1
|
Wei Y, Yang J, Zu W, Wang M, Zhao Y. Progression in the In Vitro Macrophage Expansion. J Immunol Res 2025; 2025:9994439. [PMID: 40331017 PMCID: PMC12052461 DOI: 10.1155/jimr/9994439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Macrophages play essential roles in homeostasis and disease, and they were considered terminally differentiated cells that cannot proliferate. However, growing evidence shows that macrophages can self-renew in homeostasis and multiple pathological states in vivo and artificial induction in vitro. With the rise of immune cell therapy based on macrophages, large-scale in vitro expansion of macrophages has become more and more urgent. However, the proliferation of macrophages in vitro is still inefficient because of the heterogeneity of macrophages, complicated crosstalk between macrophages and their microenvironments, and poor understanding of macrophage proliferation regulations. In this review, we summarized the discoveries known to stimulate macrophage proliferation in vitro, including cytokines, small molecule compounds, metabolites, the composition of pathogens and apoptotic cells, natural product extracts, gene editing, and other factors, as well as related mechanisms. It can be concluded that the promotion of macrophage proliferation in vitro covers various approaches and mechanisms. However, it is still necessary to test more strategies and learn more macrophage proliferation mechanisms to achieve large-scale engineering expansion of macrophages in vitro.
Collapse
Affiliation(s)
- Yunpeng Wei
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Jingzhao Yang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Wenhong Zu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Mengran Wang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Yong Zhao
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Chen T, Wang Y, Yang JL, Ni J, You K, Li X, Song Y, Wang X, Li J, Shen X, Fan Y, You Y. Gentisic acid prevents the development of atherosclerotic lesions by inhibiting SNX10-mediated stabilization of LRP6. Pharmacol Res 2024; 210:107516. [PMID: 39603572 DOI: 10.1016/j.phrs.2024.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Atherosclerotic-related acute cardiovascular events remain a leading cause of mortality worldwide, yet there are currently no pharmacological interventions available to address plaque formation or plaque rupture (PR). Here we reported that gentisic acid (GA) exerted potent therapeutic effects on plaque formation and PR in a dose-dependent manner by inhibiting LRP6-mediated macrophage apoptosis. By using the CETSA assay and DARTS assay, we identified sorting nexin 10 (SNX10) as the direct target of GA. The binding of GA to SNX10 disrupts the interaction between SNX10 and LRP6, leading to the degradation of LRP6. The downregulation of LRP6 then significantly attenuated the activation of Wnt/β-catenin pathway to exert an inhibitory effect on apoptosis. Moreover, the specific depletion of SNX10 in macrophages significantly reduced LRP6 levels and subsequently macrophage apoptosis both in vivo and in vitro. In conclusion, our findings not only suggest that GA may serve as a potential therapeutic candidate for the prevention of atherosclerosis and acute cardiovascular events caused by PR, but also confirm the druggability of SNX10 as a promising therapeutic target for atherosclerotic rupture.
Collapse
Affiliation(s)
- Tongqing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Lin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, China.
| | - Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, China.
| |
Collapse
|
4
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
5
|
Adir O, Sagi-Assif O, Meshel T, Ben-Menachem S, Pasmanik-Chor M, Hoon DSB, Witz IP, Izraely S. Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression. Cancers (Basel) 2023; 15:4979. [PMID: 37894348 PMCID: PMC10605008 DOI: 10.3390/cancers15204979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.
Collapse
Affiliation(s)
- Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| |
Collapse
|
6
|
Li W, Wang J, Li J, Liu P, Li J. Transcriptomics revealed the effect of astaxanthin on apoptosis and immunity of the adult prawn of Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2022; 131:480-486. [PMID: 36195268 DOI: 10.1016/j.fsi.2022.09.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Astaxanthin (Axn), a common aquatic feed additive, can enhance immunity, improve the antioxidant capacity of the crustacean and then improve the anti-stress ability of crustaceans. Exopalaemon carinicauda (E. carinicauda) is an economically important fishery species in China that has been found that dietary Axn can significantly increase ACP and AKP compared to a control diet for shrimp hepatopancreas in this study. RNA-sequencing and comparative transcriptomic analyses were utilized to explore changes in E. carinicauda gene expression following Axn feeding. Differential gene expression analyses comparing the control and Axn groups identified 631 transcripts that were differentially expressed following Axn feeding, of which 314 and 317 were respectively upregulated and downregulated. Functional enrichment analyses of these genes revealed their enrichment in 22 Gene Ontology categories and 11 KEGG pathways. In the GO and KEGG enrichment analysis, it was found that dietary astaxanthin can regulate the gene expression level of adult E. carinicauda. Many of the signal pathways enriched by these genes are related to immunity, apoptosis and anti-stress. In addition, through KEGG enrichment analysis, it was found that dietary Axn could also regulate the amino acid metabolism of hepatopancreas of adult E. carinicauda. The comprehensive comparative transcriptomic analysis showed that Axn could improve the hepatopancreatic immunity and anti-apoptosis ability of adult E. carinicauda.
Collapse
Affiliation(s)
- Wenyang Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Wuxi Fisheries College of Nanjing Agricultural University, China
| | - Jiajia Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wang X, Liang Z, Xiang H, Li Y, Chen S, Lu H. LKB1 Regulates Vascular Macrophage Functions in Atherosclerosis. Front Pharmacol 2021; 12:810224. [PMID: 34975507 PMCID: PMC8714937 DOI: 10.3389/fphar.2021.810224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is known to shape the regulation of macrophage function by participating in multiple processes including cell metabolism, growth, and polarization. However, whether LKB1 also affects the functional plasticity of macrophages in atherosclerosis has not attracted much attention. Abnormal macrophage function is a pathophysiological hallmark of atherosclerosis, characterized by the formation of foam cells and the maintenance of vascular inflammation. Mounting evidence supports that LKB1 plays a vital role in the regulation of macrophage function in atherosclerosis, including affecting lipid metabolism reprogramming, inflammation, endoplasmic reticulum stress, and autophagy in macrophages. Thus, decreased expression of LKB1 in atherosclerosis aggravates vascular injury by inducing excessive lipid deposition in macrophages and the formation of foam cells. To systematically understand the role and potential mechanism of LKB1 in regulating macrophage functions in atherosclerosis, this review summarizes the relevant data in this regard, hoping to provide new ideas for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xuewen Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical Laboratory, Yueyang people’s Hospital, Yueyang, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanqiu Li
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| |
Collapse
|
8
|
Xiao J, Li N, Xiao S, Wu Y, Liu H. Comparison of Selenium Nanoparticles and Sodium Selenite on the Alleviation of Early Atherosclerosis by Inhibiting Endothelial Dysfunction and Inflammation in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2021; 22:ijms222111612. [PMID: 34769040 PMCID: PMC8583811 DOI: 10.3390/ijms222111612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023] Open
Abstract
Atherosclerosis and related cardiovascular diseases represent the greatest threats to human health, worldwide. Previous animal studies showed that selenium nanoparticles (SeNPs) and Na2SeO3 might have anti-atherosclerotic activity, but the underlying mechanisms are poorly elucidated. This study compared the anti-atherosclerotic activity of SeNPs stabilized with chitosan (CS-SeNPs) and Na2SeO3 and the related mechanism in a high-fat-diet-fed apolipoprotein E-deficient mouse model of atherosclerosis. The results showed that oral administration of both CS-SeNPs and Na2SeO3 (40 μg Se/kg/day) for 10 weeks significantly reduced atherosclerotic lesions in mouse aortae. Mechanistically, CS-SeNPs and Na2SeO3 not only alleviated vascular endothelial dysfunction, as evidenced by the increase of serum nitric oxide level and the decrease of aortic adhesion molecule expression, but also vascular inflammation, as evidenced by the decrease of macrophage recruitment as well as the expression of proinflammatory molecules. Importantly, these results were replicated within in-vivo experiments on the cultured human endothelial cell line EA.hy926. Overall, CS-SeNPs had a comparable effect with Na2SeO3 but might have more potential in atherosclerosis prevention due to its lower toxicity. Together, these results provide more insights into the mechanisms of selenium against atherosclerosis and further highlight the potential of selenium supplementation as a therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Junying Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
| | - Na Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
| | - Shengze Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, China
- Correspondence: ; Tel.: +86-27-87543032
| |
Collapse
|
9
|
Yang Y, Cai Z, Pan Z, Liu F, Li D, Ji Y, Zhong J, Luo H, Hu S, Song L, Yu S, Li T, Li J, Ma X, Zhang W, Zhou Z, Liu F, Zhang J. Rheb1 promotes glucose-stimulated insulin secretion in human and mouse β-cells by upregulating GLUT expression. Metabolism 2021; 123:154863. [PMID: 34375645 DOI: 10.1016/j.metabol.2021.154863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
Reduced β-cell mass and impaired β-cell function are primary causes of all types of diabetes. However, the intrinsic molecular mechanism that regulates β-cell growth and function remains elusive. Here, we demonstrate that the small GTPase Rheb1 is a critical regulator of glucose-stimulated insulin secretion (GSIS) in β-cells. Rheb1 was highly expressed in mouse and human islets. In addition, β-cell-specific knockout of Rheb1 reduced the β-cell size and mass by suppressing β-cell proliferation and increasing β-cell apoptosis. However, tamoxifen-induced deletion of Rheb1 in β-cells had no significant effect on β-cell mass and size but significantly impaired GSIS. Rheb1 facilitates GSIS in human or mouse islets by upregulating GLUT1 or GLUT2 expression, respectively, in a mTORC1 signaling pathway-dependent manner. Our findings reveal a critical role of Rheb1 in regulating GSIS in β-cells and identified a new target for the therapeutic treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhenhong Pan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiequn Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Macrophage accumulation within atherosclerotic plaque is a primary driver of disease progression. However, recent advances in both phenotypic and functional heterogeneity of these cells have allowed for improved insight into potential regulation of macrophage function within lesions. In this review, we will discuss recent insights on macrophage heterogeneity, lipid processing, metabolism, and proliferation in atherosclerosis. Furthermore, we will identify outstanding questions in the field that are pertinent to future studies. RECENT FINDINGS With the recent development of single-cell RNA sequencing, several studies have highlighted the diverse macrophage populations within plaques, including pro-inflammatory, anti-inflammatory, lipid loaded and tissue resident macrophages. Furthermore, new data has suggested that differential activation of metabolic pathways, including glycolysis and fatty acid oxidation, may play a key role in determining function. Recent works have highlighted that different populations retain varying capacity to undergo proliferation; regulating the proliferation pathway may be highly effective in reducing plaque in advanced lesions. SUMMARY Macrophage populations within atherosclerosis are highly heterogeneous; differences in cytokine production, lipid handling, metabolism, and proliferation are seen between subpopulations. Understanding the basic cellular mechanisms that drive this heterogeneity will allow for the development of highly specific disease modulating agents to combat atherosclerosis.
Collapse
Affiliation(s)
| | - Jesse W Williams
- Center for Immunology
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Xiao J, Cao H, Guo S, Xiao S, Li N, Li M, Wu Y, Liu H. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem Biol Interact 2021; 347:109601. [PMID: 34324854 DOI: 10.1016/j.cbi.2021.109601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Exploration of long-term in vivo effects of nanomaterials, particularly those with potential biomedical applications, is quite important for better understanding and evaluating their biosafety. Selenium nanoparticles (SeNPs) has been considered as a good candidate in biomedical applications due to its high bioavailability, considerable biological activity, and low toxicity. However, its long-term biological effects and biosafety remain unknown. Our previous study demonstrated that 8-week supplementation with SeNPs (50 μg Se/kg/day) was safe and had an anti-atherosclerotic activity in apolipoprotein E-deficient (ApoE-/-) mice, a well-known animal model of atherosclerosis. As a chronic disease, atherosclerosis needs long-term drug therapy. The aim of this study is to investigate the long-term effects of SeNPs with different sizes on atherosclerotic lesions and their biosafety in ApoE-/- mice fed with a high fat diet. Unexpectedly, the results showed that 24-week administration of SeNPs even at a low dose (50 μg Se/kg/day) aggravated atherosclerotic lesions. Furthermore, SeNPs exacerbated oxidative stress by inhibiting the activities of antioxidant enzymes and the expression of antioxidant selenoenzymes. SeNPs also exacerbated hyperlipidaemia by inducing hepatic lipid metabolic disorder. In the meanwhile, SeNPs aggravated organ injury, especially liver and kidney injury. The above adverse effects of SeNPs were size dependent: SeNPs with the size of 40.4 nm showed the highest adverse effects among the SeNPs with three sizes (23.1 nm, 40.4 nm, and 86.8 nm). In conclusion, the present work shows that long-term administration of low-dose SeNPs aggravated atherosclerotic lesions by enhancing oxidative stress and hyperlipidaemia in ApoE-/- mice, indicative of cardiovascular toxicity. Moreover, long-term administration of SeNPs led to injury to liver and kidney. These results offer novel insights for better understanding the biosafety of SeNPs and other biomedical nanomaterials.
Collapse
Affiliation(s)
- Junying Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Cao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Siyu Guo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengze Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Na Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
12
|
Xiao S, Mao L, Xiao J, Wu Y, Liu H. Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. Eur J Pharmacol 2021; 902:174120. [PMID: 33905703 DOI: 10.1016/j.ejphar.2021.174120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Atherosclerosis can cause severe cardiovascular diseases, which is the most common cause of death in the world. It's of great significance to study the prevention and treatment of atherosclerosis. Selenium nanoparticles (SeNPs) has drawn more and more attention due to high biological activity, high bioavailability, strong antioxidant capacity and low toxicity, exhibiting great potential in biomedical application. Thus, this study aimed at explore the anti-atherosclerotic effect of two kinds of SeNPs, bovine serum albumin (BSA) surface-decorated SeNPs and chitosan (CS) surface-decorated SeNPs (CS-SeNPs), in apolipoprotein E deficient (ApoE-/-) mice fed with a high-cholesterol and high-fat diet, and the possible mechanisms. The results demonstrated that both BSA-SeNPs (25, 50 and 100 μg Se/kg body weight/day) and CS-SeNPs (50 μg Se/kg body weight/day) could reduce atherosclerotic lesions in ApoE-/- mice after oral administration for 12 weeks. And these effects might mainly attributed to the ability of BSA-SeNPs and CS-SeNPs to inhibit hyperlipidemia by suppressing hepatic cholesterol and fatty acid metabolism, and alleviate oxidative stress by enhancing antioxidant activity. Moreover, the benefits of BSA-SeNPs were dose-dependent and the medium dose of BSA-SeNPs (50 μg Se/kg body weight/day) was optimal. Generally, BSA-SeNPs with mean size 38.5 nm and negative surface charge showed better anti-atherosclerotic effect than CS-SeNPs with mean size 65.8 nm and positive surface charge. These results suggested that SeNPs could significantly alleviate the formation of atherosclerosis in ApoE-/- mice, possibly by inhibiting hyperlipidemia and oxidative stress, exhibiting a potential to serve as an anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Shengze Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Long Mao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, China.
| |
Collapse
|
13
|
Foxc2 Alleviates Ox-LDL-Induced Lipid Accumulation, Inflammation, and Apoptosis of Macrophage via Regulating the Expression of Angptl2. Inflammation 2021; 43:1397-1410. [PMID: 32170602 DOI: 10.1007/s10753-020-01217-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study aimed to investigate the role of Forkhead box protein C2 (Foxc2) in oxidized low-density lipoprotein (ox-LDL)-induced macrophages and identify the potential mechanisms. RAW264.7 cells, the murine macrophage cell line, were stimulated by ox-LDL, and cell proliferation was examined. The levels of inflammation- and oxidative stress-related markers were detected using kits after induction with ox-LDL. Subsequently, the expression of Foxc2 was measured using Western blotting. After transfection with Foxc2 pcDNA3.1, intracellular lipid droplets were examined using oil red O staining. The levels of total cholesterol (TC), free cholesterol (FC), inflammatory cytokines, and oxidative stress markers were determined. Moreover, apoptosis of RAW264.7 cells was detected using flow cytometry, and apoptosis-related proteins were measured using Western blotting. Angiopoietin-like protein 2 (Angptl2) was predicted as a target gene of Foxc2. Therefore, the expression of Angptl2 was examined after Foxc2 overexpression in ox-LDL-induced RAW264.7 cells. Then, the changes of intracellular lipid droplets, TC, FC, inflammatory cytokines, oxidative stress factors, and cell apoptosis were detected after Angptl2 overexpression or co-transfection with Foxc2 and Angptl2 pcDNA3.1. The results revealed that ox-LDL induction inhibited proliferation of RAW264.7 cells and promoted the release of inflammatory factors. Importantly, the expression of Foxc2 was obviously decreased after stimulation by ox-LDL. Foxc2 overexpression suppressed lipid accumulation, TC, FC levels, inflammation, oxidative stress, and apoptosis induced by ox-LDL, whereas these inhibitory effects were relieved after co-transfection with Angptl2 pcDNA3.1. These findings demonstrated that Foxc2 can alleviate ox-LDL-induced lipid accumulation, inflammation, and apoptosis of macrophage via regulating the expression of Angptl2.
Collapse
|
14
|
Shou J, Shi X, Liu X, Chen Y, Chen P, Xiao W. Programmed death-1 promotes contused skeletal muscle regeneration by regulating Treg cells and macrophages. J Transl Med 2021; 101:719-732. [PMID: 33674785 PMCID: PMC8137453 DOI: 10.1038/s41374-021-00542-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Immune cells are involved in skeletal muscle regeneration. The mechanism by which Treg cells are involved in the regeneration of injured skeletal muscle is still unclear. The purpose of this study was to explore the role of programmed death-1 in contused skeletal muscle regeneration, and to clarify the regulation of programmed death-1 on Treg cell generation and macrophage polarization, in order to deepen our understanding of the relationship between the immune system and injured skeletal muscle regeneration. The results show that programmed death-1 knockdown reduced the number of Treg cells and impaired contused skeletal muscle regeneration compared with those of wild-type mice. The number of pro-inflammatory macrophages in the contused skeletal muscle of programmed death-1 knockout mice increased, and the expression of pro-inflammatory factors and oxidative stress factors increased, while the number of anti-inflammatory macrophages and the expression of anti-inflammatory factors, antioxidant stress factors, and muscle regeneration-related factors decreased. These results suggest that programmed death-1 can promote contused skeletal muscle regeneration by regulating Treg cell generation and macrophage polarization.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xinjuan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
15
|
Liu Y, Xu J, Wu M, Xu B, Kang L. Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity. Lipids Health Dis 2021; 20:5. [PMID: 33436015 PMCID: PMC7802233 DOI: 10.1186/s12944-021-01430-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background Several large clinical trials have confirmed the cardioprotective role of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes. However, whether empagliflozin, as an SGLT2i, could alleviate atherosclerosis progression in non-diabetic states remain unknown. Methods ApoE-/- mice were fed a Western diet for 12 weeks to induce atherosclerosis. On the 7th week, a group of mice were treated with drinking water containing empagliflozin (10 mg/kg/day), while another group was given normal water. At the 12th week, the whole aortas of each group were harvested. Oil Red O, HE and Movat staining were performed for atherosclerotic lesion area and size. Mouse serum lipid profiles (total cholesterol [TC], triglyceride [TG], low-density lipoprotein-c [LDL], and high-density lipoprotein-c [HDL]), systemic inflammation levels (IL-1β, IL-6 and IL-10), renin-angiotensin-aldosterone system (RAAS) components and sympathetic activity (norepinephrine and neuropeptide Y) indicators were measured by ELISA. Results Empagliflozin reduced the atherosclerotic lesion burden (-8.6 %, P = 0.004) at aortic root in ApoE-/- mice. In addition, empagliflozin decreased body weight (-3.27 g, P = 0.002), lipid profiles (TC: [-15.3 mmol/L, P = 0.011]; TG: [-2.4 mmol/L, P < 0.001]; LDL: [-2.9 mmol/L, P = 0.010]), RAAS (renin [-9.3 ng/L, P = 0.047]; aldosterone [-16.7 ng/L, P < 0.001]) and sympathetic activity (norepinephrine [-8.9 ng/L, P = 0.019]; neuropeptide Y [-8.8 ng/L, P = 0.002]). However, the anti-inflammatory effect of empagliflozin was not significantly evident. Conclusions The early atherosclerotic lesion size was less visible in empagliflozin-treated mice. Empagliflozin could decrease lipid profiles and sympathetic activity in atherosclerosis.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Jiangsu, 210008, Nanjing, China
| | - Jiamin Xu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Mingyue Wu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Jiangsu, 210008, Nanjing, China. .,Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, Jiangsu, China.
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Jiangsu, 210008, Nanjing, China. .,Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Abstract
Macrophages have a key functional role in the pathogenesis of various cardiovascular diseases, such as atherosclerosis and aortic aneurysms. Their accumulation within the vessel wall leads to sustained local inflammatory responses characterized by secretion of chemokines, cytokines, and matrix protein degrading enzymes. Here, we summarize some recent findings on macrophage contribution to cardiovascular disease. We focus on the origin, survival/death, and phenotypic switching of macrophages within vessel walls.
Collapse
Affiliation(s)
- Mitri K Khoury
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Wisconsin, Madison
| | - Huan Yang
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Wisconsin, Madison
| | - Bo Liu
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Wisconsin, Madison
| |
Collapse
|
17
|
Fan Y, Yang J, Li H, Li H, Zhang S, Li X, Song Y, Dang W, Liu L, Cao X, Wang X, Nandakumar KS, Shen X, You Y. WITHDRAWN: SNX10 deficiency restricts foam cell formation and protects against atherosclerosis by suppressing CD36-Lyn axis. Can J Cardiol 2020:S0828-282X(20)30456-6. [PMID: 32428616 DOI: 10.1016/j.cjca.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jialin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - HaiDong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Xiaoyan Shen
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan You
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; National Institute of Allergy and Infectious, National Institute of Health, Rockville, USA.
| |
Collapse
|
18
|
Sun Z, Li L, Zhang L, Yan J, Shao C, Bao Z, Liu J, Li Y, Zhou M, Hou L, Jing L, Pang Q, Geng Y, Mao X, Gu W, Wang Z. Macrophage galectin-3 enhances intimal translocation of vascular calcification in diabetes mellitus. Am J Physiol Heart Circ Physiol 2020; 318:H1068-H1079. [PMID: 32216615 DOI: 10.1152/ajpheart.00690.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical risks and prognosis of diabetic vascular intimal calcification (VIC) and medial calcification (VMC) are different. This study aims to investigate the mechanism of VIC/VMC translocation. Anterior tibial arteries were collected from patients with diabetic foot amputation. The patients were then divided into VIC and VMC groups. There were plaques in all anterior tibial arteries, while the enrichment of galectin-3 in arterial plaques in the VIC group was significantly higher than that in the VMC group. Furthermore, a macrophage/vascular smooth muscle cell (VSMC) coculture system was constructed. VSMC-derived extracellular vesicles (EVs) was labeled with fluorescent probe. After macrophages were pretreated with recombinant galectin-3 protein, the migration of VSMC-derived EVs and VSMC-derived calcification was more pronounced. And anti-galectin-3 antibody can inhibit this process of EVs and calcification translocation. Then, lentivirus (LV)-treated bone marrow cells (BMCs) were transplanted into apolipoprotein E-deficient (ApoE-/-) mice, and a diabetic atherosclerosis mouse model was constructed. After 15 wk of high-fat diet, ApoE-/- mice transplanted with LV-shgalectin-3 BMCs exhibited medial calcification and a concentrated distribution of EVs in the media. In conclusion, upregulation of galectin-3 in macrophages promotes the migration of VSMC-derived EVs to the intima and induces diabetic vascular intimal calcification.NEW & NOTEWORTHY The clinical risk and prognosis of vascular intimal and medial calcification are different. Macrophage galectin-3 regulates the migration of vascular smooth muscle cell-derived extracellular vesicles and mediates diabetic vascular intimal/medial calcification translocation. This study may provide insights into the early intervention in diabetic vascular calcification.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lina Hou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Gu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
miR-200a-3p modulates gene expression in comorbid pain and depression: Molecular implication for central sensitization. Brain Behav Immun 2019; 82:230-238. [PMID: 31479730 DOI: 10.1016/j.bbi.2019.08.190] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain and depression are often comorbid exhibiting common clinical presentations and biological connections related to central nervous system sensitization. Epigenetic regulation of gene expression in the brain plays a crucial role in response to long-lasting stress and chronic pain, and microRNA imbalance in the prefrontal cortex (PFC) might be involved in central sensitization. Male Sprague Dawley rats were subjected to unpredictable chronic mild stress (UCMS) and spared nerve injury (SNI) to initiate depressive-like behavior and chronic pain behavior, respectively. The next-generation sequencing technique was employed to analyze PFC microRNAs in both the UCMS and SNI models. Rats exposed to either UCMS or SNI exhibited both depressive-like and chronic pain behaviors. Five specific microRNAs (miR-10a-5p, miR-182, miR-200a-3p, miR-200b-3p, and miR-429) were simultaneously down-regulated in the depressive-like and chronic pain models after 4 weeks of short-term stress. Gene ontology revealed that the 4-week period of stress enhanced neurogenesis. Only the miR-200a-3p level was continuously elevated under prolonged stress, suggesting roles of reduced neurogenesis, inflammatory activation, disturbed circadian rhythm, lipid metabolism, and insulin secretion in the co-existence of pain and depression. Thus we conclude that miR-200a-3p might be a specific biomarker of central sensitization in chronic pain and depression.
Collapse
|