1
|
Barresi NV, Sebastian J, Arora G, Feingold B. Acquired Genotype-Positive Long QT Syndrome After Pediatric Heart Transplantation. Pediatr Transplant 2025; 29:e70075. [PMID: 40176271 PMCID: PMC11965777 DOI: 10.1111/petr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Congenital long QT syndrome (LQTS) is rare but significant, as it carries a risk for ventricular arrhythmias and sudden cardiac death. Its diagnosis can be made clinically by serial ECGs, ambulatory ECG monitoring, and exercise stress testing; however, genetic testing is confirmatory in the majority of cases. METHODS Here, we describe a rare case of phenotype-positive LQTS in a 6-year-old heart transplant recipient, confirmed 5 years after transplantation to be genotype-positive and thus "acquired" from the transplanted heart. RESULTS Recognition of a persistently prolonged QTc interval on the recipient's serial ECGs led to ambulatory ECG monitoring and exercise stress testing-both of which were suspicious for LQTS. Ultimately, genetic evaluation and cardiac biopsy were obtained and resulted positive for a KCNQ1 pathogenic variant associated with Type 1 LQTS. CONCLUSION Recognition of persistent, otherwise unexplained, ECG abnormalities can prompt genetic analysis of the allograft, leading to the potential life-saving diagnosis of a channelopathy.
Collapse
Affiliation(s)
- Nicholas V. Barresi
- Division of Pediatric CardiologyChildren's Hospital of Pittsburgh of UPMCPittsburghPennsylvaniaUSA
| | - Jessica Sebastian
- Division of Genetics and Genomic MedicineChildren's Hospital of Pittsburgh of UPMCPittsburghPennsylvaniaUSA
| | - Gaurav Arora
- Division of Pediatric CardiologyChildren's Hospital of Pittsburgh of UPMCPittsburghPennsylvaniaUSA
| | - Brian Feingold
- Division of Pediatric CardiologyChildren's Hospital of Pittsburgh of UPMCPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Kim JH, Baggish AL, Levine BD, Ackerman MJ, Day SM, Dineen EH, Guseh JS, La Gerche A, Lampert R, Martinez MW, Papadakis M, Phelan DM, Shafer KM. Clinical Considerations for Competitive Sports Participation for Athletes With Cardiovascular Abnormalities: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation 2025; 151:e716-e761. [PMID: 39973614 DOI: 10.1161/cir.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
COLLABORATORS Larry A. Allen, MD, MHS, FAHA, FACC; Mats Börjesson, MD, PhD, FACC; Alan C. Braverman, MD, FACC; Julie A. Brothers, MD; Silvia Castelletti, MD, MSc, FESC; Eugene H. Chung, MD, MPH, FHRS, FAHA, FACC; Timothy W. Churchill, MD, FACC; Guido Claessen, MD, PhD; Flavio D'Ascenzi, MD, PhD; Douglas Darden, MD; Peter N. Dean, MD, FACC; Neal W. Dickert, MD, PhD, FACC; Jonathan A. Drezner, MD; Katherine E. Economy, MD, MPH; Thijs M.H. Eijsvogels, PhD; Michael S. Emery, MD, MS, FACC; Susan P. Etheridge, MD, FHRS, FAHA, FACC; Sabiha Gati, BSc (Hons), MBBS, PhD, MRCP, FESC; Belinda Gray, BSc (Med), MBBS, PhD; Martin Halle, MD; Kimberly G. Harmon, MD; Jeffrey J. Hsu, MD, PhD, FAHA, FACC; Richard J. Kovacs, MD, FAHA, MACC; Sheela Krishnan, MD, FACC; Mark S. Link, MD, FHRS, FAHA, FACC; Martin Maron, MD; Silvana Molossi, MD, PhD, FACC; Antonio Pelliccia, MD; Jack C. Salerno, MD, FACC, FHRS; Ankit B. Shah, MD, MPH, FACC; Sanjay Sharma, BSc (Hons), MBChB, MRCP (UK), MD; Tamanna K. Singh, MD, FACC; Katie M. Stewart, NP, MS; Paul D. Thompson, MD, FAHA, FACC; Meagan M. Wasfy, MD, MPH, FACC; Matthias Wilhelm, MD. This American Heart Association/American College of Cardiology scientific statement on clinical considerations for competitive sports participation for athletes with cardiovascular abnormalities or diseases is organized into 11 distinct sections focused on sports-specific topics or disease processes that are relevant when considering the potential risks of adverse cardiovascular events, including sudden cardiac arrest, during competitive sports participation. Task forces comprising international experts in sports cardiology and the respective topics covered were assigned to each section and prepared specific clinical considerations tables for practitioners to reference. Comprehensive literature review and an emphasis on shared decision-making were integral in the writing of all clinical considerations presented.
Collapse
|
3
|
Kim JH, Baggish AL, Levine BD, Ackerman MJ, Day SM, Dineen EH, Guseh Ii JS, La Gerche A, Lampert R, Martinez MW, Papadakis M, Phelan DM, Shafer KM, Allen LA, Börjesson M, Braverman AC, Brothers JA, Castelletti S, Chung EH, Churchill TW, Claessen G, D'Ascenzi F, Darden D, Dean PN, Dickert NW, Drezner JA, Economy KE, Eijsvogels TMH, Emery MS, Etheridge SP, Gati S, Gray B, Halle M, Harmon KG, Hsu JJ, Kovacs RJ, Krishnan S, Link MS, Maron M, Molossi S, Pelliccia A, Salerno JC, Shah AB, Sharma S, Singh TK, Stewart KM, Thompson PD, Wasfy MM, Wilhelm M. Clinical Considerations for Competitive Sports Participation for Athletes With Cardiovascular Abnormalities: A Scientific Statement From the American Heart Association and American College of Cardiology. J Am Coll Cardiol 2025; 85:1059-1108. [PMID: 39976316 DOI: 10.1016/j.jacc.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This American Heart Association/American College of Cardiology scientific statement on clinical considerations for competitive sports participation for athletes with cardiovascular abnormalities or diseases is organized into 11 distinct sections focused on sports-specific topics or disease processes that are relevant when considering the potential risks of adverse cardiovascular events, including sudden cardiac arrest, during competitive sports participation. Task forces comprising international experts in sports cardiology and the respective topics covered were assigned to each section and prepared specific clinical considerations tables for practitioners to reference. Comprehensive literature review and an emphasis on shared decision-making were integral in the writing of all clinical considerations presented.
Collapse
|
4
|
Neves R, Bains S, Bos JM, van der Werf C, Bergeman AT, Peltenburg P, Blom NA, Sanatani S, Swan H, Probst V, Kannankeril PJ, Skinner JR, Brugada R, Robyns T, Borggrefe M, Shimizu W, Kammeraad JAE, Krahn AD, Wilde AAM, Ackerman MJ. International Multicenter Cohort Study on Beta-Blocker-Free Treatment Strategies for Catecholaminergic Polymorphic Ventricular Tachycardia Patients. JACC Clin Electrophysiol 2025; 11:270-278. [PMID: 39708032 DOI: 10.1016/j.jacep.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare, potentially life-threatening genetic heart disease. Nonselective beta-blockers (BBs) are highly effective in reducing CPVT-triggered arrhythmic events. However, some patients suffer from unacceptable BB side effects and might require strategies without a BB. OBJECTIVES This study sought to review the spectrum of and outcomes associated with BB-free treatment configurations in patients with CPVT enrolled in the International CPVT Registry. METHODS From the Registry, patients with RYR2 variant-positive CPVT treated with a BB-free strategy for ≥6 months were included. Two treatment groups were defined: patients classified as very low risk and treated with intentional nontherapy (INT) and patients who needed to be treated but did not tolerate BBs and were treated with 3 different strategies. RESULTS Overall, 100 of 1,017 patients (10%) were on a BB-free treatment strategy. There were 73 patients (33 females [42%]) in the INT group. In patients 66 (90%), INT was pursued after low-risk assessment in asymptomatic patients and absent or negligible stress test phenotype. Twenty-seven patients (22 females, 81%) were treated using 3 different BB-free treatment strategies (flecainide monotherapy, n = 21; left cardiac sympathetic denervation monotherapy, n = 2; flecainide + left cardiac sympathetic denervation, n = 4). In total, 25 patients (93%) were previously treated with BBs. During a median follow-up of 6 years (IQR: 3-9 years), 2 patients (2%) had a CPVT-associated event. CONCLUSIONS Although nonselective BBs remain the cornerstone treatment for CPVT, 10% of patients with CPVT required a BB-free treatment strategy. After careful risk assessment, safe and effective BB-free treatment strategies can be configured.
Collapse
Affiliation(s)
- Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota, USA
| | - Sahej Bains
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota, USA; Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota, USA
| | - Christian van der Werf
- Heart Centre, Amsterdam University Medical Centers, Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart
| | - Auke T Bergeman
- Heart Centre, Amsterdam University Medical Centers, Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart
| | - Puck Peltenburg
- Heart Centre, Amsterdam University Medical Centers, Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart; Emma Children's Hospital, Amsterdam, the Netherlands
| | - Nico A Blom
- Department of Pediatric Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Pediatric Cardiology, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, the Netherlands
| | - Shubhayan Sanatani
- Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Heikki Swan
- Heart and Lung Centre, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Vincent Probst
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Prince J Kannankeril
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group New Zealand, Green Lane Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland, New Zealand; Department of Paediatrics Child and Youth Health, The University of Auckland, Auckland, New Zealand
| | - Ramon Brugada
- Cardiovascular Genetics Center IDIBGI, CIBERCV, Cardiology Service Hospital Trueta, Medicine Department, School of Medicine UdG, Girona, Spain
| | - Tomas Robyns
- Department of Cardiovascular Diseases, University Hospitals Leuven, Belgium and Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Martin Borggrefe
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine Nippon Medical School, Tokyo, Japan
| | - Janneke A E Kammeraad
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart; Erasmus Medical Center, Sophia Children's Hospital, Cardiovascular Institute, Department of Pediatric Cardiology, Rotterdam, the Netherlands
| | - Andrew D Krahn
- Center of Cardiovascular Innovation, Heart Rhythm Service, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canda
| | - Arthur A M Wilde
- Heart Centre, Amsterdam University Medical Centers, Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota, USA; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
5
|
Neves R, Crotti L, Bains S, Bos JM, Dagradi F, Musu G, Garmany R, Giovenzana FLF, Cerea P, Giudicessi JR, Schwartz PJ, Ackerman MJ. Frequency of and outcomes associated with nonadherence to guideline-based recommendations for an implantable cardioverter-defibrillator in patients with congenital long QT syndrome. Heart Rhythm 2024:S1547-5271(24)03394-0. [PMID: 39366437 DOI: 10.1016/j.hrthm.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Guideline-directed device therapy for long QT syndrome (LQTS) has evolved during the years, and indications for an implantable cardioverter-defibrillator (ICD) vary between professional cardiac societies. OBJECTIVE We aimed to identify the subset of patients with LQTS who satisfied a class I or class II 2022 European Society of Cardiology guideline-based recommendation for an ICD and to determine the outcomes of those patients who received an ICD compared with those treated without an ICD. METHODS Retrospective analysis was conducted of 2861 patients with LQT1, LQT2, or LQT3 to identify patients meeting contemporary recommendations for guideline-directed device therapy. Basic demographics, clinical characteristics, and frequency/type of breakthrough cardiac events (BCEs) were extracted, and outcomes/complications were compared between patients treated with an ICD and those treated without one. RESULTS Of the 290 patients (approximately 10%) who met a guideline-based recommendation, 53 (18%) satisfied a class I/level B indication for an ICD; 56 (19%), a class I/level C indication; 19 (7%), a class IIa/level C indication; and 162 (56%), a class IIb/level B indication. However, most patients (156/290 [54%]) did not receive an ICD. Of those who received an ICD, 55 of 134 (41%) experienced ≥1 appropriate ventricular fibrillation-terminating ICD therapy, whereas ICD-related complications occurred in 13 patients (10%). Of those who were treated without an ICD, only 6 of 156 patients (4%) had nonlethal BCEs, which was significantly lower compared with the ICD group (P < .001). CONCLUSION With >1200 years of combined follow-up, the experience and evidence from our 2 LQTS specialty centers suggest that many patients who satisfy a recommendation for an ICD based on the latest 2022 European Society of Cardiology guidelines may not need one. This is particularly true when the indication stemmed from a BCE while receiving beta blocker therapy or in asymptomatic patients with an increased 1-2-3-LQTS-Risk score.
Collapse
Affiliation(s)
- Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sahej Bains
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Federica Dagradi
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Giulia Musu
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Ramin Garmany
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Fulvio L F Giovenzana
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Paolo Cerea
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - John R Giudicessi
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Divisions of Heart Rhythm Services and Circulatory Failure, Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy.
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Divisions of Heart Rhythm Services and Circulatory Failure, Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
6
|
Lampert R, Chung EH, Ackerman MJ, Arroyo AR, Darden D, Deo R, Dolan J, Etheridge SP, Gray BR, Harmon KG, James CA, Kim JH, Krahn AD, La Gerche A, Link MS, MacIntyre C, Mont L, Salerno JC, Shah MJ. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm 2024; 21:e151-e252. [PMID: 38763377 DOI: 10.1016/j.hrthm.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Youth and adult participation in sports continues to increase, and athletes may be diagnosed with potentially arrhythmogenic cardiac conditions. This international multidisciplinary document is intended to guide electrophysiologists, sports cardiologists, and associated health care team members in the diagnosis, treatment, and management of arrhythmic conditions in the athlete with the goal of facilitating return to sport and avoiding the harm caused by restriction. Expert, disease-specific risk assessment in the context of athlete symptoms and diagnoses is emphasized throughout the document. After appropriate risk assessment, management of arrhythmias geared toward return to play when possible is addressed. Other topics include shared decision-making and emergency action planning. The goal of this document is to provide evidence-based recommendations impacting all areas in the care of athletes with arrhythmic conditions. Areas in need of further study are also discussed.
Collapse
Affiliation(s)
- Rachel Lampert
- Yale University School of Medicine, New Haven, Connecticut
| | - Eugene H Chung
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Rajat Deo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joe Dolan
- University of Utah, Salt Lake City, Utah
| | | | - Belinda R Gray
- University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | | - Andrew D Krahn
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Andre La Gerche
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | | | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jack C Salerno
- University of Washington School of Medicine, Seattle, Washington
| | - Maully J Shah
- Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Dusi V, Dagradi F, Spazzolini C, Crotti L, Cerea P, Giovenzana FLF, Musu G, Pedrazzini M, Torchio M, Schwartz PJ. Long QT syndrome: importance of reassessing arrhythmic risk after treatment initiation. Eur Heart J 2024; 45:2647-2656. [PMID: 38751064 PMCID: PMC11297500 DOI: 10.1093/eurheartj/ehae289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND AIMS Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (βB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received βBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.
Collapse
Affiliation(s)
- Veronica Dusi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Dagradi
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Carla Spazzolini
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Paolo Cerea
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Fulvio L F Giovenzana
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Giulia Musu
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Matteo Pedrazzini
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Margherita Torchio
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Via Pier Lombardo, 22, 20135 Milan, Italy
| |
Collapse
|
8
|
Hauwanga WN, Yau RCC, Goh KS, Castro Ceron JI, Alphonse B, Singh G, Elamin S, Jamched V, Abraham AA, Purvil J, Devan JN, Valentim G, McBenedict B, Lima Pessôa B, Mesquita ET. Management of Long QT Syndrome: A Systematic Review. Cureus 2024; 16:e62592. [PMID: 39027806 PMCID: PMC11257643 DOI: 10.7759/cureus.62592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Long QT syndrome (LQTS) is a cardiac disorder characterized by prolonged repolarization of the heart's electrical cycle, which can be observed as an extended QT interval on an electrocardiogram (ECG). The safe and effective management of LQTS often necessitates a multifaceted approach encompassing pharmacological treatment, lifestyle modifications, and, in high-risk cases, the implantation of implantable cardioverter-defibrillators (ICDs). Beta-blockers, particularly nadolol and propranolol, are foundational in treating LQTS, especially for high-risk patients, though ICDs are recommended for those with a history of cardiac arrest or recurrent arrhythmic episodes. Intermediate and low-risk patients are usually managed with medical therapy and regular monitoring. Lifestyle modifications, such as avoiding strenuous physical activities and certain medications, play a critical role. Additionally, psychological support is essential due to the anxiety and depression associated with LQTS. Left cardiac sympathetic denervation (LCSD) offers an alternative for those intolerant to beta-blockers or ICDs. For diagnosis and management, advancements in artificial intelligence (AI) are proving beneficial, enhancing early detection and risk stratification. Despite these developments, significant gaps in understanding the pathophysiology and optimal management strategies for LQTS remain. Future research should focus on refining risk stratification, developing new therapeutic approaches, and generating robust data to guide treatment decisions, ultimately aiming for a personalized medicine approach.
Collapse
Affiliation(s)
- Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Johor Bahru, MYS
| | | | | | - Gurinder Singh
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | - Sara Elamin
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | | | | | - Joshi Purvil
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | - Jeshua N Devan
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | | | | | | | | |
Collapse
|
9
|
Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc Res 2024; 120:114-131. [PMID: 38195920 PMCID: PMC10936753 DOI: 10.1093/cvr/cvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
- Department for Cardiology, Bart’s Heart Centre, West Smithfield EC1A 7BE, London, UK
| |
Collapse
|
10
|
Mariani MV, Pierucci N, Fanisio F, Laviola D, Silvetti G, Piro A, La Fazia VM, Chimenti C, Rebecchi M, Drago F, Miraldi F, Natale A, Vizza CD, Lavalle C. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:94. [PMID: 38256355 PMCID: PMC10819657 DOI: 10.3390/medicina60010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Pediatric cardiomyopathies (CMs) and electrical diseases constitute a heterogeneous spectrum of disorders distinguished by structural and electrical abnormalities in the heart muscle, attributed to a genetic variant. They rank among the main causes of morbidity and mortality in the pediatric population, with an annual incidence of 1.1-1.5 per 100,000 in children under the age of 18. The most common conditions are dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Despite great enthusiasm for research in this field, studies in this population are still limited, and the management and treatment often follow adult recommendations, which have significantly more data on treatment benefits. Although adult and pediatric cardiac diseases share similar morphological and clinical manifestations, their outcomes significantly differ. This review summarizes the latest evidence on genetics, clinical characteristics, management, and updated outcomes of primary pediatric CMs and electrical diseases, including DCM, HCM, arrhythmogenic right ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), and short QT syndrome (SQTS).
Collapse
Affiliation(s)
- Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Francesca Fanisio
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Vincenzo Mirco La Fazia
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy;
| | - Fabio Miraldi
- Cardio Thoracic-Vascular and Organ Transplantation Surgery Department, Policlinico Umberto I Hospital, 00161 Rome, Italy;
| | - Andrea Natale
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| |
Collapse
|
11
|
Neves R, Bains S, Bos JM, MacIntyre C, Giudicessi JR, Ackerman MJ. Precision therapy in congenital long QT syndrome. Trends Cardiovasc Med 2024; 34:39-47. [PMID: 35772688 DOI: 10.1016/j.tcm.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Long QT syndrome (LQTS) is a potentially life-threatening, but highly treatable genetic heart disease. LQTS-directed therapies often consist of beta-blockers (BBs), left cardiac sympathetic denervation (LCSD), and/or an implantable cardioverter defibrillator (ICD). However, in clinical practice, many patient-specific and genotype-directed permutations exist. Herein, we aim to review the spectrum of treatment configurations utilized at a single, tertiary center specializing in the care of patients with LQTS to demonstrate optimal LQTS-directed management is not amenable to a "one-size-fits-all" approach but instead benefits from patient- and genotype-tailored strategies.
Collapse
Affiliation(s)
- Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Sahej Bains
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Mayo Clinic Alix School of Medicine's Medical Scientist Training Program, Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN.
| |
Collapse
|
12
|
Sebastian SA, Panthangi V, Sethi Y, Padda I, Khan U, Affas ZR, Mareddy C, Dolack L, Johal G. Precision Medicine and Cardiac Channelopathies: Human iPSCs Take the Lead. Curr Probl Cardiol 2023; 48:101990. [PMID: 37495059 DOI: 10.1016/j.cpcardiol.2023.101990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Sudden cardiac death (SCD) is one of the leading causes of death worldwide, usually involving young people. SCD remains a critical public health problem accounting for 185,000-450,000 deaths annually, representing around 7%-18% of all deaths globally. As per evidence, ∼2%-54% of sudden unexpected deaths in people under the age of 35 years fail to show evidence of structural cardiac abnormalities at autopsy, making ion channelopathies the probable causes in such cases. The most generally recognized cardiac ion channelopathies with genetic testing are long QT syndrome (LQTS), Brugada syndrome (BrS), short QT syndrome (SQTS), and catecholaminergic polymorphic ventricular tachycardia (CPVT). The substantial progress in understanding the genetics of ion channelopathies in the last 2 decades has obliged the early diagnosis and prevention of SCD to a certain extent. In this review, we analyze the critical challenges and recent advancements in the identification, risk stratification, and clinical management of potentially fatal cardiac ion channel disorders. We also emphasize the application of precision medicine (PM) and artificial intelligence (AI) for comprehending the underlying genetic mechanisms, especially the role of human induced pluripotent stem cell (iPSC) based platforms to unravel the primary refractory clinical problems associated with channelopathies.
Collapse
Affiliation(s)
| | | | - Yashendra Sethi
- PearResearch, Dehradun, India; Department of Internal Medicine, Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun, India
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY
| | - Ubaid Khan
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | - Ziad R Affas
- Department of Internal Medicine, Henry Ford Health System, Clinton Township, MI
| | - Chinmaya Mareddy
- Department of Cardiology, University of Virginia, Charlottesville, VA
| | - Lee Dolack
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, WA
| | - Gurpreet Johal
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, WA
| |
Collapse
|
13
|
Lima B, Razmjouei S, Bajwa MT, Shahzad Z, Shoewu OA, Ijaz O, Mange P, Khanal S, Gebregiorgis T. Polypharmacy, Gender Disparities, and Ethnic and Racial Predispositions in Long QT Syndrome: An In-Depth Review. Cureus 2023; 15:e46009. [PMID: 37900391 PMCID: PMC10600617 DOI: 10.7759/cureus.46009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Long QT syndrome (LQTS) is a complex disorder of cardiac electrophysiology. It is characterized by delayed myocardial polarization leading to QT prolongation and alterations on the ST segment and T wave visible on electrocardiogram (ECG). Syncope is a common manifestation, and torsade de pointes (TdP) can lead to sudden cardiac death. Three major LQTS genes (KCI31, KCNH2, and SCN5) lead to most of the cases of LQTS. Lifestyle modifications, beta blockers, and implantable cardioverter defibrillator (ICD) placement are the main treatments for LQTS. Polypharmacy, including QT-prolonging drugs, has been shown to worsen LQTS. The impact on potassium channels and the human ether-a-go-go-related gene (hERG) is the mechanism behind the QT interval prolongation caused by these medications. There is an increased incidence of LQTS among African-American men and women as compared to Caucasians. Women with LQTS tend to have a higher mortality rate from the condition, especially during menstruation and shortly after giving birth. Genetic testing is reserved to those patientswho exhibit either a strong clinical index of suspicion or experience persistent QT prolongation despite their lack of symptoms. Knowing the genetics, racial, and gender discrepancies can help improve patient management and a better comprehension on each case. Proper understanding of how ion channels function and their interaction with medications will lead to a better comprehension and to develop effective forms to treat those patients.
Collapse
Affiliation(s)
- Bruno Lima
- Medicine, University of Grande Rio, Rio Grande, USA
| | - Soha Razmjouei
- Anesthesiology, Case Western Reserve University School of Medicine, Cleveland, USA
| | | | - Zoha Shahzad
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | | - Osama Ijaz
- Internal Medicine, Services Hospital Lahore, Lahore, PAK
| | - Pooja Mange
- Internal Medicine, K.J. Somaiya Hospital and Research Center, Mumbai, IND
| | | | - Tsion Gebregiorgis
- General Practice, Addis Ababa University Medical Faculty, Addis Ababa, ETH
| |
Collapse
|
14
|
Kwak K, Do Y, Yu T, Oh J, Byun S. Anesthetic management for inhibiting sympathetic activation in an adolescent patient diagnosed with catecholaminergic polymorphic ventricular tachycardia and undergoing left cardiac sympathetic denervation: A case report. Clin Case Rep 2023; 11:e7658. [PMID: 37405040 PMCID: PMC10315446 DOI: 10.1002/ccr3.7658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic disorder in which catecholamine release during exercise or emotional stress cause fatal tachyarrhythmias. In this paper, we discuss methods to minimize the sympathetic stimulation that can occur during the perioperative period in patients undergoing left cardiac sympathetic denervation to surgically treat CPVT.
Collapse
Affiliation(s)
- Kyung‐Hwa Kwak
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Chilgok Hospital, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Young‐Woo Do
- Department of Thoracic and Cardiovascular Surgery, Kyungpook National University Chilgok Hospital, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Taeyoung Yu
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Chilgok Hospital, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jinyoung Oh
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Chilgok Hospital, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Sung‐Hye Byun
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Chilgok Hospital, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
15
|
Tobert KE, Bos JM, Moir C, Polites SF, Ackerman MJ. Bilateral cardiac sympathetic denervation in patients with congenital long QT syndrome. Heart Rhythm 2023; 20:1033-1038. [PMID: 36934983 DOI: 10.1016/j.hrthm.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) is a potentially lethal yet treatable genetic heart disease for which left cardiac sympathetic denervation (LCSD) is a class I recommendation. Recent reports have suggested bilateral cardiac sympathetic denervation (BiCSD) as the initial surgical denervation therapy in LQTS. OBJECTIVE The purpose of this study was to determine the frequency and settings in which BiCSD was used in a tertiary referral center with expertise in LCSD. METHODS We performed a retrospective review of 234 out of 1638 patients with LQTS who underwent sympathetic denervation (14%) at our institution to identify the subset of patients who underwent BiCSD. Cardiac events (CEs) before LCSD, after LCSD, and after the completion of BiCSD were recorded and defined as being an appropriate implantable cardioverter-defibrillator shock, arrhythmic syncope, or sudden cardiac arrest. RESULTS Only 11 patients (4.7%; 6 females [55%]) had BiCSD at our institution. Patients who received BiCSD trended toward being younger at diagnosis (6 ± 15 years vs 14 ± 13 years; P = .06) and being more likely to be symptomatic (73% vs 53%; P = .07) than the larger LCSD-only cohort. Continued CEs post-LCSD (3.8 CEs per patient on average) was the predominant determinant to return for BiCSD. Over 60 combined years of follow-up, 4 patients have not had a CE post-BiCSD while the other 7 patients average 3.6 nonlethal CEs. CONCLUSION Less than 5% of all patients receiving denervation therapy underwent BiCSD. When BiCSD was chosen, it was almost always done in a staged sequential manner beginning with LCSD first and when driven by the arrhythmogenicity of the LQTS substrate, despite otherwise optimized guideline-directed therapies.
Collapse
Affiliation(s)
- Kathryn E Tobert
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
16
|
McCabe MD, Cervantes R, Kewcharoen J, Sran J, Garg J. Quelling the Storm: A Review of the Management of Electrical Storm. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00338-5. [PMID: 37296026 DOI: 10.1053/j.jvca.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Heightened sympathetic input to the myocardium potentiates cardiac electrical instability and may herald an electrical storm. An electrical storm is characterized by 3 or more episodes of ventricular tachycardia, ventricular fibrillation, or appropriate internal cardiac defibrillator shocks within 24 hours. Management of electrical storms is resource-intensive and inevitably requires careful coordination between multiple subspecialties. Anesthesiologists have an important role in acute, subacute, and long-term management. Identifying the phase of an electrical storm and understanding the characteristics of each morphology may help the anesthesiologist anticipate the management approach. In the acute phase, management of an electrical storm is aimed at providing advanced cardiac life support and identifying reversible causes. After initial stabilization, subacute management focuses on dampening the sympathetic surge with sedation, thoracic epidural, or stellate ganglion blockade. Definitive long-term management with surgical sympathectomy or catheter ablation also may be warranted. Our objective is to provide an overview of electrical storms and the anesthesiologist's role in management.
Collapse
Affiliation(s)
- Melissa D McCabe
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California.
| | - Richard Cervantes
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jakrin Kewcharoen
- Cardiac Arrhythmia Service, Loma Linda University School of Medicine, Loma Linda, California
| | - Jasmine Sran
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jalaj Garg
- Cardiac Arrhythmia Service, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
17
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
18
|
Ban JE. The Outcome of Long QT Syndrome: What is the Optimal Therapy? Korean Circ J 2022; 52:782-784. [PMID: 36217599 PMCID: PMC9551228 DOI: 10.4070/kcj.2022.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ji-Eun Ban
- Department of Pediatrics, Ewha Womans University Medical Center, Seoul, Korea
| |
Collapse
|
19
|
Corrado D, Link MS, Schwartz PJ. Implantable defibrillators in primary prevention of genetic arrhythmias. A shocking choice? Eur Heart J 2022; 43:3029-3040. [PMID: 35725934 PMCID: PMC9443985 DOI: 10.1093/eurheartj/ehac298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Many previously unexplained life-threatening ventricular arrhythmias and sudden cardiac deaths (SCDs) in young individuals are now recognized to be genetic in nature and are ascribed to a growing number of distinct inherited arrhythmogenic diseases. These include hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (VT), and short QT syndrome. Because of their lower frequency compared to coronary disease, risk factors for SCD are not very precise in patients with inherited arrhythmogenic diseases. As randomized studies are generally non-feasible and may even be ethically unjustifiable, especially in the presence of effective therapies, the risk assessment of malignant arrhythmic events such as SCD, cardiac arrest due to ventricular fibrillation (VF), appropriate implantable cardioverter defibrillator (ICD) interventions, or ICD therapy on fast VT/VF to guide ICD implantation is based on observational data and expert consensus. In this document, we review risk factors for SCD and indications for ICD implantation and additional therapies. What emerges is that, allowing for some important differences between cardiomyopathies and channelopathies, there is a growing and disquieting trend to create, and then use, semi-automated systems (risk scores, risk calculators, and, to some extent, even guidelines) which then dictate therapeutic choices. Their common denominator is a tendency to favour ICD implantation, sometime with reason, sometime without it. This contrasts with the time-honoured approach of selecting, among the available therapies, the best option (ICDs included) based on the clinical judgement for the specific patient and after having assessed the protection provided by optimal medical treatment.
Collapse
Affiliation(s)
- Domenico Corrado
- Inherited Arrhythmogenic Cardiomyopathies and Sports Cardiology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Padova, Italy
| | - Mark S Link
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| |
Collapse
|
20
|
Martinez K, Bains S, Giudicessi JR, Bos JM, Neves R, Ackerman MJ. Spectrum and Prevalence of Side Effects and Complications with Guideline Directed Therapies for Congenital Long QT Syndrome. Heart Rhythm 2022; 19:1666-1672. [PMID: 35710045 DOI: 10.1016/j.hrthm.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Beta blockers (BBs), sodium channel blockers (SCBs), left cardiac sympathetic denervation (LCSD), and implantable cardioverter defibrillators (ICDs) are used to prevent or counter long QT syndrome (LQTS)-triggered syncope, seizures, and sudden cardiac death (SCD). The spectrum and extent of side effects/complications associated with these guideline-directed therapies (GDTs) remain unknown. OBJECTIVE Identify the types/prevalence of treatment-associated side effects/complications for patients with the most common LQTS subtypes following GDT. METHODS Retrospective analysis was performed on 1310 patients with type 1, 2 or 3 LQTS (LQT1-LQT3) evaluated in Mayo Clinic's Windland Smith Rice Genetic Heart Rhythm Clinic (average age at diagnosis 22±18 years; average treated follow-up 5±5 years) and treated with ≥1 of the common GDTs for LQTS. RESULTS BBs were used in 1102 (84%), SCBs in 104 (8%), LCSD in 197 (15%), and an ICD in 251 (19%) patients. Overall, 54% of patients reported at least one treatment-associated side effect/complication. 490/1102 (44%) patients treated with BBs reported side effects with fatigue (381; 35%) being most common. 28/104 (27%) SCB-treated patients reported side effects, most common being GI distress/vomiting (18, 17%). 80/197 (41%) patients reported side effects after LCSD, most reporting neuropathic pain (57; 29%). 129/251 (51%) patients experienced ≥1 complication after ICD implantation, including inappropriate shocks (46, 18%). CONCLUSION Although LQTS-triggered SCD is uncommon in the properly treated patient, this study demonstrates that contemporary GDTs for LQTS are not innocuous. Their treatment-related side effects are not trivial and should compel an ongoing quest for new LQTS therapies.
Collapse
Affiliation(s)
- Katherine Martinez
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Sahej Bains
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota; Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - John R Giudicessi
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota
| | - Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
21
|
Krahn AD, Laksman Z, Sy RW, Postema PG, Ackerman MJ, Wilde AAM, Han HC. Congenital Long QT Syndrome. JACC Clin Electrophysiol 2022; 8:687-706. [PMID: 35589186 DOI: 10.1016/j.jacep.2022.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Congenital long QT syndrome (LQTS) encompasses a group of heritable conditions that are associated with cardiac repolarization dysfunction. Since its initial description in 1957, our understanding of LQTS has increased dramatically. The prevalence of LQTS is estimated to be ∼1:2,000, with a slight female predominance. The diagnosis of LQTS is based on clinical, electrocardiogram, and genetic factors. Risk stratification of patients with LQTS aims to identify those who are at increased risk of cardiac arrest or sudden cardiac death. Factors including age, sex, QTc interval, and genetic background all contribute to current risk stratification paradigms. The management of LQTS involves conservative measures such as the avoidance of QT-prolonging drugs, pharmacologic measures with nonselective β-blockers, and interventional approaches such as device therapy or left cardiac sympathetic denervation. In general, most forms of exercise are considered safe in adequately treated patients, and implantable cardioverter-defibrillator therapy is reserved for those at the highest risk. This review summarizes our current understanding of LQTS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Sy
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA; Departments of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart), Academic University Medical Center, Amsterdam, the Netherlands
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada; Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
22
|
Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev 2022; 11:e20. [PMID: 36644199 PMCID: PMC9820193 DOI: 10.15420/aer.2022.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/02/2022] [Indexed: 01/17/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterised by adenergically mediated bidirectional and/or polymorphic ventricular tachycardia. CPVT is a significant cause of autopsy-negative sudden death in children and adolescents, although it can also affect adults. It is often caused by pathogenic variants in the cardiac ryanodine receptor gene as well as other rarer genes. Early identification and risk stratification is of major importance. β-blockers are the cornerstone of therapy. Sodium channel blockers, specifically flecainide, have an additive role. Left cardiac sympathetic denervation is playing an increasing role in suppression of arrhythmia and symptoms. Concerns have been raised, however, about the efficacy of implantable cardioverter defibrillator therapy and the risk of catecholamine driven proarrhythmic storms. In this review, we summarise the clinical characteristics, genetics, and diagnostic and therapeutic strategies for CPVT and describe recent advances and challenges.
Collapse
Affiliation(s)
- Mohamed Abbas
- Department of Cardiology, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Chris Miles
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Elijah Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Wilde AAM, Amin AS, Postema PG. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart 2022; 108:332-338. [PMID: 34039680 PMCID: PMC8862104 DOI: 10.1136/heartjnl-2020-318259] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Congenital long QT syndrome (LQTS) is characterised by heart rate corrected QT interval prolongation and life-threatening arrhythmias, leading to syncope and sudden death. Variations in genes encoding for cardiac ion channels, accessory ion channel subunits or proteins modulating the function of the ion channel have been identified as disease-causing mutations in up to 75% of all LQTS cases. Based on the underlying genetic defect, LQTS has been subdivided into different subtypes. Growing insights into the genetic background and pathophysiology of LQTS has led to the identification of genotype-phenotype relationships for the most common genetic subtypes, the recognition of genetic and non-genetic modifiers of phenotype, optimisation of risk stratification algorithms and the discovery of gene-specific therapies in LQTS. Nevertheless, despite these great advancements in the LQTS field, large gaps in knowledge still exist. For example, up to 25% of LQTS cases still remain genotype elusive, which hampers proper identification of family members at risk, and it is still largely unknown what determines the large variability in disease severity, where even within one family an identical mutation causes malignant arrhythmias in some carriers, while in other carriers, the disease is clinically silent. In this review, we summarise the current evidence available on the diagnosis, clinical management and therapeutic strategies in LQTS. We also discuss new scientific developments and areas of research, which are expected to increase our understanding of the complex genetic architecture in genotype-negative patients, lead to improved risk stratification in asymptomatic mutation carriers and more targeted (gene-specific and even mutation-specific) therapies.
Collapse
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Ahmad S Amin
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Pieter G Postema
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Structural and function organization of intrathoracic extracardiac autonomic projections to the porcine heart: implications for targeted neuromodulation therapy. Heart Rhythm 2022; 19:975-983. [DOI: 10.1016/j.hrthm.2022.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
|
25
|
Martínez-Barrios E, Cesar S, Cruzalegui J, Hernandez C, Arbelo E, Fiol V, Brugada J, Brugada R, Campuzano O, Sarquella-Brugada G. Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines 2022; 10:106. [PMID: 35052786 PMCID: PMC8773373 DOI: 10.3390/biomedicines10010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - José Cruzalegui
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Clara Hernandez
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
26
|
Abstract
Proper management of patients affected by genetic disorders causing life-threatening arrhythmias is important for several reasons, including even societal ones, given the predominantly young age of those affected. Incorrect management often has dire consequences, ranging from unnecessary psychologic damage for the patients whose life becomes too limited by the fear of sudden death to equally avoidable tragedies when the entire armamentarium of effective therapies is not fully utilized. In this review, we focus primarily on long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) and deal specifically with the clinical impact of the most commonly used cardiac sympathetic denervation (CSD), namely left cardiac sympathetic denervation (LCSD). The two of us have used LCSD in the management of our patients with either LQTS or CPVT for a very long time and have been involved in ∼500 such interventions. It is on the basis of this personal and direct experience that we wish to share our views with clinical cardiologists and electrophysiologists, adult and paediatric, and with genetic cardiologists. We will begin by reviewing the history and rationale underlying sympathetic denervation therapy and will continue with a disease-specific intensification of therapy, and then with a discussion on how the impressive efficacy of LCSD should translate into guideline-directed therapy in both current and future guidelines, in order to upgrade the quality of care in the era of precision medicine.
Collapse
Affiliation(s)
- Peter J. Schwartz
- Corresponding authors. Tel: +39 02619113408, Fax: +39 02619113411, Emails: , (P.J.S.); Tel: +1 507 284 0101, , Twitter: @MJAckermanMDPhD (M.J.A.)
| | - Michael J. Ackerman
- Corresponding authors. Tel: +39 02619113408, Fax: +39 02619113411, Emails: , (P.J.S.); Tel: +1 507 284 0101, , Twitter: @MJAckermanMDPhD (M.J.A.)
| |
Collapse
|
27
|
Ahn KJ, Song MK, Lee SY, Yoon JK, Kim GB, Oh S, Bae EJ. The Outcome of Long QT Syndrome, a Korean Single Center Study. Korean Circ J 2022; 52:771-781. [PMID: 36217598 PMCID: PMC9551231 DOI: 10.4070/kcj.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023] Open
Abstract
Congenital long QT syndrome is an inherited cardiac channelopathy, causing fatal arrhythmia. In this study, we conducted a retrospective cohort study on 105 congenital LQTS patients and its outcome in a tertiary center. The 10-year event free survival rate was 73.2%, and the outcome was different according to the genotypes. With treatment, all survived except one. The genetic analysis and risk stratification may be essential for better outcome and further nationwide and large scaled studies are required. Background and Objectives Although long QT syndrome (LQTS) is a potentially life-threatening inherited cardiac channelopathy, studies documenting the long-term clinical data of Korean patients with LQTS are scarce. Methods This retrospective cohort study included 105 patients with LQTS (48 women; 45.7%) from a single tertiary center. The clinical outcomes were analyzed for the rate of freedom from breakthrough cardiac events (BCEs), additional treatment needed, and death. Results LQTS was diagnosed at a median age of 11 (range, 0.003–80) years. Genetic testing was performed on 90 patients (yield, 71.1%). The proportions of genetically confirmed patients with LQTS types 1, 2, 3, and others were 34.4%, 12.2%, 12.2%, and 12.2%, respectively. In the symptomatic group (n=70), aborted cardiac arrest was observed in 30% of the patients. Treatments included medications in 60 patients (85.7%), implantable cardioverter-defibrillators in 27 (38.6%; median age, 17 years; range, 2–79 years), and left cardiac sympathetic denervation surgery in 7 (10%; median age, 13 years; range, 2–34). The 10-year BCE-free survival rate was 73.2%. By genotype, significant differences were observed in BCEs despite medication (p<0.001). The 10-year BCE-free survival rate was the highest in patients with LQTS type 1 (81.8%) and the lowest in those with multiple LQTS-associated mutations (LQTM). All patients with LQTS survived, except for one patient who had LQTM. Conclusions Good long-term outcomes can be achieved by using recently developed genetically tailored management strategies for patients with LQTS.
Collapse
Affiliation(s)
- Kyung Jin Ahn
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Mi Kyoung Song
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Yun Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Kyoung Yoon
- Department of Pediatrics, Sejong General Hospital, Bucheon, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Bae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Siskin M, Cerrone M, Shokr M, Aizer A, Barbhaiya C, Dai M, Bernstein S, Holmes D, Knotts R, Park DS, Spinelli M, Chinitz LA, Jankelson L. ICD shocks and complications in patients with inherited arrhythmia syndromes. IJC HEART & VASCULATURE 2021; 37:100908. [PMID: 34765721 PMCID: PMC8569698 DOI: 10.1016/j.ijcha.2021.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is limited information on the long-term outcomes of ICDs in patients with inherited arrhythmia syndromes. METHODS Prospective registry study of inherited arrhythmia patients with an ICD. Incidence of therapies and complications were measured as 5-year cumulative incidence proportions and analyzed with the Kaplan-Meier method. Incidence was compared by device indication, diagnosis type and device type. Cox-regression analysis was used to identify predictors of appropriate shock and device complication. RESULTS 123 patients with a mean follow up of 6.4 ± 4.8 years were included. The incidence of first appropriate shock was 56.52% vs 24.44%, p < 0.05 for cardiomyopathy and channelopathy patients, despite similar ejection fraction (61% vs 60%, p = 0.6). The incidence of first inappropriate shock was 13.46% vs 56.25%, p < 0.01 for single vs. multi-lead devices. The incidence of first lead complication was higher for multi-lead vs. single lead devices, 43.75% vs. 17.31%, p = 0.04. Patients with an ICD for secondary prevention were more likely to receive an appropriate shock than those with primary prevention indication (HR 2.21, CI 1.07-4.56, p = 0.03). Multi-lead devices were associated with higher risk of inappropriate shock (HR 3.99, CI 1.27-12.52, p = 0.02), with similar appropriate shock risk compared to single lead devices. In 26.5% of patients with dual chamber devices, atrial sensing or pacing was not utilized. CONCLUSION The rate of appropriate therapies and ICD complications in patients with inherited arrhythmia is high, particularly in cardiomyopathies with multi-lead devices. Risk-benefit ratio should be carefully considered when assessing the indication and type of device in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lior Jankelson
- Corresponding author at: Leon H. Charney Division of Cardiology New York University Langone Health 516 1st Avenue, New York 10016, USA.
| |
Collapse
|
29
|
Maltret A, Benaich FA, Rendu J, Fressart V, Roux-Buisson N, Bonnet D, Denjoy I. Challenging indication of cardioverter defibrillator implantation after sudden cardiac arrest in the very young: a case series of catecholaminergic polymorphic ventricular tachycardia secondary to de novo calmodulin p.Asn98Ser. Eur Heart J Case Rep 2021; 5:ytab393. [PMID: 34729453 PMCID: PMC8557678 DOI: 10.1093/ehjcr/ytab393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022]
Abstract
Background Calmodulinopathy is an emerging group of primary electrical disease with various, severe, and early onset phenotype. Sudden cardiac arrest (SCA)/death can be the first symptom and current medical management seems insufficient to prevent recurrences. Implantable cardioverter-defibrillator (ICD) in the young is challenging and can be harmful. Case summary We report the management of two very young boys (aged 3.5 and 5.5 years old) who survived an SCA due to calmodulin mutation responsible of a catecholaminergic polymorphic ventricular tachycardia phenotype. In both case, SCA had an adrenergic trigger. Despite SCA, ICD implantation was denied by the parents. After thorough discussion with the family, the patients were managed with solely betablocker treatment and loop recorder implantation. At last follow-up of 30 and 23 months, respectively, there were no recurrence of any cardiac event. Discussion The benefits of ICD implantation at a very young age must be weighed against the risk complication. In the youngest, whom recreative activities are under constant supervision, the decision, jointly made with the parents, could be to postpone ICD.
Collapse
Affiliation(s)
- Alice Maltret
- Hôpital Marie Lannelongue-M3C, GHPSJ, Université Paris Saclay, service de cardiologie congénitale, Le Plessis-Robinson, France
- Corresponding author. Tel: +33 140 942 303,
| | | | - John Rendu
- Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Véronique Fressart
- Groupe Hospitalier Pitié-Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et Myogénétique, APHP, Paris, France
| | - Nathalie Roux-Buisson
- Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Damien Bonnet
- M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | - Isabelle Denjoy
- CNMR, Maladies Cardiaques Héréditaires Rares, Service de cardiologie, Hôpital Bichat, APHP, Paris, France
| |
Collapse
|
30
|
Du X. Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:47-77. [PMID: 37724075 PMCID: PMC10388789 DOI: 10.1515/mr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
The sympathetic nervous system is activated in the setting of heart failure (HF) to compensate for hemodynamic instability. However, acute sympathetic surge or sustained high neuronal firing rates activates β-adrenergic receptor (βAR) signaling contributing to myocardial remodeling, dysfunction and electrical instability. Thus, sympatho-βAR activation is regarded as a hallmark of HF and forms pathophysiological basis for β-blocking therapy. Building upon earlier research findings, studies conducted in the recent decades have significantly advanced our understanding on the sympatho-adrenergic mechanism in HF, which forms the focus of this article. This review notes recent research progress regarding the roles of cardiac β2AR or α1AR in the failing heart, significance of β1AR-autoantibodies, and βAR signaling through G-protein independent signaling pathways. Sympatho-βAR regulation of immune cells or fibroblasts is specifically discussed. On the neuronal aspects, knowledge is assembled on the remodeling of sympathetic nerves of the failing heart, regulation by presynaptic α2AR of NE release, and findings on device-based neuromodulation of the sympathetic nervous system. The review ends with highlighting areas where significant knowledge gaps exist but hold promise for new breakthroughs.
Collapse
Affiliation(s)
- Xiaojun Du
- Faculty of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 West Yanta Road, Xi’an710061, Shaanxi, China
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC3004, Australia
| |
Collapse
|
31
|
Maury P, Delasnerie H, Beneyto M, Rollin A. Autonomic cardiac innervation: impact on the evolution of arrhythmias in inherited cardiac arrhythmia syndromes. Herzschrittmacherther Elektrophysiol 2021; 32:308-314. [PMID: 34185133 DOI: 10.1007/s00399-021-00774-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
The autonomic nervous system (ANS) is an essential component of arrhythmogenicity, especially in the absence of structural heart disease and channelopathy. In this article, the authors review the role and characteristics of ANS in various channelopathies. Some of these, such as most long QT syndromes and catecholaminergic polymorphic ventricular tachycardia, are highly dependent on sympathetic activation, while parasympathetic tone is an important factor for arrhythmias in other channelopathies such as Brugada syndrome or early repolarisation syndrome. Recent advances highlighting the subtle role of ANS in channelopathies are presented here, demonstrating that all is far from being so simple and straightforward and revealing some paradoxical behaviours of channelopathies in relation to discrete ANS imbalance.
Collapse
Affiliation(s)
- Philippe Maury
- Department of Cardiology, University Hospital Rangueil, Toulouse, France. .,I2MC, INSERM UMR 1297, Toulouse, France.
| | - Hubert Delasnerie
- Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Maxime Beneyto
- Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Anne Rollin
- Department of Cardiology, University Hospital Rangueil, Toulouse, France
| |
Collapse
|