1
|
Lin Q, Zhang D, Gruber PJ, Tam PKH, Lui VCH, Wu Z, Hong H, Chien KR, Sham PC, Tang CSM. Multifaceted analysis of noncoding and coding de novo variants implicates NOTCH signaling pathway in tetralogy of Fallot in Chinese population. HGG ADVANCES 2025; 6:100414. [PMID: 39921258 PMCID: PMC11910093 DOI: 10.1016/j.xhgg.2025.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic heart defect in neonates. While there is compelling evidence of genetic contribution to the etiology of TOF, the contribution of noncoding variants to the development of the defect remains unexplored. Potentially damaging noncoding de novo variants (NC DNVs) were detected from 141 Chinese nonsyndromic TOF trios (CHN-TOF) and compared with those detected in the Pediatric Cardiac Genomics Consortium (PCGC). Bioinformatic analyses on noncoding and previously detected coding DNVs were performed to identify developmental pathways affected in TOF. Chinese but not PCGC-TOF patients showed a notably increased burden of putative damaging NC DNVs (n = 249). In Chinese, NC and coding DNVs were predominantly associated with cardiomyocyte differentiation and with chamber/valve/aorta development, respectively, producing a combined enrichment in NOTCH signaling (p = 1.1 × 10-6) and outflow tract morphogenesis (p = 2.2 × 10-5). Genes with NC DNVs (e.g., EFNB2, HEY2, and PITX2) interacted with NOTCH1 and FLT4 in a tight STRING protein-protein interaction (PPI) network. During the in vitro cardiac differentiation process, these noncoding candidate genes, which harbored potentially damaging regulatory NC DNVs, exhibited co-expression with NOTCH signaling genes and demonstrated dysregulated gene expression at various differentiation stages following NOTCH1 downregulation. In summary, our findings highlight a significant contribution of NC DNVs to TOF and suggest the presence of population genetic heterogeneity. Integrative analyses implicate dysregulation of NOTCH signaling, with converging influences from both coding and noncoding variants, in TOF within the Chinese population.
Collapse
Affiliation(s)
- Qiongfen Lin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Detao Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peter J Gruber
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Faculty of Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Chi-Hang Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongluan Wu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haifa Hong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China.
| |
Collapse
|
2
|
Feng Q, Qi L, Huang J, Dong Z, Yu F, Zhang J, Zhan J, Zhang H, Wang W, Zhou Y, Yang Z, Zhou Y, Kong W, Fu Y. Cardiovascular Mettl3 Deficiency Causes Congenital Cardiac Defects and Postnatal Lethality in Mice. Int J Biol Sci 2025; 21:2430-2445. [PMID: 40303284 PMCID: PMC12035893 DOI: 10.7150/ijbs.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
N6-methyladenosine (m6A) is the most common epigenetic modification of RNA, but whether m6A RNA methylation modulates cardiovascular development or congenital heart diseases (CHDs) has not been determined. The published high-throughput sequencing data suggested that transcripts of genes related to CHDs were prone to m6A modification, while the expression of methyltransferase-like 3 (METTL3)-involved methyltransferase complex was downregulated in mouse embryonic hearts following prenatal alcohol exposure as a critical CHD risk factor, indicating the association of insufficient m6A RNA methylation with CHDs. Using cardiovascular-specific Mettl3 knockout mice (Tagln-Cre; Mettl3flox/flox ), we observed that cardiovascular Mettl3 deficiency resulted in postnatal lethality and profound congenital cardiac defects, including left pulmonary stenosis, ventricular septal defects, and right ventricular hypoplasia. The m6A-specific methylated RNA-immunoprecipitation sequencing identified Sox4, Sox11, and Mef2a, the critical transcription factors involved in the right ventricle and outflow tract development, were the regulatory targets of METTL3-catalyzed m6A RNA methylation. Mettl3 deficiency-caused insufficient m6A RNA methylation downregulated the expression of SOX4, SOX11, and MEF2A in mouse embryonic hearts. In conclusion, cardiovascular Mettl3 deficiency directly led to congenital cardiac defects by downregulating the m6A-dependent expression of Mef2a, Sox4, and Sox11. METTL3-catalyzed m6A RNA methylation may become a potential target for preventing and treating CHDs.
Collapse
Affiliation(s)
- Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Lihua Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumors, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| |
Collapse
|
3
|
Abdullahi KM, Ali AF, Adan MM, Shu Q. Detection of Genetic Variations in Children with Tetralogy of Fallot Using Whole Exome Sequencing Technology Integrated Bioinformatics Analysis. Genet Test Mol Biomarkers 2024; 28:474-484. [PMID: 39653367 DOI: 10.1089/gtmb.2024.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Background: Tetralogy of Fallot (TOF) is the most common cyanotic heart defect in newborns, with a complex etiology and genetic variation considered to be one of the main pathogenic factors. Identifying genetic variations associated with TOF has important clinical value for understanding its pathogenesis, patient susceptibility, and prognosis of patients with TOF. Therefore, this study aimed to identify potential pathogenic genes of TOF through comprehensive genetic analysis. Materials and Methods: In this study, we employed whole exome sequencing (WES) of the DNA of 47 Chinese children who received surgical TOF treatment at the Children's Hospital of Zhejiang University of Medicine and processed for DNA extraction and quantification of the DNA following WES using the Illumina NovaSeq platform. WES data undergo strict quality control and analysis processes including alignment, postprocessing, variant calling, annotation, and prioritization. Key tools, such as GATK's haplotype calling module and Annotate Variation, were used for variant annotation. In addition, by combining bioinformatics tools such as SIFT, Polyphen2, and Clin Pred, we evaluated the potential impact of nonsynonymous mutations on protein function and referred to relevant literature to support our prediction. Results: Comprehensive data analysis and quality assessment analysis corroborated the data generated from the WES dataset of 47 patients with TOF. Interpreting variants from the perspective of clinical pathogenicity results revealed a novel polymorphism and variant associated with TOF. The identified genetic results revealed evidence for a major contribution of MUTYH, RARB, GFM1, PDZD2, CEP57, DCPS, POMT2, BUB1B, CYP19A1, MAZ, USP10, and TCF3 and provided novel findings for functionally interacting proteins associated with the pathomechanism of TOF. Seven pathogenic variants related to TOF were detected, most of which were previously unreported in this cohort. Conclusions: The genetic variations discovered in this study emphasize the importance of genetic factors in the pathogenesis of TOF, revealing its complex molecular pathways and protein-protein interactions. The study of genetic diversity provides a new perspective for understanding the etiology of TOF and promotes an in-depth exploration of its pathological mechanisms. These findings lay the foundation for subsequent clinical research and the development of treatment strategies.
Collapse
Affiliation(s)
- Khalid Mohamoud Abdullahi
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, China
| | - Ahmed Faisal Ali
- Department of Infectious Disease, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed Mohamoud Adan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, China
| |
Collapse
|
4
|
Kalisch-Smith JI, Ehtisham-Uddin N, Rodriguez-Caro H. Feto-placental and coronary endothelial genes implicated in miscarriage, congenital heart disease and stillbirth, a systematic review and meta-analysis. Placenta 2024; 156:55-66. [PMID: 39276426 DOI: 10.1016/j.placenta.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The first trimester placenta is very rarely investigated for placental vascular formation in developmental or diseased contexts. Defects in placental formation can cause heart defects in the fetus, and vice versa. Determining the causality is therefore difficult as both organs develop concurrently and express many of the same genes. Here, we performed a systematic review to determine feto-placental and coronary endothelial genes implicated in miscarriages, stillbirth and congenital heart defects (CHD) from human genome wide screening studies. 4 single cell RNAseq datasets from human first/early second trimester cardiac and placental samples were queried to generate a list of 1187 endothelial genes. This broad list was cross-referenced with genes implicated in the pregnancy disorders above. 39 papers reported feto-placental and cardiac coronary endothelial genes, totalling 612 variants. Vascular gene variants were attributed to the incidence of miscarriage (8 %), CHD (4 %) and stillbirth (3 %). The most common genes for CHD (NOTCH, DST, FBN1, JAG1, CHD4), miscarriage (COL1A1, HERC1), and stillbirth (AKAP9, MYLK), were involved in blood vessel and cardiac valve formation, with roles in endothelial differentiation, angiogenesis, extracellular matrix signaling, growth factor binding and cell adhesion. NOTCH1, AKAP12, CHD4, LAMC1 and SOS1 showed greater relative risk ratios with CHD. Many of the vascular genes identified were expressed highly in both placental and heart EC populations. Both feto-placental and cardiac vascular genes are likely to result in poor endothelial cell development and function during human pregnancy that leads to higher risk of miscarriage, congenital heart disease and stillbirth.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK.
| | - Nusaybah Ehtisham-Uddin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK
| | - Helena Rodriguez-Caro
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK; Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
5
|
Stanley KJ, Kalbfleisch KJ, Moran OM, Chaturvedi RR, Roifman M, Chen X, Manshaei R, Martin N, McDermott S, McNiven V, Myles-Reid D, Nield LE, Reuter MS, Schwartz MLB, Shannon P, Silver R, Somerville C, Teitelbaum R, Zahavich L, Bassett AS, Kim RH, Mital S, Chitayat D, Jobling RK. Expanding the phenotypic spectrum of NOTCH1 variants: clinical manifestations in families with congenital heart disease. Eur J Hum Genet 2024; 32:795-803. [PMID: 38778082 PMCID: PMC11219983 DOI: 10.1038/s41431-024-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic variants in NOTCH1 are associated with non-syndromic congenital heart disease (CHD) and Adams-Oliver syndrome (AOS). The clinical presentation of individuals with damaging NOTCH1 variants is characterized by variable expressivity and incomplete penetrance; however, data on systematic phenotypic characterization are limited. We report the genotype and phenotype of a cohort of 33 individuals (20 females, 13 males; median age 23.4 years, range 2.5-68.3 years) from 11 families with causative NOTCH1 variants (9 inherited, 2 de novo; 9 novel), ascertained from a proband with CHD. We describe the cardiac and extracardiac anomalies identified in these 33 individuals, only four of whom met criteria for AOS. The most common CHD identified was tetralogy of Fallot, though various left- and right-sided lesions and septal defects were also present. Extracardiac anomalies identified include cutis aplasia (5/33), cutaneous vascular anomalies (7/33), vascular anomalies of the central nervous system (2/10), Poland anomaly (1/33), pulmonary hypertension (2/33), and structural brain anomalies (3/14). Identification of these findings in a cardiac proband cohort supports NOTCH1-associated CHD and NOTCH1-associated AOS lying on a phenotypic continuum. Our findings also support (1) Broad indications for NOTCH1 molecular testing (any familial CHD, simplex tetralogy of Fallot or hypoplastic left heart); (2) Cascade testing in all at-risk relatives; and (3) A thorough physical exam, in addition to cardiac, brain (structural and vascular), abdominal, and ophthalmologic imaging, in all gene-positive individuals. This information is important for guiding the medical management of these individuals, particularly given the high prevalence of NOTCH1 variants in the CHD population.
Collapse
Affiliation(s)
- Kaitlin J Stanley
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kelsey J Kalbfleisch
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia M Moran
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Xin Chen
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roozbeh Manshaei
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Simina McDermott
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Vanda McNiven
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Diane Myles-Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marci L B Schwartz
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rachel Silver
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cherith Somerville
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Laura Zahavich
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne S Bassett
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Seema Mital
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rebekah K Jobling
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
6
|
Zuo JY, Chen HX, Yang Q, Liu ZG, He GW. Tetralogy of Fallot: variants of MYH6 gene promoter and cellular functional analyses. Pediatr Res 2024; 96:338-346. [PMID: 38135727 DOI: 10.1038/s41390-023-02955-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development. METHODS In 608 subjects, including 315 TOF patients, we investigated the MYH6 gene promoter variants and verified the effect on gene expression by using cellular functional experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analysis. RESULTS In the MYH6 gene promoter, 12 variants were identified from 608 subjects. Five variants were found only in patients with TOF and two of them (g.3384G>T and g.4518T>C) were novel. Electrophoretic mobility shift assay with three cell lines (HEK-293, HL-1, and H9C2) showed significant changes in the transcription factors bound by the promoter variants compared to the wild-type. Dual luciferase reporter showed that four of the five variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.05). CONCLUSIONS This study is the first to test the cellular function of variants in the promoter region of the MYH6 gene in patients with TOF, which provides new insights into the genetic basis of TOF and provides a basis for further study of the mechanism of TOF formation. IMPACT DNA from 608 human subjects was sequenced for MYH6 gene promoter region variants with five variants found only in TOF patients and two were novel. EMSA and dual luciferase reporter experiments in three cell lines found these variants pathological. Prediction by JASPAR database indicated that these variants alter the transcription factor binding sites. The study, for the first time, confirmed that there are variants at the MYH6 gene promoter region and these variants alter the cellular function. The variants found in this study suggest the possible pathological role in the formation of TOF.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Zhi-Gang Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| |
Collapse
|
7
|
Khan MH, Ahsan A, Mehta F, Kanawala A, Mondal R, Dilshad A, Akbar A. Precision Medicine in Congenital Heart Disease, Rheumatic Heart Disease, and Kawasaki Disease of Children: An Overview of Literature. Cardiol Rev 2024:00045415-990000000-00257. [PMID: 39819650 DOI: 10.1097/crd.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Congenital heart disease and common acquired heart diseases like Kawasaki disease and rheumatic heart disease are prevalent cardiovascular conditions in children worldwide. Despite the availability of treatment options, they continue to be significant contributors to morbidity and mortality. Advancements in early diagnosis, improvements in treatment approaches, and overcoming resistance to available treatments are crucial to reduce morbidity. Researchers have turned to precision medicine to tackle these challenges. We aimed to analyze the existing literature concerning the utilization of precision medicine in congenital heart disease, rheumatic heart disease, and Kawasaki disease. The emphasis is placed on comprehending the key themes explored in these studies and evaluating the present state of their clinical integration. The central theme of most studies revolves around the examination of genetic factors. Despite promising research outcomes, limitations in these studies indicate that the clinical implementation of precision medicine in these conditions remains a distant prospect, necessitating additional exploration and attention to confounding factors.
Collapse
Affiliation(s)
- Muhammad Hamza Khan
- From the Department of Internal Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Areeba Ahsan
- Department of Internal Medicine, Foundation University School of Health Sciences, Islamabad, Pakistan
| | - Fena Mehta
- Department of Internal Medicine, Smt. NHL Municipal Medical College, Ahmedabad, India
| | - Arundati Kanawala
- Department of Internal Medicine, Smt. Kashibai Navale Medical College and General Hospital, Pune, India
| | - Riddhi Mondal
- Department of Internal Medicine, Jagannath Gupta Institute of Medical Sciences and Hospital, Kolkata, India
| | - Aamna Dilshad
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
8
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
9
|
Bassett AS, Reuter MS, Malecki S, Silversides C, Oechslin E. Clinically Relevant Genetic Considerations for Patients With Tetralogy of Fallot. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:426-439. [PMID: 38161665 PMCID: PMC10755827 DOI: 10.1016/j.cjcpc.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Genetic changes affect embryogenesis, cardiac and extracardiac phenotype, development, later onset conditions, and both short- and long-term outcomes and comorbidities in the increasing population of individuals with tetralogy of Fallot (TOF). In this review, we focus on current knowledge about clinically relevant genetics for patients with TOF across the lifespan. The latest findings for TOF genetics that are pertinent to day-to-day practice and lifelong management are highlighted: morbidity/mortality, cardiac/extracardiac features, including neurodevelopmental expression, and recent changes to prenatal screening and diagnostics. Genome-wide microarray is the first-line clinical genetic test for TOF across the lifespan, detecting relevant structural changes including the most common for TOF, the 22q11.2 microdeletion. Accumulating evidence illustrates opportunities for advances in understanding and care that may arise from genetic diagnosis at any age. We also glimpse into the near future when the multigenic nature of TOF will be more fully revealed, further enhancing possibilities for preventive care. Precision medicine is nigh.
Collapse
Affiliation(s)
- Anne S. Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, and Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Miriam S. Reuter
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah Malecki
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Candice Silversides
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erwin Oechslin
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Pan Y, Liu M, Zhang S, Mei H, Wu J. Whole-exome sequencing revealed novel genetic alterations in patients with tetralogy of Fallot. Transl Pediatr 2023; 12:1835-1841. [PMID: 37969115 PMCID: PMC10644019 DOI: 10.21037/tp-23-449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
Background The most prevalent cyanotic congenital heart disease (CHD) phenotype is tetralogy of Fallot (TOF). Rare genetic variations have been identified as significant risk factors for CHD. Thus, this research sought to identify the pathogenic variations and molecular etiologies of TOF. Methods This study employed whole-exome sequencing (WES) and Sanger sequencing to identify pathogenic variations in DNA samples from patients with TOF. The pathogenicity of the variations was predicted using an in-silico approach. Results We enrolled 17 patients with TOF in this study. Among these patients, 14 had mutations in TOF-related genes, including GJB2, TBX15, CTNS, SPINK1, GATA6, PRIMOL, GDF15, SLC17A9, AIFM1, FOXC2, KLF13, ABCA4, CPA6, FKBP10, ASPA, SBF1, HBA2, IGLL1, GNE, and KLHL10. We also gathered WES data from three participants without TOF, who comprised the control group, but no variations were found in the indicated genes. Further analysis showed that the patients with FKBP10 and GNE variants had more serious clinical symptoms. Sanger sequencing confirmed that the two variants were heterozygous in TOF patients. Conclusions We identified several genetic variants associated with TOF and confirmed that FKBP10 and GNE variants were associated with TOF severity. The findings of this study help researchers and clinicians on genetic counseling with the verification of the potential of WES in detecting TOF and help implement early interventions for patients with TOF.
Collapse
Affiliation(s)
- Yu Pan
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Manli Liu
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Songsong Zhang
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Huaxian Mei
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jing Wu
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
11
|
Zhao Y, Wang Y, Shi L, McDonald-McGinn DM, Crowley TB, McGinn DE, Tran OT, Miller D, Lin JR, Zackai E, Johnston HR, Chow EWC, Vorstman JAS, Vingerhoets C, van Amelsvoort T, Gothelf D, Swillen A, Breckpot J, Vermeesch JR, Eliez S, Schneider M, van den Bree MBM, Owen MJ, Kates WR, Repetto GM, Shashi V, Schoch K, Bearden CE, Digilio MC, Unolt M, Putotto C, Marino B, Pontillo M, Armando M, Vicari S, Angkustsiri K, Campbell L, Busa T, Heine-Suñer D, Murphy KC, Murphy D, García-Miñaúr S, Fernández L, Zhang ZD, Goldmuntz E, Gur RE, Emanuel BS, Zheng D, Marshall CR, Bassett AS, Wang T, Morrow BE. Chromatin regulators in the TBX1 network confer risk for conotruncal heart defects in 22q11.2DS. NPJ Genom Med 2023; 8:17. [PMID: 37463940 PMCID: PMC10354062 DOI: 10.1038/s41525-023-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lijie Shi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniel E McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oanh T Tran
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniella Miller
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eva W C Chow
- Department of Psychiatry, University of Toronto, Ontario, M5G 0A4, Canada
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute and Autism Research Unit, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Doron Gothelf
- The Division of Child & Adolescent Psychiatry, Edmond and Lily Sapfra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Ramat Gan, 5262000, Israel
| | - Ann Swillen
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Marianne B M van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
- Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, 7710162, Chile
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marta Unolt
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Carolina Putotto
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Bruno Marino
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva, 1211, Switzerland
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University and Child & Adolescent Psychiatry Unit at Bambino Gesù Hospital, Rome, 00165, Italy
| | - Kathleen Angkustsiri
- Developmental Behavioral Pediatrics, MIND Institute, University of California, Davis, CA, 95817, USA
| | - Linda Campbell
- School of Psychology, University of Newcastle, Newcastle, 2258, Australia
| | - Tiffany Busa
- Department of Medical Genetics, Aix-Marseille University, Marseille, 13284, France
| | - Damian Heine-Suñer
- Genomics of Health and Unit of Molecular Diagnosis and Clinical Genetics, Son Espases University Hospital, Balearic Islands Health Research Institute, Palma de Mallorca, 07120, Spain
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, 505095, Ireland
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, SE5 8AF, UK
- Behavioral and Developmental Psychiatry Clinical Academic Group, Behavioral Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London, SE5 8AZ, UK
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Luis Fernández
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Philadelphia, PA, 19104, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Deyou Zheng
- Department of Genetics, Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christian R Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Dalglish Family 22q Clinic, Toronto General Hospital, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Saacks NA, Eales J, Spracklen TF, Aldersley T, Human P, Verryn M, Lawrenson J, Cupido B, Comitis G, De Decker R, Fourie B, Swanson L, Joachim A, Brooks A, Ramesar R, Shaboodien G, Keavney BD, Zühlke LJ. Investigation of Copy Number Variation in South African Patients With Congenital Heart Defects. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003510. [PMID: 36205932 PMCID: PMC9770125 DOI: 10.1161/circgen.121.003510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is a leading non-infectious cause of pediatric morbidity and mortality worldwide. Although the etiology of CHD is poorly understood, genetic factors including copy number variants (CNVs) contribute to the risk of CHD in individuals of European ancestry. The presence of rare CNVs in African CHD populations is unknown. This study aimed to identify pathogenic and likely pathogenic CNVs in South African patients with CHD. METHODS Genotyping was performed on 90 patients with nonsyndromic CHD using the Affymetrix CytoScan HD platform. These data were used to identify large, rare CNVs in known CHD-associated genes and candidate genes. RESULTS We identified eight CNVs overlapping known CHD-associated genes (GATA4, CRKL, TBX1, FLT4, B3GAT3, NSD1) in six patients. The analysis also revealed CNVs encompassing five candidate genes likely to play a role in the development of CHD (DGCR8, KDM2A, JARID2, FSTL1, CYFIP1) in five patients. One patient was found to have 47, XXY karyotype. We report a total discovery yield of 6.7%, with 5.6% of the cohort carrying pathogenic or likely pathogenic CNVs expected to cause the observed phenotypes. CONCLUSIONS In this study, we show that chromosomal microarray is an effective technique for identifying CNVs in African patients diagnosed with CHD and have demonstrated results similar to previous CHD genetic studies in Europeans. Novel potential CHD genes were also identified, indicating the value of genetic studies of CHD in ancestrally diverse populations.
Collapse
Affiliation(s)
- Nicole A. Saacks
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - James Eales
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (J.E., B.D.K.)
| | - Timothy F. Spracklen
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
- Department of Medicine, Cape Heart Institute (T.F.S., G.S., L.J.Z.)
| | - Thomas Aldersley
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Paul Human
- Chris Barnard Division of Cardiothoracic Surgery, Department of Medicine, Faculty of Health Sciences (P.H., A.B.)
| | - Mark Verryn
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa (M.V., G.S.)
| | - John Lawrenson
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, University of Stellenbosch, Cape Town, South Africa (J.L., B.F.)
| | - Blanche Cupido
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences (B.C., L.J.Z.)
| | - George Comitis
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Rik De Decker
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Barend Fourie
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, University of Stellenbosch, Cape Town, South Africa (J.L., B.F.)
| | - Lenise Swanson
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Alexia Joachim
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Andre Brooks
- Chris Barnard Division of Cardiothoracic Surgery, Department of Medicine, Faculty of Health Sciences (P.H., A.B.)
| | - Raj Ramesar
- MRC Genomic & Precision Medicine Research Unit, Division of Human Genetics, Dept of Pathology, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa (R.R.)
| | - Gasnat Shaboodien
- Department of Medicine, Cape Heart Institute (T.F.S., G.S., L.J.Z.)
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa (M.V., G.S.)
| | - Bernard D. Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (J.E., B.D.K.)
| | - Liesl J. Zühlke
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
- Department of Medicine, Cape Heart Institute (T.F.S., G.S., L.J.Z.)
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences (B.C., L.J.Z.)
- South African Medical Research Council, Cape Town (L.J.Z.)
| |
Collapse
|
13
|
Evans PC, Davidson SM, Wojta J, Bäck M, Bollini S, Brittan M, Catapano AL, Chaudhry B, Cluitmans M, Gnecchi M, Guzik TJ, Hoefer I, Madonna R, Monteiro JP, Morawietz H, Osto E, Padró T, Sluimer JC, Tocchetti CG, Van der Heiden K, Vilahur G, Waltenberger J, Weber C. From novel discovery tools and biomarkers to precision medicine-basic cardiovascular science highlights of 2021/22. Cardiovasc Res 2022; 118:2754-2767. [PMID: 35899362 PMCID: PMC9384606 DOI: 10.1093/cvr/cvac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we review the highlights of cardiovascular basic science published in 2021 and early 2022 on behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then discuss how technological developments in single-cell 'omics are providing new insights into cardiovascular development, inflammation, and disease. We also review recent discoveries on the biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize in Physiology or Medicine 2021 recognized the importance of the molecular basis of mechanosensing and here we review breakthroughs in cardiovascular sensing of mechanical force. We also summarize discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of indeterminate potential, and new mechanisms of crosstalk between hyperglycaemia, lipid mediators, and inflammation. The past 12 months also witnessed major advances in the field of cardiac arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell technology which has demonstrated disease causality for several genetic polymorphisms in long-QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. Finally, the cardiovascular community has continued to better understand COVID-19 with significant advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | | | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, L.go R. Benzi 10, 16132 Genova, Italy
| | - Mairi Brittan
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland
| | | | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthijs Cluitmans
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Philips Research, Eindhoven, Netherlands
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia Division of Cardiology, Unit of Translational Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Medicine, University of Cape Town, South Africa
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Imo Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, the Netherlands
| | - Rosalinda Madonna
- Institute of Cardiology, Department of Surgical, Medical, Molecular and Critical Care Area, University of Pisa, Pisa, 56124 Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School, Houston, TX, USA
| | - João P Monteiro
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, Heart Center, University Hospital & University of Zurich, Switzerland
| | - Teresa Padró
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV-Instituto de Salud Carlos III, Barcelona, Spain
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherland
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, 80131 Napoli, Italy
| | - Kim Van der Heiden
- Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV-Instituto de Salud Carlos III, Barcelona, Spain
| | - Johannes Waltenberger
- Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
- Diagnostic and Therapeutic Heart Center, Zurich, Switzerland
| | | |
Collapse
|
14
|
Chelu A, Williams SG, Keavney BD, Talavera D. Joint analysis of functionally related genes yields further candidates associated with Tetralogy of Fallot. J Hum Genet 2022; 67:613-615. [PMID: 35718831 PMCID: PMC7613636 DOI: 10.1038/s10038-022-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Although several genes involved in the development of Tetralogy of Fallot have been identified, no genetic diagnosis is available for the majority of patients. Low statistical power may have prevented the identification of further causative genes in gene-by-gene survey analyses. Thus, bigger samples and/or novel analytic approaches may be necessary. We studied if a joint analysis of groups of functionally related genes might be a useful alternative approach. Our reanalysis of whole-exome sequencing data identified 12 groups of genes that exceedingly contribute to the burden of Tetralogy of Fallot. Further analysis of those groups showed that genes with high-impact variants tend to interact with each other. Thus, our results strongly suggest that additional candidate genes may be found by studying the protein interaction network of known causative genes. Moreover, our results show that the joint analysis of functionally related genes can be a useful complementary approach to classical single-gene analyses.
Collapse
Affiliation(s)
- Alexandru Chelu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, Yáñez-Gutiérrez L, González-Torres C, Rosas-Vargas H. Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries. Genes (Basel) 2022; 13:genes13091662. [PMID: 36140829 PMCID: PMC9498580 DOI: 10.3390/genes13091662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.
Collapse
Affiliation(s)
- Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
| | - Bulmaro Cisneros
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - María Antonieta Araujo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Juan Carlos Huicochea-Montiel
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Alan Cárdenas-Conejo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Charles César Lazo-Cárdenas
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - César Iván Ramírez-Portillo
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Carina Feria-Kaiser
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | | | - Lucelli Yáñez-Gutiérrez
- Clínica de Cardiopatías Congénitas, UMAE Hospital de Cardiología, CMN Siglo XXI, Ciudad de México 06720, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| |
Collapse
|
16
|
Shi JW, Cao H, Hong L, Ma J, Cui L, Zhang Y, Song X, Liu J, Yang Y, Lv Q, Zhang L, Wang J, Xie M. Diagnostic yield of whole exome data in fetuses aborted for conotruncal malformations. Prenat Diagn 2022; 42:852-861. [PMID: 35420166 DOI: 10.1002/pd.6147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We investigated a custom congenital heart disease (CHD) geneset to assess the diagnostic value of whole-exome sequencing (WES) in karyotype- and copy number variation (CNV)-negative aborted fetuses with conotruncal defects (CTD), and to explore the impact of postnatal phenotyping on genetic diagnosis. METHODS We sequentially analyzed CNV-seq and WES data from 47 CTD fetuses detected by prenatal ultrasonography. Fetuses with either a confirmed aneuploidy or pathogenic CNV were excluded from the WES analyses, which were performed following the American College of Medical Genetics and Genomics recommendations and a custom CHD-geneset. Imaging and autopsy were applied to obtain postnatal phenotypic information about aborted fetuses. RESULTS CNV-seq identified aneuploidy in 7/47 cases while 13/47 fetuses were CNV-positive. Eighty-five rare deleterious variants in 61 genes (from custom geneset) were identified by WES in the remaining fetuses. Of these, five (likely) pathogenic variants (LPV/PV) were identified in five fetuses, revealing a 10.6% incremental diagnostic yield. Furthermore, RERE:c.2461_2472delGGGATGTGGCGA was reclassified as LPV based on postnatal phenotypic data. CONCLUSION We have developed and defined a CHD gene panel that can be utilized in a subset of fetuses with CTDs. We demonstrate the utility of incorporating both prenatal and postnatal phenotypic information may facilitate WES diagnostics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jia-Wei Shi
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Haiyan Cao
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Liu Hong
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Ma
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Cui
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yi Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoyan Song
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Juanjuan Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yali Yang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
17
|
Cardiac lymphatics: state of the art. Curr Opin Hematol 2022; 29:156-165. [PMID: 35220321 DOI: 10.1097/moh.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.
Collapse
|
18
|
Cui Q, Sun S, Zhu H, Xiao Y, Jiang C, Zhang H, Liu J, Ye L, Shen J. Volume Overload Initiates an Immune Response in the Right Ventricle at the Neonatal Stage. Front Cardiovasc Med 2021; 8:772336. [PMID: 34869688 PMCID: PMC8635051 DOI: 10.3389/fcvm.2021.772336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary regurgitation caused by the correction or palliation of pediatric tetralogy of Fallot (TOF) leads to chronic right ventricular (RV) volume overload (VO), which induces adolescent RV dysfunction. A better understanding of the molecular mechanism by which VO initiates neonatal RV remodeling may bring new insights into the post-surgical management of pediatric TOF. Methods and Results: We created a fistula between the abdominal aorta and inferior vena cava on postnatal day 1 (P1) using a rat model to induce neonatal VO. Echocardiography revealed that the velocity and velocity- time-integral of the pulmonary artery (PA) were significantly elevated, and hematoxylin and eosin (H&E) staining showed that the diameter of the RV significantly increased. RNA-seq analysis of the RV on P7 indicated that the top 10 enriched Gene Ontology (GO) terms and the top 20 enriched terms in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were associated with immune responses. Flow-cytometric analysis demonstrated that the number of CD4+and CD8+ immune cells were significantly augmented in the VO group compared with the sham group. Conclusions: A neonatal cardiac VO rat model on P1 was successfully created, providing a platform for studying the molecular biology of neonatal RV under the influence of VO. VO - induces an immune response at the neonatal stage (from P1 to P7), suggesting that immune responses may be an initiating factor for neonatal RV remodeling under the influence of VO and that immunosuppressants may be used to prevent pediatric RV remodeling caused by VO.
Collapse
Affiliation(s)
- Qing Cui
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijuan Sun
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbin Zhu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Jiang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Institute for Pediatric Congenital Heart Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinfen Liu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Institute for Pediatric Congenital Heart Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Institute for Pediatric Congenital Heart Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Institute of Pediatric Translational Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Shen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|