell types. Previous studies demonstrated distinct roles for cardiomyocyte, endothelial cell, and leukocyte cell Nox2 in ANG II (angiotensin II)-induced cardiovascular remodeling. However, the in vivo role of fibroblast Nox2 remains unclear. Approach and Results: We developed a novel mouse model with inducible fibroblast-specific deficiency of Nox2 (fibroblast-specific Nox2 knockout or Fibro-Nox2KO mice) and investigated the responses to chronic ANG II stimulation. Fibro-Nox2KO mice showed no differences in basal blood pressure or vessel wall morphology, but the hypertensive response to ANG II infusion (1.1 mg/[kg·day] for 14 days) was substantially reduced as compared to control Nox2-Flox littermates. This was accompanied by a significant attenuation of aortic and resistance vessel remodeling. The conditioned medium of ANG II-stimulated primary fibroblasts induced a significant increase in vascular smooth muscle cell growth, which was inhibited by the short hairpin RNA (shRNA)-mediated knockdown of fibroblast Nox2. Mass spectrometric analysis of the secretome of ANG II-treated primary fibroblasts identified GDF6 (growth differentiation factor 6) as a potential growth factor that may be involved in these effects. Recombinant GDF6 induced a concentration-dependent increase in vascular smooth muscle cell growth while chronic ANG II infusion in vivo significantly increased aortic GDF6 protein levels in control mice but not Fibro-Nox2KO animals. Finally, silencing GDF6 in fibroblasts prevented the induction of vascular smooth muscle cell growth by fibroblast-conditioned media in vitro. CONCLUSIONS These results indicate that fibroblast Nox2 plays a crucial role in the development of ANG II-induced vascular remodeling and hypertension in vivo. Mechanistically, fibroblast Nox2 may regulate paracrine signaling to medial vascular smooth muscle cells via factors, such as GDF6.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Blood Pressure
- Cells, Cultured
- Disease Models, Animal
- Fibroblasts/enzymology
- Growth Differentiation Factor 6/genetics
- Growth Differentiation Factor 6/metabolism
- Hypertension/chemically induced
- Hypertension/enzymology
- Hypertension/genetics
- Hypertension/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NADPH Oxidase 2/genetics
- NADPH Oxidase 2/metabolism
- Paracrine Communication
- Signal Transduction
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Craig B. Harrison
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Silvia Cellone Trevelin
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Daniel A. Richards
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Celio X.C. Santos
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Greta Sawyer
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Andrea Markovinovic
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, United Kingdom (A.M.)
| | - Xiaohong Zhang
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Min Zhang
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Alison C. Brewer
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Xiaoke Yin
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Manuel Mayr
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| | - Ajay M. Shah
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (C.B.H., S.C.T., D.A.R., C.X.C.S., G.S., X.Z., M.Z., A.C.B., X.Y., M.M., A.M.S.)
| |
Collapse
|
13
|
Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen MU, Ylä-Herttuala S, Laakkonen JP. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 2021; 24:129-144. [PMID: 33021694 PMCID: PMC7921060 DOI: 10.1007/s10456-020-09748-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Collapse
Affiliation(s)
- H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J P Lappalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - A Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
14
|
Bacolod MD, Mirza AH, Huang J, Giardina SF, Feinberg PB, Soper SA, Barany F. Application of Multiplex Bisulfite PCR-Ligase Detection Reaction-Real-Time Quantitative PCR Assay in Interrogating Bioinformatically Identified, Blood-Based Methylation Markers for Colorectal Cancer. J Mol Diagn 2020; 22:885-900. [PMID: 32407802 DOI: 10.1016/j.jmoldx.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
The analysis of CpG methylation in circulating tumor DNA fragments has emerged as a promising approach for the noninvasive early detection of solid tumors, including colorectal cancer (CRC). The most commonly employed assay involves bisulfite conversion of circulating tumor DNA, followed by targeted PCR, then real-time quantitative PCR (alias methylation-specific PCR). This report demonstrates the ability of a multiplex bisulfite PCR-ligase detection reaction-real-time quantitative PCR assay to detect seven methylated CpG markers (CRC or colon specific), in both simulated (approximately 30 copies of fragmented CRC cell line DNA mixed with approximately 3000 copies of fragmented peripheral blood DNA) and CRC patient-derived cell-free DNAs. This scalable assay is designed for multiplexing and incorporates steps for improved sensitivity and specificity, including the enrichment of methylated CpG fragments, ligase detection reaction, the incorporation of ribose bases in primers, and use of uracil DNA glycosylase. Six of the seven CpG markers (located in promoter regions of PPP1R16B, KCNA3, CLIP4, GDF6, SEPT9, and GSG1L) were identified through integrated analyses of genome-wide methylation data sets for 31 different types of cancer. These markers were mapped to CpG sites at the promoter region of VIM; VIM and SEPT9 are established epigenetic markers of CRC. Additional bioinformatics analyses show that the methylation at these CpG sites negatively correlates with the transcription of their corresponding genes.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
15
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
16
|
Peng Z, Shu B, Zhang Y, Wang M. Endothelial Response to Pathophysiological Stress. Arterioscler Thromb Vasc Biol 2019; 39:e233-e243. [PMID: 31644356 DOI: 10.1161/atvbaha.119.312580] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Located in the innermost layer of the vasculature and directly interacting with blood flow, endothelium integrates various biochemical and biomechanical signals to maintain barrier function with selective permeability, vascular tone, blood fluidity, and vascular formation. Endothelial cells respond to laminar and disturbed flow by structural and functional adaption, which involves reprogramming gene expression, cell proliferation and migration, senescence, autophagy and cell death, as well as synthesizing signal molecules (nitric oxide and prostanoids, etc) that act in manners of autocrine, paracrine, or juxtacrine. Inflammation occurs after infection or tissue injury. Dysregulated inflammatory response participates in pathogenesis of many diseases. Endothelial cells exposed to inflammatory stimuli from the circulation or the microenvironment exhibit impaired vascular tone, increased permeability, elevated procoagulant activity, and dysregulated vascular formation, collectively contributing to the development of vascular diseases. Understanding the endothelial response to pathophysiological stress of hemodynamics and inflammation provides mechanistic insights into cardiovascular diseases, as well as therapeutic opportunities.
Collapse
Affiliation(s)
- Zekun Peng
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyan Shu
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yurong Zhang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Li D, Liu Y, Xu R, Jia X, Li X, Huo C, Wang X. RETRACTED ARTICLE: Astragalus polysaccharide alleviates H2O2-triggered oxidative injury in human umbilical vein endothelial cells via promoting KLF2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2188-2195. [PMID: 31159593 DOI: 10.1080/21691401.2019.1621886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dongtao Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
18
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
19
|
Belt H, Koponen JK, Kekarainen T, Puttonen KA, Mäkinen PI, Niskanen H, Oja J, Wirth G, Koistinaho J, Kaikkonen MU, Ylä-Herttuala S. Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules. Front Cardiovasc Med 2018; 5:16. [PMID: 29594149 PMCID: PMC5861200 DOI: 10.3389/fcvm.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Endothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic AMP signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells and, consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy.
Collapse
Affiliation(s)
- Heini Belt
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna K Koponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Katja A Puttonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joni Oja
- FinVector Vision Therapies Oy, Kuopio, Finland
| | - Galina Wirth
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|