1
|
Lv W, Zhang J, Lyu D, Zhang R, Xu C, Ning K, Li M, Zhao Y, Han J, Wang QK. Angiogenic factor AGGF1 is a general splicing factor regulating angiogenesis and vascular development by alternative splicing of SRSF6. FASEB J 2025; 39:e70443. [PMID: 40035560 DOI: 10.1096/fj.202403156r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
AGGF1 encodes an angiogenic factor that causes vascular disease Klippel-Trenaunay syndrome when mutated. AGGF1 also acts at the top of the genetic regulatory hierarchy for mesodermal differentiation of hemangioblasts, multipotent stem cells for differentiation of blood cells and vascular cells. Alternative splicing (AS) is a post-transcriptional process that generates multiple mature mRNAs from a single primary transcript (pre-mRNA), producing protein diversity. Deregulation of AS leads to many human diseases. The physiological role and mechanism of AGGF1 in AS are not clear. Full-length transcriptome sequencing of human pulmonary artery endothelial cells (HPAECs) with AGGF1 silencing revealed 63 121 genes, including 1144 new unannotated genes, and showed that AGGF1 is a general splicing factor regulating AS of 436 genes, including SRSF6 regulating AS of many target genes. AGGF1 promoted the skipping of exon 3 that produces the full-length SRSF6 protein, an evolutionarily conserved AS event. Overexpression of full-length SRSF6 reversed the reduced cell proliferation, migration, and capillary tube formation of HPAECs with AGGF1 silencing. Knockdown of SRSF6 and overexpression of the shorter, alternatively spliced isoform of SRSF6 both inhibited HPAEC proliferation, migration, and capillary tube formation, whereas opposite results were obtained for overexpression of full-length SRSF6. Knockdown of srsf6 impaired development of ISVs in zebrafish, whereas overexpression of srsf6 enhanced vascular development and partially rescued impaired ISV development in zebrafish embryos with aggf1 knockdown. Overall, our findings reveal that AGGF1 is a general splicing factor, and that AGGF1-mediated exon 3 skipping of SRSF6 pre-mRNA is important for endothelial cell functions, angiogenesis, and vascular development.
Collapse
Affiliation(s)
- Wenchao Lv
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
| | - Jingwen Zhang
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
| | - Dayin Lyu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Maternal and Child Health Hospital of Hubei Province, Women and Children's Hospital of Hubei Province, Huazhong Univesrity of Science and Technology, Wuhan, P. R. China
| | - Rui Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Maternal and Child Health Hospital of Hubei Province, Women and Children's Hospital of Hubei Province, Huazhong Univesrity of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Maternal and Child Health Hospital of Hubei Province, Women and Children's Hospital of Hubei Province, Huazhong Univesrity of Science and Technology, Wuhan, P. R. China
| | - Kang Ning
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mian Li
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
| | - Yan Zhao
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
| | - Jinxiang Han
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
| | - Qing K Wang
- Institute of Medical Genomics, School of Biomedical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P. R. China
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Maternal and Child Health Hospital of Hubei Province, Women and Children's Hospital of Hubei Province, Huazhong Univesrity of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
2
|
Cheng Y, Zhang M, Li C, Su L, Fu L, Wu S, Xu C, Sun B, Chen L. Endothelial AGGF1 promotes retinal angiogenesis by coordinating TNFSF12/FN14 signalling. Nat Commun 2025; 16:1332. [PMID: 39905000 PMCID: PMC11794540 DOI: 10.1038/s41467-025-55970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Abnormal angiogenesis is a key process associated with ischaemic retinopathies such as diabetic retinopathy, for which the underlying pathological mechanisms are still poorly understood. Here, we confirm that angiogenic factor 1 with a G patch and FHA domain (AGGF1) is elevated in the diabetics and induces retinal angiogenesis. Mechanistic investigations demonstrate that HIF-1α directly regulates AGGF1 expression. AGGF1 upregulates the expression of cell cycle proteins by increasing the binding of tumour necrosis factor ligand superfamily member 12 (TNFSF12) to fibroblast -growth -factor-inducible 14 (FN14, TNFRSF12A). Furthermore, targeting AGGF1 attenuates pathological neovascularisation in ischaemic retinopathy. Additionally, we discover that sodium-glucose cotransporter 2 inhibitors (SGLT2i) could inhibit the AGGF1 signalling pathway early to achieve therapeutic effects. Overall, we elucidate the mechanism underlying pathological retinal angiogenesis involved in endothelial AGGF1-dependent events and highlight a therapy for the effective treatment of ischaemic retinopathy.
Collapse
Affiliation(s)
- Ying Cheng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Man Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Chenguang Li
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Long Su
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lingli Fu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Shi Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Chaofei Xu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Bei Sun
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
| | - Liming Chen
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
| |
Collapse
|
3
|
Chen J, Lu C, Xie W, Cao X, Zhang J, Luo J, Li J. Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish (Danio rerio). Int J Nanomedicine 2024; 19:13789-13803. [PMID: 39723177 PMCID: PMC11669342 DOI: 10.2147/ijn.s485091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood. Methods This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos. Subsequent RNA sequencing (RNA-seq) identified genes related to CVP deformities and hematopoietic stem/progenitor cells (HSPCs) in zebrafish embryos exposed to NPs. Additionally, single cell RNA sequencing (scRNA-seq) analysis identified genes associated with the development of CVP and HSPCs. RT-qPCR assessed changes in expression of these genes in zebrafish embryos exposed to different NP concentrations. Results The impact of NPs on zebrafish embryos was investigated, revealing significant reductions in survival and hatching rates and decreases in body length alongside increased heart rates. Exposure to NPs at 8 mg/L severely impaired zebrafish CVP development. RNA-seq revealed that NPs exposure altered the activity of oxidative enzymes, hydrolases, and the extracellular matrix in zebrafish embryos. Treatment with 10 µM NAC effectively rescued the CVP defects induced by NPs. Additionally, scRNA-seq identified genes associated with EC and HSPC development, and subsequent RT-qPCR validation confirmed significant expression changes in these genes. Conclusion The results of this study suggest that NPs induce oxidative stress in vascular ECs and HSPCs, which mediates CVP damage and impairs hematopoiesis in zebrafish embryos.
Collapse
Affiliation(s)
- Juntao Chen
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Wenjie Xie
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqian Cao
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Jiannan Zhang
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Juan Li
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
5
|
Yang Z, Guo D, Zhao J, Li J, Zhang R, Zhang Y, Xu C, Ke T, Wang QK. Aggf1 Specifies Hemangioblasts at the Top of Regulatory Hierarchy via Npas4l and mTOR-S6K-Emp2-ERK Signaling. Arterioscler Thromb Vasc Biol 2023; 43:2348-2368. [PMID: 37881938 DOI: 10.1161/atvbaha.123.318818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood. METHODS CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop aggf1-/- and emp2-/- knockout zebra fish. Whole-mount in situ hybridization and transgenic Tg(gata1-EGFP [enhanced green fluorescent protein]), Tg(mpx-EGFP), Tg(rag2-DsRed [discosoma sp. red fluorescent protein]), Tg(cd41-EGFP), Tg(kdrl-EGFP), and Tg(aggf1-/-;kdrl-EGFP) zebra fish were used to examine specification of hemangioblasts and hematopoietic stem and progenitor cells (HSPCs), hematopoiesis, and vascular development. Quantitative real-time polymerase chain reaction and Western blot analyses were used for expression analysis of genes and proteins. RESULTS Knockout of aggf1 impaired specification of hemangioblasts and HSPCs, hematopoiesis, and vascular development in zebra fish. Expression of npas4l/cloche-the presumed earliest marker for hemangioblast specification-was significantly reduced in aggf1-/- embryos and increased by overexpression of aggf1 in embryos. Overexpression of npas4l rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels in aggf1-/- embryos, placing aggf1 upstream of npas4l in hemangioblast specification. To identify the underlying molecular mechanism, we identified emp2 as a key aggf1 downstream gene. Similar to aggf1, emp2 knockout impaired the specification of hemangioblasts and HSPCs, hematopoiesis, and angiogenesis by increasing the phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase 1/2). Mechanistic studies showed that aggf1 knockdown and knockout significantly decreased the phosphorylated levels of mTOR (mammalian target of rapamycin) and p70 S6K (ribosomal protein S6 kinase), resulting in reduced protein synthesis of Emp2 (epithelial membrane protein 2), whereas mTOR activator MHY1485 (4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine) rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels and reduced Emp2 expression induced by aggf1 knockdown. CONCLUSIONS These results indicate that aggf1 acts at the top of npas4l and becomes the earliest marker during specification of hemangioblasts. Our data identify a novel signaling axis of Aggf1 (angiogenic factor with G-patch and FHA domain 1)-mTOR-S6K-ERK1/2 for specification of hemangioblasts and HSPCs, primitive and definitive hematopoiesis, and vascular development. Our findings provide important insights into specification of hemangioblasts and HSPCs essential for the development of the circulation system.
Collapse
Affiliation(s)
- Zhongcheng Yang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Di Guo
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Jinyan Zhao
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, China (J.Z.)
| | - Jia Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China (J.L.)
| | - Rui Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Yidan Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Tie Ke
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
- Shaoxing Institute of Innovation, Zhejiang University, China (Q.K.W.)
| |
Collapse
|
6
|
Li R, Chen B, Kubota A, Hanna A, Humeres C, Hernandez SC, Liu Y, Ma R, Tuleta I, Huang S, Venugopal H, Zhu F, Su K, Li J, Zhang J, Zheng D, Frangogiannis NG. Protective effects of macrophage-specific integrin α5 in myocardial infarction are associated with accentuated angiogenesis. Nat Commun 2023; 14:7555. [PMID: 37985764 PMCID: PMC10662477 DOI: 10.1038/s41467-023-43369-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Ma
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fenglan Zhu
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Da X, Li Z, Huang X, He Z, Yu Y, Tian T, Xu C, Yao Y, Wang QK. AGGF1 therapy inhibits thoracic aortic aneurysms by enhancing integrin α7-mediated inhibition of TGF-β1 maturation and ERK1/2 signaling. Nat Commun 2023; 14:2265. [PMID: 37081014 PMCID: PMC10119315 DOI: 10.1038/s41467-023-37809-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Thoracic aortic aneurysm (TAA) is a localized or diffuse dilatation of the thoracic aortas, and causes many sudden deaths each year worldwide. However, there is no effective pharmacologic therapy. Here, we show that AGGF1 effectively blocks TAA-associated arterial inflammation and remodeling in three different mouse models (mice with transverse aortic constriction, Fbn1C1041G/+ mice, and β-aminopropionitrile-treated mice). AGGF1 expression is reduced in the ascending aortas from the three models and human TAA patients. Aggf1+/- mice and vascular smooth muscle cell (VSMC)-specific Aggf1smcKO knockout mice show aggravated TAA phenotypes. Mechanistically, AGGF1 enhances the interaction between its receptor integrin α7 and latency-associated peptide (LAP)-TGF-β1, blocks the cleavage of LAP-TGF-β1 to form mature TGF-β1, and inhibits Smad2/3 and ERK1/2 phosphorylation in VSMCs. Pirfenidone, a treatment agent for idiopathic pulmonary fibrosis, inhibits TAA-associated vascular inflammation and remodeling in wild type mice, but not in Aggf1+/- mice. In conclusion, we identify an innovative AGGF1 protein therapeutic strategy to block TAA-associated vascular inflammation and remodeling, and show that efficacy of TGF-β inhibition therapies require AGGF1.
Collapse
Affiliation(s)
- Xingwen Da
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ziyan Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaofan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zuhan He
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yubing Yu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tongtong Tian
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Medical Genomics and School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.
| | - Yufeng Yao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Medical Genomics and School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.
| |
Collapse
|
8
|
Thomas JM, Sasankan D, Abraham M, Surendran S, Kartha CC, Rajavelu A. DNA methylation signatures on vascular differentiation genes are aberrant in vessels of human cerebral arteriovenous malformation nidus. Clin Epigenetics 2022; 14:127. [PMID: 36229855 PMCID: PMC9563124 DOI: 10.1186/s13148-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Arteriovenous malformation (AVM) is a tangle of arteries and veins, rupture of which can result in catastrophic hemorrhage in vulnerable sites such as the brain. Cerebral AVM is associated with a high mortality rate in humans. The causative factor or the stimulus at the artery-venous junction and the molecular basis of the development and progression of cerebral AVM remain unknown. While it is known that aberrant hemodynamic forces in the artery-vein junction contribute to the development of AVMs, the mechanistic pathways are unclear. Given that various environmental stimuli modulate epigenetic modifications on the chromatin of cells, we speculated that misregulated DNA methylome could lead to cerebral AVM development. To identify the aberrant epigenetic signatures, we used AVM nidus tissues and analyzed the global DNA methylome using the Infinium DNA methylome array. We observed significant alterations of DNA methylation in the genes associated with the vascular developmental pathway. Further, we validated the DNA hypermethylation by DNA bisulfite sequencing analysis of selected genes from human cerebral AVM nidus. Taken together, we provide the first experimental evidence for aberrant epigenetic signatures on the genes of vascular development pathway, in human cerebral AVM nidus.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Dhakshmi Sasankan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India, 695011
| | - Sumi Surendran
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Chandrasekharan C Kartha
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
9
|
Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022; 12:5015-5033. [PMID: 35836800 PMCID: PMC9274744 DOI: 10.7150/thno.74785] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease (PAD) poses a great challenge to society, with a growing prevalence in the upcoming years. Patients in the severe stages of PAD are prone to amputation and death, leading to poor quality of life and a great socioeconomic burden. Furthermore, PAD is one of the major complications of diabetic patients, who have higher risk to develop critical limb ischemia, the most severe manifestation of PAD, and thus have a poor prognosis. Hence, there is an urgent need to develop an effective therapeutic strategy to treat this disease. Therapeutic angiogenesis has raised concerns for more than two decades as a potential strategy for treating PAD, especially in patients without option for surgery-based therapies. Since the discovery of gene-based therapy for therapeutic angiogenesis, several approaches have been developed, including cell-, protein-, and small molecule drug-based therapeutic strategies, some of which have progressed into the clinical trial phase. Despite its promising potential, efforts are still needed to improve the efficacy of this strategy, reduce its cost, and promote its worldwide application. In this review, we highlight the current progress of therapeutic angiogenesis and the issues that need to be overcome prior to its clinical application.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| |
Collapse
|
10
|
Mac Gabhann F, Annex BH. AGGF1 Shows the α5β1 Integrin to Be Another Akt-or in a Common Angiogenesis Scene. Arterioscler Thromb Vasc Biol 2021; 41:2770-2772. [PMID: 34615370 DOI: 10.1161/atvbaha.121.316969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD (F.M.G.)
| | - Brian H Annex
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University (B.H.A.)
| |
Collapse
|