1
|
Rowe SJ, Bekhuis Y, Mitchell A, Janssens K, D'Ambrosio P, Spencer LW, Paratz ED, Claessen G, Fatkin D, La Gerche A. Genetics, Fitness, and Left Ventricular Remodelling: The Current State of Play. Can J Cardiol 2025; 41:364-374. [PMID: 39681159 DOI: 10.1016/j.cjca.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiorespiratory fitness (CRF) exists on a spectrum and is driven by a constellation of factors, including genetic and environmental differences. This results in wide interindividual variation in baseline CRF and the ability to improve CRF with regular endurance exercise training. As opposed to monogenic conditions, CRF is described as a complex genetic trait as it is believed to be influenced by multiple common genetic variants in addition to exogenous factors. Importantly, CRF is an independent predictor of morbidity and mortality, and so understanding the impact of genetic variation on CRF may provide insights into both human athletic performance and personalized risk assessment and prevention. Despite rapidly advancing technology, progress in this field has been restricted by small sample sizes and the limited number of genetic studies using the "gold standard" objective measure of peak oxygen consumption (VO2peak) for CRF assessment. In recent years, there has been increasing interest in the heritability of numerous parameters of cardiac structure and function and how this may relate to both normal cardiac physiology and disease pathology. Regular endurance training can result in exercise-induced cardiac remodelling, which manifests as balanced dilation of cardiac chambers and is associated with superior CRF. This results in a complex relationship between CRF, cardiac size, and exercise, and whether shared genetic pathways may influence this remains unknown. In this review we highlight recent and relevant studies into the genomic predictors of CRF with a unique emphasis on how this may relate to cardiac remodelling and human adaptation to endurance exercise.
Collapse
Affiliation(s)
- Stephanie J Rowe
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia. https://twitter.com/_sjrowe
| | - Youri Bekhuis
- Department of Cardiology and Jessa & Science, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences/LCRC, UHasselt, Diepenbeek, Belgium; Department of Cardiovascular Diseases, University Hospital Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. https://twitter.com/YouriBekhuis
| | - Amy Mitchell
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Kristel Janssens
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Paolo D'Ambrosio
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia; Cardiology Department, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Luke W Spencer
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth D Paratz
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia. https://twitter.com/pretzeldr
| | - Guido Claessen
- Department of Cardiology and Jessa & Science, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences/LCRC, UHasselt, Diepenbeek, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. https://twitter.com/KJanssensAU
| | - Diane Fatkin
- Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, New South Wales, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Andre La Gerche
- Heart, Exercise and Research Trials, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
2
|
Ma XR, Conley SD, Kosicki M, Bredikhin D, Cui R, Tran S, Sheth MU, Qiu WL, Chen S, Kundu S, Kang HY, Amgalan D, Munger CJ, Duan L, Dang K, Rubio OM, Kany S, Zamirpour S, DePaolo J, Padmanabhan A, Olgin J, Damrauer S, Andersson R, Gu M, Priest JR, Quertermous T, Qiu X, Rabinovitch M, Visel A, Pennacchio L, Kundaje A, Glass IA, Gifford CA, Pirruccello JP, Goodyer WR, Engreitz JM. Molecular convergence of risk variants for congenital heart defects leveraging a regulatory map of the human fetal heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317557. [PMID: 39606363 PMCID: PMC11601760 DOI: 10.1101/2024.11.20.24317557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences. As such, understanding the molecular functions of both noncoding and coding variants remains paramount to our fundamental understanding of cardiac development and CHD. Here, we created a gene regulation map of the healthy human fetal heart across developmental time, and applied it to interpret the functions of variants associated with CHD and quantitative cardiac traits. We collected single-cell multiomic data from 734,000 single cells sampled from 41 fetal hearts spanning post-conception weeks 6 to 22, enabling the construction of gene regulation maps in 90 cardiac cell types and states, including rare populations of cardiac conduction cells. Through an unbiased analysis of all 90 cell types, we find that both rare coding variants associated with CHD and common noncoding variants associated with valve traits converge to affect valvular interstitial cells (VICs). VICs are enriched for high expression of known CHD genes previously identified through mapping of rare coding variants. Eight CHD genes, as well as other genes in similar molecular pathways, are linked to common noncoding variants associated with other valve diseases or traits via enhancers in VICs. In addition, certain common noncoding variants impact enhancers with activities highly specific to particular subanatomic structures in the heart, illuminating how such variants can impact specific aspects of heart structure and function. Together, these results implicate new enhancers, genes, and cell types in the genetic etiology of CHD, identify molecular convergence of common noncoding and rare coding variants on VICs, and suggest a more expansive view of the cell types instrumental in genetic risk for CHD, beyond the working cardiomyocyte. This regulatory map of the human fetal heart will provide a foundational resource for understanding cardiac development, interpreting genetic variants associated with heart disease, and discovering targets for cell-type specific therapies.
Collapse
Affiliation(s)
- X Rosa Ma
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danila Bredikhin
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Tran
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maya U Sheth
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wei-Lin Qiu
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sijie Chen
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Helen Y Kang
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Current address: PhD Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Dulguun Amgalan
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Chad J Munger
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lauren Duan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine Dang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Oriane Matthys Rubio
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Siavash Zamirpour
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John DePaolo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeffrey Olgin
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Scott Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Andersson
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - James R Priest
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Thomas Quertermous
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Casey A Gifford
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Bakar Computation Health Sciences Institute, University of California, San Francisco, CA, USA
| | - William R Goodyer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Lau C, Gul U, Liu B, Captur G, Hothi SS. Cardiovascular Magnetic Resonance Imaging in Familial Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:439. [PMID: 36984439 PMCID: PMC10057087 DOI: 10.3390/medicina59030439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of non-ischaemic heart failure, conferring high morbidity and mortality, including sudden cardiac death due to systolic dysfunction or arrhythmic sudden death. Within the DCM cohort exists a group of patients with familial disease. In this article we review the pathophysiology and cardiac imaging findings of familial DCM, with specific attention to known disease subtypes. The role of advanced cardiac imaging cardiovascular magnetic resonance is still accumulating, and there remains much to be elucidated. We discuss its potential clinical roles as currently known, with respect to diagnostic utility and risk stratification. Advances in such risk stratification may help target pharmacological and device therapies to those at highest risk.
Collapse
Affiliation(s)
- Clement Lau
- New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
| | - Uzma Gul
- New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
| | - Boyang Liu
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gabriella Captur
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London WC1E 6BT, UK
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Centre for Inherited Heart Muscle Conditions, Cardiology Department, The Royal Free Hospital, London NW3 2QG, UK
| | - Sandeep S. Hothi
- New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Aung N, Lopes LR, van Duijvenboden S, Harper AR, Goel A, Grace C, Ho CY, Weintraub WS, Kramer CM, Neubauer S, Watkins HC, Petersen SE, Munroe PB. Genome-Wide Analysis of Left Ventricular Maximum Wall Thickness in the UK Biobank Cohort Reveals a Shared Genetic Background With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e003716. [PMID: 36598836 PMCID: PMC9946169 DOI: 10.1161/circgen.122.003716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Left ventricular maximum wall thickness (LVMWT) is an important biomarker of left ventricular hypertrophy and provides diagnostic and prognostic information in hypertrophic cardiomyopathy (HCM). Limited information is available on the genetic determinants of LVMWT. METHODS We performed a genome-wide association study of LVMWT measured from the cardiovascular magnetic resonance examinations of 42 176 European individuals. We evaluated the genetic relationship between LVMWT and HCM by performing pairwise analysis using the data from the Hypertrophic Cardiomyopathy Registry in which the controls were randomly selected from UK Biobank individuals not included in the cardiovascular magnetic resonance sub-study. RESULTS Twenty-one genetic loci were discovered at P<5×10-8. Several novel candidate genes were identified including PROX1, PXN, and PTK2, with known functional roles in myocardial growth and sarcomere organization. The LVMWT genetic risk score is predictive of HCM in the Hypertrophic Cardiomyopathy Registry (odds ratio per SD: 1.18 [95% CI, 1.13-1.23]) with pairwise analyses demonstrating a moderate genetic correlation (rg=0.53) and substantial loci overlap (19/21). CONCLUSIONS Our findings provide novel insights into the genetic underpinning of LVMWT and highlight its shared genetic background with HCM, supporting future endeavours to elucidate the genetic etiology of HCM.
Collapse
Affiliation(s)
- Nay Aung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield (N.A., L.R.L., S.E.P.)
| | - Luis R. Lopes
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield (N.A., L.R.L., S.E.P.)
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London (L.R.L.)
| | - Stefan van Duijvenboden
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
| | - Andrew R. Harper
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
| | - Anuj Goel
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
| | - Christopher Grace
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
| | - Carolyn Y. Ho
- Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Boston, MA (C.Y.H.)
| | | | - Christopher M. Kramer
- Cardiovascular Division, University of Virginia Health System, Charlottesville (C.M.K.)
| | - Stefan Neubauer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (S.N., H.C.W.)
| | - Hugh C. Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine (A.R.H., A.G., C.G., S.N., H.C.W.)
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom (A.R.H., A.G., C.G., H.C.W.)
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (S.N., H.C.W.)
| | - Steffen E. Petersen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield (N.A., L.R.L., S.E.P.)
| | - Patricia B. Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., S.v.D., S.E.P., P.B.M.)
- National Institute for Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London (N.A., S.v.D., S.E.P., P.B.M.)
| |
Collapse
|
5
|
Parcha V, Pampana A, Shetty NS, Irvin MR, Natarajan P, Lin HJ, Guo X, Rich SS, Rotter JI, Li P, Oparil S, Arora G, Arora P. Association of a Multiancestry Genome-Wide Blood Pressure Polygenic Risk Score With Adverse Cardiovascular Events. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003946. [PMID: 36334310 PMCID: PMC9812363 DOI: 10.1161/circgen.122.003946] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Traditional cardiovascular risk factors and the underlying genetic risk of elevated blood pressure (BP) determine an individual's composite risk of developing adverse cardiovascular events. We sought to evaluate the relative contributions of the traditional cardiovascular risk factors to the development of adverse cardiovascular events in the context of varying BP genetic risk profiles. METHODS Genome-wide polygenic risk score (PRS) was computed using multiancestry genome-wide association estimates among US adults who underwent whole-genome sequencing in the Trans-Omics for Precision program. Individuals were stratified into high, intermediate, and low genetic risk groups (>80th, 20-80th, and <20th centiles of systolic BP [SBP] PRS). Based on the ACC/AHA Pooled Cohort Equations, participants were stratified into low and high (10 year-atherosclerotic cardiovascular disease [CVD] risk: <10% or ≥10%) cardiovascular risk factor profile groups. The primary study outcome was incident cardiovascular event (composite of incident heart failure, incident stroke, and incident coronary heart disease). RESULTS Among 21 897 US adults (median age: 56 years; 56.0% women; 35.8% non-White race/ethnicity), 1 SD increase in the SBP PRS, computed using 1.08 million variants, was associated with SBP (β: 4.39 [95% CI, 4.13-4.65]) and hypertension (odds ratio, 1.50 [95% CI, 1.46-1.55]), respectively. This association was robustly seen across racial/ethnic groups. Each SD increase in SBP PRS was associated with a higher risk of the incident CVD (multivariable-adjusted hazards ratio, 1.07 [95% CI, 1.04-1.10]) after controlling for ACC/AHA Pooled Cohort Equations risk scores. Among individuals with a high SBP PRS, low atherosclerotic CVD risk was associated with a 58% lower hazard for incident CVD (multivariable-adjusted hazards ratio, 0.42 [95% CI, 0.36-0.50]) compared to those with high atherosclerotic CVD risk. A similar pattern was noted in intermediate and low genetic risk groups. CONCLUSIONS In a multiancestry cohort of >21 000 US adults, genome-wide SBP PRS was associated with BP traits and adverse cardiovascular events. Adequate control of modifiable cardiovascular risk factors may reduce the predisposition to adverse cardiovascular events among those with a high SBP PRS.
Collapse
Affiliation(s)
- Vibhu Parcha
- Division of Cardiovascular Disease, Univ of Alabama at Birmingham, Birmingham, AL
| | - Akhil Pampana
- Division of Cardiovascular Disease, Univ of Alabama at Birmingham, Birmingham, AL
| | - Naman S. Shetty
- Division of Cardiovascular Disease, Univ of Alabama at Birmingham, Birmingham, AL
| | - Marguerite R. Irvin
- Dept of Epidemiology, School of Public Health, Univ of Alabama at Birmingham, Birmingham, AL
| | - Pradeep Natarajan
- Cardiology Division, Dept of Medicine, Massachusetts General Hospital
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
- Program in Medical & Population Genetics, Broad Institute of Harvard & MIT, Cambridge, MA
| | - Henry J. Lin
- The Institute for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Xiuqing Guo
- The Institute for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Stephen S. Rich
- Center for Public Health, Univ of Virginia, Charlottesville, VA
| | - Jerome I. Rotter
- The Institute for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Peng Li
- School of Nursing, Univ of Alabama at Birmingham, Birmingham, AL
| | - Suzanne Oparil
- Division of Cardiovascular Disease, Univ of Alabama at Birmingham, Birmingham, AL
| | - Garima Arora
- Division of Cardiovascular Disease, Univ of Alabama at Birmingham, Birmingham, AL
| | - Pankaj Arora
- Division of Cardiovascular Disease, Univ of Alabama at Birmingham, Birmingham, AL
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
6
|
Coniglio AC, Segar MW, Loungani RS, Savla JJ, Grodin JL, Fox ER, Garg S, de Lemos JA, Berry JD, Drazner MH, Shah S, Hall ME, Shah A, Khan SS, Mentz RJ, Pandey A. Transthyretin V142I Genetic Variant and Cardiac Remodeling, Injury, and Heart Failure Risk in Black Adults. JACC. HEART FAILURE 2022; 10:129-138. [PMID: 35115086 DOI: 10.1016/j.jchf.2021.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study evaluated the association of transthyretin (TTR) gene variant, in which isoleucine substitutes for valine at position 122 (V142I), with cardiac structure, function, and heart failure (HF) risk among middle-aged Black adults. BACKGROUND The valine-to-isoleucine substitution in the TTR protein is prevalent in Black individuals and causes cardiac amyloidosis. METHODS Jackson Heart Study participants without HF at baseline who had available data on the TTR V142I variant were included. The association of the TTR V142I variant with baseline echocardiographic parameters and repeated measures of high-sensitivity cardiac troponin-I (hs-cTnI) was assessed using adjusted linear regression models and linear mixed models, respectively. Adjusted Cox models, restricted mean survival time analysis, and Anderson-Gill models were constructed to determine the association of TTR V142I variant with the risk of incident HF, survival free of HF, and total HF hospitalizations. RESULTS A total of 119 of 2,960 participants (4%) were heterozygous carriers of the TTR V142I variant. The TTR V142I variant was not associated with measures of cardiac parameters at baseline but was associated with a greater increase in high-sensitivity troponin I (hs-TnI) levels over time. In adjusted Cox models, TTR V142I variant carriers had significantly higher risk of incident HF (HR: 1.80; 95% CI: 1.07-3.05; P = 0.03), lower survival free of HF (mean difference: 4.0 year; 95% CI: 0.6-6.2 years); P = 0.02), and higher risk of overall HF hospitalizations (HR: 2.12; 95% CI: 1.23-3.63; P = 0.007). CONCLUSIONS The TTR V142I variant in middle-aged Black adults is not associated with adverse cardiac remodeling but was associated with a significantly higher burden of chronic myocardial injury, and greater risk of incident HF and overall HF hospitalizations.
Collapse
Affiliation(s)
- Amanda C Coniglio
- Department of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew W Segar
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul S Loungani
- Department of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jainy J Savla
- Division of Cardiology, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Justin L Grodin
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ervin R Fox
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sonia Garg
- Department of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - James A de Lemos
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jarett D Berry
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark H Drazner
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sanjiv Shah
- Division of Cardiology, Department of Internal Medicine, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Michael E Hall
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amil Shah
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sadiya S Khan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Robert J Mentz
- Department of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ambarish Pandey
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
Abstract
Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Nayor M, Shen L, Hunninghake GM, Kochunov P, Barr RG, Bluemke DA, Broeckel U, Caravan P, Cheng S, de Vries PS, Hoffmann U, Kolossváry M, Li H, Luo J, McNally EM, Thanassoulis G, Arnett DK, Vasan RS. Progress and Research Priorities in Imaging Genomics for Heart and Lung Disease: Summary of an NHLBI Workshop. Circ Cardiovasc Imaging 2021; 14:e012943. [PMID: 34387095 PMCID: PMC8486340 DOI: 10.1161/circimaging.121.012943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with genomic information to resolve phenotypic heterogeneity associated with genomic variation, improve risk prediction, discover prevention approaches, and enable precision diagnosis and treatment. Contemporary bioimaging methods provide exceptional resolution generating discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite substantial progress in combining high-dimensional bioimaging and genomic data, methods for imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a workshop to review cutting-edge approaches and methodologies in imaging genomics studies, and to establish research priorities for future investigation. This report summarizes the presentations and discussions at the workshop. In particular, we highlight the need for increased availability of imaging genomics data in diverse populations, dedicated focus on less common conditions, and centralization of efforts around specific disease areas.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary M. Hunninghake
- Division of Pulmonary and Critical Care Medicine, Harvard
Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of
Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - R. Graham Barr
- Department of Medicine and Department of Epidemiology,
Mailman School of Public Health, Columbia University Irving Medical Center, New
York, NY
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin-Madison
School of Medicine and Public Health, Madison, WI
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics,
Medicine and Physiology, Children’s Research Institute and Genomic Sciences
and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Peter Caravan
- Institute for Innovation in Imaging, Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical
School, Charlestown, MA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute,
Cedars-Sinai Medical Center, Los Angeles, CA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX
| | - Udo Hoffmann
- Department of Radiology, Harvard Medical School,
Massachusetts General Hospital, Boston, Massachusetts
| | - Márton Kolossváry
- Department of Radiology, Harvard Medical School,
Massachusetts General Hospital, Boston, Massachusetts
| | - Huiqing Li
- Division of Cardiovascular Sciences, National Heart,
Lung, and Blood Institute, Bethesda, MD
| | - James Luo
- Division of Cardiovascular Sciences, National Heart,
Lung, and Blood Institute, Bethesda, MD
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University
Feinberg School of Medicine, Chicago, IL
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University
Health Center and Research Institute, Montreal, Quebec, Canada
| | - Donna K. Arnett
- College of Public Health, University of Kentucky,
Lexington KY
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology, and
Cardiology, Department of Medicine, Department of Epidemiology, Boston University
Schools of Medicine and Public Health, and Center for Computing and Data Sciences,
Boston University, Boston, MA
| |
Collapse
|
9
|
Perak AM, Khan SS, Colangelo LA, Gidding SS, Armstrong AC, Lewis CE, Reis JP, Schreiner PJ, Sidney S, Lima JAC, Lloyd-Jones DM. Age-Related Development of Cardiac Remodeling and Dysfunction in Young Black and White Adults: The Coronary Artery Risk Development in Young Adults Study. J Am Soc Echocardiogr 2021; 34:388-400. [PMID: 33212181 PMCID: PMC8026546 DOI: 10.1016/j.echo.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Little is known about the timing of preclinical heart failure (HF) development, particularly among blacks. The primary aims of this study were to delineate age-related left ventricular (LV) structure and function evolution in a biracial cohort and to test the hypothesis that young-adult LV parameters within normative ranges would be associated with incident stage B-defining LV abnormalities over 25 years, independent of cumulative risk factor burden. METHODS Data from the Coronary Artery Risk Development in Young Adults study were analyzed. Participants (n = 2,833) had a mean baseline age of 30.1 years; 45% were black, and 56% were women. Generalized estimating equation logistic regression was used to estimate age-related probabilities of stage B LV abnormalities (remodeling, hypertrophy, or dysfunction) and logistic regression to examine risk factor-adjusted associations between baseline LV parameters and incident abnormalities. Cox regression was used to assess whether baseline LV parameters associated with incident stage B LV abnormalities were also associated with incident clinical (stage C/D) HF events over >25 years' follow-up. RESULTS Probabilities of stage B LV abnormalities at ages 25 and 60 years were 10.5% (95% CI, 9.4%-11.8%) and 45.0% (95% CI, 42.0%-48.1%), with significant race-sex disparities (e.g., at age 60, black men 52.7% [95% CI, 44.9%-60.3%], black women 59.4% [95% CI, 53.6%-65.0%], white men 39.1% [95% CI, 33.4%-45.0%], and white women 39.1% [95% CI, 33.9%-44.6%]). Over 25 years, baseline LV end-systolic dimension indexed to height was associated with incident systolic dysfunction (adjusted odds ratio per 1 SD higher, 2.56; 95% CI, 1.87-3.52), eccentric hypertrophy (1.34; 95% CI, 1.02-1.75), concentric hypertrophy (0.69; 95% CI, 0.51-0.91), and concentric remodeling (0.68; 95% CI, 0.58-0.79); baseline LV mass indexed to height2.7 was associated with incident eccentric hypertrophy (1.70; 95% CI, 1.25-2.32]), concentric hypertrophy (1.63; 95% CI, 1.19-2.24), and diastolic dysfunction (1.24; 95% CI, 1.01-1.52). Among the entire cohort with baseline echocardiographic data available (n = 4,097; 72 HF events), LV end-systolic dimension indexed to height and LV mass indexed to height2.7 were significantly associated with incident clinical HF (adjusted hazard ratios per 1 SD higher, 1.56 [95% CI, 1.26-1.93] and 1.42 [95% CI, 1.14-1.75], respectively). CONCLUSIONS Stage B LV abnormalities and related racial disparities were present in young adulthood, increased with age, and were associated with baseline variation in indexed LV end-systolic dimension and mass. Baseline indexed LV end-systolic dimension and mass were also associated with incident clinical HF. Efforts to prevent the LV abnormalities underlying clinical HF should start from a young age.
Collapse
Affiliation(s)
- Amanda M Perak
- Northwestern University, Chicago, Illinois; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.
| | | | | | - Samuel S Gidding
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Anderson C Armstrong
- Johns Hopkins University, Baltimore, Maryland; University of Sao Francisco Valley, Petrolina, Brazil
| | - Cora E Lewis
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Jared P Reis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
10
|
Kim M, Kim SK. Genetic approaches toward understanding the individual variation in cardiac structure, function and responses to exercise training. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2021; 25:1-14. [PMID: 33361533 PMCID: PMC7756535 DOI: 10.4196/kjpp.2021.25.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022]
Abstract
Cardiovascular disease (CVD) accounts for approximately 30% of all deaths worldwide and its prevalence is constantly increasing despite advancements in medical treatments. Cardiac remodeling and dysfunction are independent risk factors for CVD. Recent studies have demonstrated that cardiac structure and function are genetically influenced, suggesting that understanding the genetic basis for cardiac structure and function could provide new insights into developing novel therapeutic targets for CVD. Regular exercise has long been considered a robust non-therapeutic method of treating or preventing CVD. However, recent studies also indicate that there is inter-individual variation in response to exercise. Nevertheless, the genetic basis for cardiac structure and function as well as their responses to exercise training have yet to be fully elucidated. Therefore, this review summarizes accumulated evidence supporting the genetic contribution to these traits, including findings from population-based studies and unbiased large genomic-scale studies in humans.
Collapse
Affiliation(s)
- Minsun Kim
- Department of Sports Science, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Seung Kyum Kim
- Department of Sports Science, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the recent advances in the genetics and genomics of dilated cardiomyopathy and heart failure. RECENT FINDINGS Over the last decade, the approach to the discovery of the genetic contribution to heart failure has evolved from investigation of rare variants implicated in Mendelian cardiomyopathies through linkage studies and candidate gene studies to the exploration of the contribution of common variants through large-scale genome-wide association and genome-first studies. The combination and integration of multiple of case-control heart failure cohorts, refinement of the heart failure phenotype, and utilization of large biobanks linked to electronic health records have advanced the understanding of the heritability of heart failure.
Collapse
Affiliation(s)
- Nosheen Reza
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 11 South Tower, Room 11-145 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Anjali Tiku Owens
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 11 South Tower, Room 11-145 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Pirruccello JP, Bick A, Wang M, Chaffin M, Friedman S, Yao J, Guo X, Venkatesh BA, Taylor KD, Post WS, Rich S, Lima JAC, Rotter JI, Philippakis A, Lubitz SA, Ellinor PT, Khera AV, Kathiresan S, Aragam KG. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat Commun 2020; 11:2254. [PMID: 32382064 PMCID: PMC7206184 DOI: 10.1038/s41467-020-15823-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/18/2020] [Indexed: 01/09/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is an important cause of heart failure and the leading indication for heart transplantation. Many rare genetic variants have been associated with DCM, but common variant studies of the disease have yielded few associated loci. As structural changes in the heart are a defining feature of DCM, we report a genome-wide association study of cardiac magnetic resonance imaging (MRI)-derived left ventricular measurements in 36,041 UK Biobank participants, with replication in 2184 participants from the Multi-Ethnic Study of Atherosclerosis. We identify 45 previously unreported loci associated with cardiac structure and function, many near well-established genes for Mendelian cardiomyopathies. A polygenic score of MRI-derived left ventricular end systolic volume strongly associates with incident DCM in the general population. Even among carriers of TTN truncating mutations, this polygenic score influences the size and function of the human heart. These results further implicate common genetic polymorphisms in the pathogenesis of DCM.
Collapse
Affiliation(s)
- James P Pirruccello
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Alexander Bick
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Stephen Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Joao A C Lima
- Department of Radiology, Johns Hopkins University, Baltimore, MA, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anthony Philippakis
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
- GV, Mountain View, CA, USA
| | - Steven A Lubitz
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick T Ellinor
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Amit V Khera
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sekar Kathiresan
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Krishna G Aragam
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Smith JA, Raisky J, Ratliff SM, Liu J, Kardia SLR, Turner ST, Mosley TH, Zhao W. Intrinsic and extrinsic epigenetic age acceleration are associated with hypertensive target organ damage in older African Americans. BMC Med Genomics 2019; 12:141. [PMID: 31640709 PMCID: PMC6806502 DOI: 10.1186/s12920-019-0585-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Epigenetic age acceleration, a measure of biological aging based on DNA methylation, is associated with cardiovascular mortality. However, little is known about its relationship with hypertensive target organ damage to the heart, kidneys, brain, and peripheral arteries. Methods We investigated associations between intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration, blood pressure, and six types of organ damage in a primarily hypertensive cohort of 1390 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. DNA methylation from peripheral blood leukocytes was collected at baseline (1996–2000), and measures of target organ damage were assessed in a follow-up visit (2000–2004). Linear regression with generalized estimating equations was used to test for associations between epigenetic age acceleration and target organ damage, as well as effect modification of epigenetic age by blood pressure or sex. Sequential Oligogenic Linkage Analysis Routines (SOLAR) was used to test for evidence of shared genetic and/or environmental effects between epigenetic age acceleration and organ damage pairs that were significantly associated. Results After adjustment for sex, chronological age, and time between methylation and organ damage measures, higher IEAA was associated with higher urine albumin to creatinine ratio (UACR, p = 0.004), relative wall thickness (RWT, p = 0.022), and left ventricular mass index (LVMI, p = 0.007), and with lower ankle-brachial index (ABI, p = 0.014). EEAA was associated with higher LVMI (p = 0.005). Target organ damage associations for all but IEAA with LVMI remained significant after further adjustment for blood pressure and antihypertensive use (p < 0.05). Further adjustment for diabetes attenuated the IEAA associations with UACR and RWT, and adjustment for smoking attenuated the IEAA association with ABI. No effect modification by age or sex was observed. Conclusions Measures of epigenetic age acceleration may help to better characterize the functional mechanisms underlying organ damage from cellular aging and/or hypertension. These measures may act as subclinical biomarkers for damage to the kidney, heart, and peripheral vasculature; however more research is needed to determine whether these relationships remain independent of lifestyle factors and comorbidities.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA. .,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA.
| | - Jeremy Raisky
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaxuan Liu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, 39126, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 2019; 17:286-297. [PMID: 31605094 DOI: 10.1038/s41569-019-0284-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.
Collapse
Affiliation(s)
| | - Katherine E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Cresci S, Pereira NL, Ahmad F, Byku M, de las Fuentes L, Lanfear DE, Reilly CM, Owens AT, Wolf MJ. Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:458-485. [PMID: 31510778 DOI: 10.1161/hcg.0000000000000058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of 5 people will develop heart failure over his or her lifetime. Early diagnosis and better understanding of the pathophysiology of this disease are critical to optimal treatment. The "omics"-genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and microbiomics- of heart failure represent rapidly expanding fields of science that have, to date, not been integrated into a single body of work. The goals of this statement are to provide a comprehensive overview of the current state of these omics as they relate to the development and progression of heart failure and to consider the current and potential future applications of these data for precision medicine with respect to prevention, diagnosis, and therapy.
Collapse
|
16
|
van der Ende MY, Said MA, van Veldhuisen DJ, Verweij N, van der Harst P. Genome-wide studies of heart failure and endophenotypes: lessons learned and future directions. Cardiovasc Res 2019; 114:1209-1225. [PMID: 29912321 DOI: 10.1093/cvr/cvy083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from structural or functional impairments of ventricular filling or ejection of blood. HF has a poor prognosis and the burden to society remains tremendous. The unfulfilled expectation is that expanding our knowledge of the genetic architecture of HF will help to quickly advance the quality of risk assessment, diagnoses, and treatment. To date, genome-wide association studies (GWAS) of HF have led to disappointing results with only limited progress in our understanding and tempering the earlier expectations. However, the analyses of traits closely related to HF (also called 'endophenotypes') have led to promising and novel findings. For example, GWAS of NT-proBNP levels not only identified variants in the NNPA-NPPB locus but also substantiated data suggesting that natriuretic peptides in itself are associated with a lower risk of hypertension and HF. Many other genetic associates currently await experimental follow-up in which genes are prioritized based on bioinformatic analyses and various model organisms are employed to obtain functional insights. Promising genes with identified function could later be used in personalized medicine. Also, targeting specific pathogenic gene mutations is promising to protect future generations from HF, such as recently done in human embryos carrying the cardiomyopathy-associated MYBPC3 mutation. This review discusses the current status of GWAS of HF and its endophenotypes. In addition, future directions such as functional follow-up and application of GWAS results are discussed.
Collapse
Affiliation(s)
- Maaike Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Mir Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Dirk Jan van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| |
Collapse
|
17
|
Abstract
Chronic kidney disease mineral and bone disorder (MBD) encompasses changes in mineral ion and vitamin D metabolism that are widespread in the setting of chronic kidney disease and end-stage renal disease. MBD components associate with cardiovascular disease in many epidemiologic studies. Through impacts on hypertension, activation of the renin-angiotensin-aldosterone system, vascular calcification, endothelial function, and cardiac remodeling and conduction, MBD may be a direct and targetable cause of cardiovascular disease. However, assessment and treatment of MBD is rife with challenges owing to biological tensions between its many components, such as calcium and phosphorus with their regulatory hormones fibroblast growth factor 23 and parathyroid hormone; fibroblast growth factor 23 with its co-receptor klotho; and vitamin D with control of calcium and phosphorus. These complex interactions between MBD components hinder the simple translation to clinical trials, which ultimately are needed to prove the benefits of treating MBD. Deeper investigation using precision medicine tools and principles, including genomics and individualized risk assessment and therapy, may help move the field closer toward clinical applications. This review provides a high-level overview of conventional and precision epidemiology in MBD, potential mechanisms of cardiovascular disease pathogenesis, and guiding therapeutic principles for established and emerging treatments.
Collapse
Affiliation(s)
- Joseph Lunyera
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Julia J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, NC; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC; Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC.
| |
Collapse
|
18
|
Lieb W, Vasan RS. Scientific Contributions of Population-Based Studies to Cardiovascular Epidemiology in the GWAS Era. Front Cardiovasc Med 2018; 5:57. [PMID: 29930944 PMCID: PMC6001813 DOI: 10.3389/fcvm.2018.00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
Longitudinal, well phenotyped, population-based cohort studies offer unique research opportunities in the context of genome-wide association studies (GWAS), including GWAS for new-onset (incident) cardiovascular disease (CVD) events, the assessment of gene x lifestyle interactions, and evaluating the incremental predictive utility of genetic information in apparently healthy individuals. Furthermore, comprehensively phenotyped community-dwelling samples have contributed to GWAS of numerous traits that reflect normal organ function (e.g., cardiac structure and systolic and diastolic function) and for many traits along the CVD continuum (e.g., risk factors, circulating biomarkers, and subclinical disease traits). These GWAS have heretofore identified many genetic loci implicated in normal organ function and different stages of the CVD continuum. Finally, population-based cohort studies have made important contributions to Mendelian Randomization analyses, a statistical approach that uses genetic information to assess observed associations between cardiovascular traits and clinical CVD outcomes for potential causality.
Collapse
Affiliation(s)
- Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Ramachandran S Vasan
- Framingham Heart Study (FHS), Framingham, MA, United States.,Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
van der Kemp J, van der Schouw YT, Asselbergs FW, Onland-Moret NC. Women-specific risk factors for heart failure: A genetic approach. Maturitas 2018; 109:104-111. [DOI: 10.1016/j.maturitas.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
|
20
|
Dueker ND, Guo S, Beecham A, Wang L, Blanton SH, Di Tullio MR, Rundek T, Sacco RL. Sequencing of Linkage Region on Chromosome 12p11 Identifies PKP2 as a Candidate Gene for Left Ventricular Mass in Dominican Families. G3 (BETHESDA, MD.) 2018; 8:659-668. [PMID: 29288195 PMCID: PMC5919734 DOI: 10.1534/g3.117.300358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/10/2017] [Indexed: 12/16/2022]
Abstract
Increased left ventricular mass (LVM) is an intermediate phenotype for cardiovascular disease (CVD) and a predictor of stroke. Using families from the Dominican Republic, we have previously shown LVM to be heritable and found evidence for linkage to chromosome 12p11. Our current study aimed to further characterize the QTL by sequencing the 1 LOD unit down region in 10 families from the Dominican Republic with evidence for linkage to LVM. Within this region, we tested 5477 common variants [CVs; minor allele frequency (MAF) ≥5%] using the Quantitative Transmission-Disequilibrium Test (QTDT). Gene-based analyses were performed to test rare variants (RVs; MAF < 5%) in 181 genes using the family-based sequence kernel association test. A sample of 618 unrelated Dominicans from the Northern Manhattan Study (NOMAS) and 12 Dominican families with Exome Array data were used for replication analyses. The most strongly associated CV with evidence for replication was rs1046116 (Discovery families P = 9.0 × 10-4; NOMAS P = 0.03; replication families P = 0.46), a missense variant in PKP2 In nonsynonymous RV analyses, PKP2 was one of the most strongly associated genes (P = 0.05) with suggestive evidence for replication in NOMAS (P = 0.05). PKP2 encodes the plakophilin 2 protein and is a desmosomal gene implicated in arrythmogenic right ventricular cardiomyopathy and recently in arrhythmogenic left ventricular cardiomyopathy, which makes PKP2 an excellent candidate gene for LVM. In conclusion, sequencing of our previously reported QTL identified common and rare variants within PKP2 to be associated with LVM. Future studies are necessary to elucidate the role these variants play in influencing LVM.
Collapse
Affiliation(s)
- Nicole D Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida 33136
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida 33136
| | - Marco R Di Tullio
- Department of Medicine, Columbia University, New York, New York 10032
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Florida 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Florida 33136
| | - Ralph L Sacco
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida 33136
- Department of Neurology, Miller School of Medicine, University of Miami, Florida 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Florida 33136
| |
Collapse
|
21
|
Shorter JR, Huang W, Beak JY, Hua K, Gatti DM, de Villena FPM, Pomp D, Jensen BC. Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mamm Genome 2018; 29:80-89. [PMID: 29279960 PMCID: PMC6340297 DOI: 10.1007/s00335-017-9730-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023]
Abstract
Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12-15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24-25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- John R Shorter
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA.
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ju Youn Beak
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
| | - Brian C Jensen
- Division of Cardiology, Department of Medicine, University of North Carolina, 6012 Burnett-Womack Building, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Biffi C, de Marvao A, Attard MI, Dawes TJW, Whiffin N, Bai W, Shi W, Francis C, Meyer H, Buchan R, Cook SA, Rueckert D, O’Regan DP. Three-dimensional cardiovascular imaging-genetics: a mass univariate framework. Bioinformatics 2018; 34:97-103. [PMID: 28968671 PMCID: PMC5870605 DOI: 10.1093/bioinformatics/btx552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 01/19/2023] Open
Abstract
Motivation Left ventricular (LV) hypertrophy is a strong predictor of cardiovascular outcomes, but its genetic regulation remains largely unexplained. Conventional phenotyping relies on manual calculation of LV mass and wall thickness, but advanced cardiac image analysis presents an opportunity for high-throughput mapping of genotype-phenotype associations in three dimensions (3D). Results High-resolution cardiac magnetic resonance images were automatically segmented in 1124 healthy volunteers to create a 3D shape model of the heart. Mass univariate regression was used to plot a 3D effect-size map for the association between wall thickness and a set of predictors at each vertex in the mesh. The vertices where a significant effect exists were determined by applying threshold-free cluster enhancement to boost areas of signal with spatial contiguity. Experiments on simulated phenotypic signals and SNP replication show that this approach offers a substantial gain in statistical power for cardiac genotype-phenotype associations while providing good control of the false discovery rate. This framework models the effects of genetic variation throughout the heart and can be automatically applied to large population cohorts. Availability and implementation The proposed approach has been coded in an R package freely available at https://doi.org/10.5281/zenodo.834610 together with the clinical data used in this work. Contact declan.oregan@imperial.ac.uk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Carlo Biffi
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Antonio de Marvao
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Mark I Attard
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Timothy J W Dawes
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
- Quantitative Physiology and Genetics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicola Whiffin
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
- Quantitative Physiology and Genetics, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Wenjia Bai
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - Wenzhe Shi
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - Catherine Francis
- Quantitative Physiology and Genetics, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Hannah Meyer
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Rachel Buchan
- Quantitative Physiology and Genetics, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Stuart A Cook
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
- Quantitative Physiology and Genetics, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
- Department of Cardiology, National Heart Centre Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke National University Singapore, Singapore
| | - Daniel Rueckert
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - Declan P O’Regan
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
23
|
Smith JG. Molecular Epidemiology of Heart Failure: Translational Challenges and Opportunities. JACC Basic Transl Sci 2017; 2:757-769. [PMID: 30062185 PMCID: PMC6058947 DOI: 10.1016/j.jacbts.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is the end-stage of all heart disease and arguably constitutes the greatest unmet therapeutic need in cardiovascular medicine today. Classic epidemiological studies have established clinical risk factors for HF, but the cause remains poorly understood in many cases. Biochemical analyses of small case-control series and animal models have described a plethora of molecular characteristics of HF, but a single unifying pathogenic theory is lacking. Heart failure appears to result not only from cardiac overload or injury but also from a complex interplay among genetic, neurohormonal, metabolic, inflammatory, and other biochemical factors acting on the heart. Recent development of robust, high-throughput tools in molecular biology provides opportunity for deep molecular characterization of population-representative cohorts and HF cases (molecular epidemiology), including genome sequencing, profiling of myocardial gene expression and chromatin modifications, plasma composition of proteins and metabolites, and microbiomes. The integration of such detailed information holds promise for improving understanding of HF pathophysiology in humans, identification of therapeutic targets, and definition of disease subgroups beyond the current classification based on ejection fraction which may benefit from improved individual tailoring of therapy. Challenges include: 1) the need for large cohorts with deep, uniform phenotyping; 2) access to the relevant tissues, ideally with repeated sampling to capture dynamic processes; and 3) analytical issues related to integration and analysis of complex datasets. International research consortia have formed to address these challenges and combine datasets, and cohorts with up to 1 million participants are being collected. This paper describes the molecular epidemiology of HF and provides an overview of methods and tissue types and examples of published and ongoing efforts to systematically evaluate molecular determinants of HF in human populations.
Collapse
Affiliation(s)
- J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden.,Department of Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
24
|
Shendre A, Wiener HW, Irvin MR, Aouizerat BE, Overton ET, Lazar J, Liu C, Hodis HN, Limdi NA, Weber KM, Gange SJ, Zhi D, Floris-Moore MA, Ofotokun I, Qi Q, Hanna DB, Kaplan RC, Shrestha S. Genome-wide admixture and association study of subclinical atherosclerosis in the Women's Interagency HIV Study (WIHS). PLoS One 2017; 12:e0188725. [PMID: 29206233 PMCID: PMC5714351 DOI: 10.1371/journal.pone.0188725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a major comorbidity among HIV-infected individuals. Common carotid artery intima-media thickness (cCIMT) is a valid and reliable subclinical measure of atherosclerosis and is known to predict CVD. We performed genome-wide association (GWA) and admixture analysis among 682 HIV-positive and 288 HIV-negative Black, non-Hispanic women from the Women's Interagency HIV study (WIHS) cohort using a combined and stratified analysis approach. We found some suggestive associations but none of the SNPs reached genome-wide statistical significance in our GWAS analysis. The top GWAS SNPs were rs2280828 in the region intergenic to mediator complex subunit 30 and exostosin glycosyltransferase 1 (MED30 | EXT1) among all women, rs2907092 in the catenin delta 2 (CTNND2) gene among HIV-positive women, and rs7529733 in the region intergenic to family with sequence similarity 5, member C and regulator of G-protein signaling 18 (FAM5C | RGS18) genes among HIV-negative women. The most significant local European ancestry associations were in the region intergenic to the zinc finger and SCAN domain containing 5D gene and NADH: ubiquinone oxidoreductase complex assembly factor 1 (ZSCAN5D | NDUF1) pseudogene on chromosome 19 among all women, in the region intergenic to vomeronasal 1 receptor 6 pseudogene and zinc finger protein 845 (VN1R6P | ZNF845) gene on chromosome 19 among HIV-positive women, and in the region intergenic to the SEC23-interacting protein and phosphatidic acid phosphatase type 2 domain containing 1A (SEC23IP | PPAPDC1A) genes located on chromosome 10 among HIV-negative women. A number of previously identified SNP associations with cCIMT were also observed and included rs2572204 in the ryanodine receptor 3 (RYR3) and an admixture region in the secretion-regulating guanine nucleotide exchange factor (SERGEF) gene. We report several SNPs and gene regions in the GWAS and admixture analysis, some of which are common across HIV-positive and HIV-negative women as demonstrated using meta-analysis, and also across the two analytic approaches (i.e., GWA and admixture). These findings suggest that local European ancestry plays an important role in genetic associations of cCIMT among black women from WIHS along with other environmental factors that are related to CVD and may also be triggered by HIV. These findings warrant confirmation in independent samples.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley E. Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York, United States of America
- Department of Oral and Maxillofacial Surgery, New York University, New York, New York, United States of America
| | - Edgar T. Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jason Lazar
- Department of Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - Howard N. Hodis
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, California, United States of America
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kathleen M. Weber
- Cook County Health and Hospital System/Hektoen Institute of Medicine, Chicago, Illnois, United States of America
| | - Stephen J. Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle A. Floris-Moore
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ighovwerha Ofotokun
- Department of Medicine/Infectious Diseases, Emory University, and Grady Healthcare System, Atlanta, Georgia, United States of America
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David B. Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
25
|
Carnethon MR, Pu J, Howard G, Albert MA, Anderson CAM, Bertoni AG, Mujahid MS, Palaniappan L, Taylor HA, Willis M, Yancy CW. Cardiovascular Health in African Americans: A Scientific Statement From the American Heart Association. Circulation 2017; 136:e393-e423. [PMID: 29061565 DOI: 10.1161/cir.0000000000000534] [Citation(s) in RCA: 778] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Population-wide reductions in cardiovascular disease incidence and mortality have not been shared equally by African Americans. The burden of cardiovascular disease in the African American community remains high and is a primary cause of disparities in life expectancy between African Americans and whites. The objectives of the present scientific statement are to describe cardiovascular health in African Americans and to highlight unique considerations for disease prevention and management. METHOD The primary sources of information were identified with PubMed/Medline and online sources from the Centers for Disease Control and Prevention. RESULTS The higher prevalence of traditional cardiovascular risk factors (eg, hypertension, diabetes mellitus, obesity, and atherosclerotic cardiovascular risk) underlies the relatively earlier age of onset of cardiovascular diseases among African Americans. Hypertension in particular is highly prevalent among African Americans and contributes directly to the notable disparities in stroke, heart failure, and peripheral artery disease among African Americans. Despite the availability of effective pharmacotherapies and indications for some tailored pharmacotherapies for African Americans (eg, heart failure medications), disease management is less effective among African Americans, yielding higher mortality. Explanations for these persistent disparities in cardiovascular disease are multifactorial and span from the individual level to the social environment. CONCLUSIONS The strategies needed to promote equity in the cardiovascular health of African Americans require input from a broad set of stakeholders, including clinicians and researchers from across multiple disciplines.
Collapse
|
26
|
Do AN, Zhao W, Srinivasasainagendra V, Aslibekyan S, Tiwari HK, Limdi N, Shah SJ, Zhi D, Broeckel U, Gu CC, Rao DC, Schwander K, Smith JA, Kardia SL, Arnett DK, Irvin MR. Whole exome analyses to examine the impact of rare variants on left ventricular traits in African American participants from the HyperGEN and GENOA studies. JOURNAL OF HYPERTENSION AND MANAGEMENT 2017; 3:025. [PMID: 29503979 PMCID: PMC5831560 DOI: 10.23937/2474-3690/1510025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Left ventricular (LV) hypertrophy, highest in prevalence among African Americans, is an established risk factor heart failure. Several genome wide association studies have identified common variants associated with LV-related quantitative-traits in African Americans. To date, however, the effect of rare variants on these traits has not been extensively studied, especially in minority groups. We therefore investigated the association between rare variants and LV traits among 1,934 African Americans using exome chip data from the Hypertension Genetic Epidemiology Network (HyperGEN) study, with replication in 1,090 African American from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. We used single-variant analyses and gene-based tests to investigate the association between 86,927 variants and six structural and functional LV traits including LV mass, LV internal dimension-diastole, relative wall thickness, left atrial dimension (LAD), fractional shortening (FS), and the ratio of LV early-to-late transmitral velocity (E/A ratio). Only rare variants (MAF <1% and <5%) were considered in gene-based analyses. In gene-based analyses, we found a statistically significant association between potassium voltage-gated channel subfamily H member 4 (KCNH4) and E/A ratio (P=8.7*10-8 using a burden test). Endonuclease G (ENDOG) was associated with LAD using the Madsen Browning weighted burden (MB) test (P=1.4*10-7). Neither gene result was replicated in GENOA, but the direction of effect of single variants in common was comparable. G protein-coupled receptor 55 (GPR55) was marginally associated with LAD in HyperGEN (P=3.2*10-5 using the MB test) and E/A ratio in GENOA, but with opposing directions of association for variants in common (P=0.03 for the MB test). No single variant was statistically significantly associated with any trait after correcting for multiple testing. The findings in this study highlight the potential cumulative contributions of rare variants to LV traits which, if validated, could improve our understanding of heart failure in African Americans.
Collapse
Affiliation(s)
- Anh N. Do
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Nita Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine, Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Uli Broeckel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - C. Charles Gu
- Division of Biostatistics, Washington University in St. Louis, St. Louis, MO
| | - DC Rao
- Division of Biostatistics, Washington University in St. Louis, St. Louis, MO
| | - Karen Schwander
- Division of Biostatistics, Washington University in St. Louis, St. Louis, MO
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
27
|
Tayal U, Prasad S, Cook SA. Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Med 2017; 9:20. [PMID: 28228157 PMCID: PMC5322656 DOI: 10.1186/s13073-017-0410-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heart failure is a major health burden, affecting 40 million people globally. One of the main causes of systolic heart failure is dilated cardiomyopathy (DCM), the leading global indication for heart transplantation. Our understanding of the genetic basis of both DCM and systolic heart failure has improved in recent years with the application of next-generation sequencing and genome-wide association studies (GWAS). This has enabled rapid sequencing at scale, leading to the discovery of many novel rare variants in DCM and of common variants in both systolic heart failure and DCM. Identifying rare and common genetic variants contributing to systolic heart failure has been challenging given its diverse and multiple etiologies. DCM, however, although rarer, is a reasonably specific and well-defined condition, leading to the identification of many rare genetic variants. Truncating variants in titin represent the single largest genetic cause of DCM. Here, we review the progress and challenges in the detection of rare and common variants in DCM and systolic heart failure, and the particular challenges in accurate and informed variant interpretation, and in understanding the effects of these variants. We also discuss how our increasing genetic knowledge is changing clinical management. Harnessing genetic data and translating it to improve risk stratification and the development of novel therapeutics represents a major challenge and unmet critical need for patients with heart failure and their families.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Sanjay Prasad
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Stuart A Cook
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK. .,Duke National University Hospital, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
28
|
van der Harst P, de Bakker PI. Reply. J Am Coll Cardiol 2017; 69:1099. [DOI: 10.1016/j.jacc.2016.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
|
29
|
Li X, Zhang P. Genetic determinants of myocardial dysfunction. J Med Genet 2016; 54:1-10. [DOI: 10.1136/jmedgenet-2016-104308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
|
30
|
Koh W, Wong C, Tang WHW. Genetic Predispositions to Heart Failure. CURRENT CARDIOVASCULAR RISK REPORTS 2016. [DOI: 10.1007/s12170-016-0525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Wang JJC, Rau C, Avetisyan R, Ren S, Romay MC, Stolin G, Gong KW, Wang Y, Lusis AJ. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genet 2016; 12:e1006038. [PMID: 27385019 PMCID: PMC4934852 DOI: 10.1371/journal.pgen.1006038] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls. Heart failure is the most common cause of morbidity and mortality in the aging population. Previous large-scale human genome-wide association studies have yielded only a handful of genetic loci contributing to heart failure-related traits. Using a panel of diverse inbred mouse strains, treated with a β-adrenergic agonist isoproterenol to mimic the heart failure state, we sought to uncover the contribution of common genetic variation in heart failure. We found that heart failure has a strong genetic component. We successfully identified 17 genome-wide significant loci associated with indices of heart failure. We showed that genetic variation in a novel gene Myh14 affects heart failure by altering the mechanical responses of heart muscles to isoproterenol-induced stress. Follow-up studies of this gene and additional candidate genes and loci should reveal potential mechanisms by which genetic variations contribute to heart failure in the general human population. Such insights may lead to improved diagnosis and tailor treatment based on the genetic makeup of individuals in the population.
Collapse
Affiliation(s)
- Jessica Jen-Chu Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail: (JJCW); (AJL)
| | - Christoph Rau
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rozeta Avetisyan
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shuxun Ren
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Milagros C. Romay
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gabriel Stolin
- Department of Molecular, Cell, and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ke Wei Gong
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Yibin Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail: (JJCW); (AJL)
| |
Collapse
|
32
|
Krüppel-like factor 5 promotes apoptosis triggered by tumor necrosis factor α in LNCaP prostate cancer cells via up-regulation of mitogen-activated protein kinase kinase 7. Urol Oncol 2016; 34:58.e11-8. [DOI: 10.1016/j.urolonc.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
|
33
|
Abstract
PURPOSE OF REVIEW In contrast to many other human diseases, the use of genome-wide association studies (GWAS) to identify genes for heart failure (HF) has had limited success. We will discuss the underlying challenges as well as potential new approaches to understanding the genetics of common forms of HF. RECENT FINDINGS Recent research using intermediate phenotypes, more detailed and quantitative stratification of HF symptoms, founder populations and novel animal models has begun to allow researchers to make headway toward explaining the genetics underlying HF using GWAS techniques. SUMMARY By expanding analyses of HF to improved clinical traits, additional HF classifications and innovative model systems, the intractability of human HF GWAS should be ameliorated significantly.
Collapse
|
34
|
Abstract
Sudden cardiac death occurs in a broad spectrum of cardiac pathologies and is an important cause of mortality in the general population. Genetic studies conducted during the past 20 years have markedly illuminated the genetic basis of the inherited cardiac disorders associated with sudden cardiac death. Here, we review the genetic basis of sudden cardiac death with a focus on the current knowledge on the genetics of the primary electric disorders caused primarily by mutations in genes encoding ion channels, and the cardiomyopathies, which have been attributed to mutations in genes encoding a broader category of proteins, including those of the sarcomere, the cytoskeleton, and desmosomes. We discuss the challenges currently faced in unraveling genetic factors that predispose to sudden cardiac death in the setting of sequela of coronary artery disease and present the genome-wide association studies conducted in recent years on electrocardiographic parameters, highlighting their potential in uncovering new biological insights into cardiac electric function.
Collapse
Affiliation(s)
- Connie R Bezzina
- From the Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (C.R.B., N.L.); Molecular Cardiology, Fondazione Salvatore Maugeri, Pavia, Italy (S.G.P.); and Department of Molecular Medicine, University of Pavia, Pavia Italy (S.G.P.)
| | - Najim Lahrouchi
- From the Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (C.R.B., N.L.); Molecular Cardiology, Fondazione Salvatore Maugeri, Pavia, Italy (S.G.P.); and Department of Molecular Medicine, University of Pavia, Pavia Italy (S.G.P.)
| | - Silvia G Priori
- From the Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (C.R.B., N.L.); Molecular Cardiology, Fondazione Salvatore Maugeri, Pavia, Italy (S.G.P.); and Department of Molecular Medicine, University of Pavia, Pavia Italy (S.G.P.).
| |
Collapse
|
35
|
A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy. Int J Mol Sci 2015; 16:17456-68. [PMID: 26263970 PMCID: PMC4581202 DOI: 10.3390/ijms160817456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 17A1 (CYP17A1) catalyses the formation and metabolism of steroid hormones. They are involved in blood pressure (BP) regulation and in the pathogenesis of left ventricular hypertrophy. Therefore, altered function of CYP17A1 due to genetic variants may influence BP and left ventricular mass. Notably, genome wide association studies supported the role of this enzyme in BP control. Against this background, we investigated associations between single nucleotide polymorphisms (SNPs) in or nearby the CYP17A1 gene with BP and left ventricular mass in patients with arterial hypertension and associated cardiovascular organ damage treated according to guidelines. Patients (n = 1007, mean age 58.0 ± 9.8 years, 83% men) with arterial hypertension and cardiac left ventricular ejection fraction (LVEF) ≥ 40% were enrolled in the study. Cardiac parameters of left ventricular mass, geometry and function were determined by echocardiography. The cohort comprised patients with coronary heart disease (n = 823; 81.7%) and myocardial infarction (n = 545; 54.1%) with a mean LVEF of 59.9% ± 9.3%. The mean left ventricular mass index (LVMI) was 52.1 ± 21.2 g/m2.7 and 485 (48.2%) patients had left ventricular hypertrophy. There was no significant association of any investigated SNP (rs619824, rs743572, rs1004467, rs11191548, rs17115100) with mean 24 h systolic or diastolic BP. However, carriers of the rs11191548 C allele demonstrated a 7% increase in LVMI (95% CI: 1%-12%, p = 0.017) compared to non-carriers. The CYP17A1 polymorphism rs11191548 demonstrated a significant association with LVMI in patients with arterial hypertension and preserved LVEF. Thus, CYP17A1 may contribute to cardiac hypertrophy in this clinical condition.
Collapse
|
36
|
Russo C, Jin Z, Homma S, Rundek T, Elkind MS, Sacco RL, Di Tullio MR. Race-ethnic differences in subclinical left ventricular systolic dysfunction by global longitudinal strain: A community-based cohort study. Am Heart J 2015; 169:721-6. [PMID: 25965720 DOI: 10.1016/j.ahj.2015.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/01/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Race-ethnic differences exist in the epidemiology of heart failure, with blacks experiencing higher incidence and worse prognosis. Left ventricular (LV) systolic dysfunction (LVSD) detected by speckle-tracking global longitudinal strain (GLS) is a predictor of cardiovascular events including heart failure. It is not known whether race-ethnic differences in GLS-LVSD exist in subjects without overt LV dysfunction. METHODS Participants from a triethnic community-based study underwent 2-dimensional echocardiography with assessment of LV ejection fraction (LVEF) and GLS by speckle-tracking. Participants with LVEF <50% were excluded. Left ventricular systolic dysfunction by GLS was defined as GLS >95% percentile in a healthy sample (-14.7%). RESULTS Of the 678 study participants (mean age 71 ± 9 years, 61% women), 114 were blacks; 464, Hispanics; and 100, whites. Global longitudinal strain was significantly lower in blacks (-16.5% ± 3.5%) than in whites (-17.5% ± 3.0%) and Hispanics (-17.3% ± 2.9%) in both univariate (P = .015) and multivariate analyses (P = .011), whereas LVEF was not significantly different between the 3 groups (64.3% ± 4.6%, 63.4% ± 4.9%, 64.7% ± 4.9%, respectively, univariate P = .064, multivariate P = .291). Left ventricular systolic dysfunction by GLS was more frequent in blacks (27.2%) than in whites (19.0%) and Hispanics (14.9%, P = .008). In multivariate analysis adjusted for confounders and cardiovascular risk factors, blacks were significantly more likely to have GLS-LVSD (adjusted odds ratio 2.6, 95% CIs 1.4-4.7, P = .002) compared to the other groups. CONCLUSIONS Among participants from a triethnic community cohort, black race was associated with greater degree of subclinical LVSD by GLS than other race-ethnic groups. This difference was independent of confounders and cardiovascular risk factors.
Collapse
|
37
|
Jacobson DR, Alexander AA, Tagoe C, Buxbaum JN. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans. Amyloid 2015; 22:171-4. [PMID: 26123279 DOI: 10.3109/13506129.2015.1051219] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Transthyretin (TTR) V122I (rs76992529) is one of 111 variants caused by point mutations in the coding sequence of the human TTR gene that are associated with systemic amyloidosis. It results from a G to A transition at a CG dinucleotide in codon 142(122 of the mature protein) of the gene and has been described almost exclusively in people of African descent. Several series have reported allele frequencies from 0.015 to 0.020 in African-Americans. OBJECTIVE To define more accurately the frequency of the TTR V122I variant allele in the African-American population. METHODS DNA isolated from blood spots from 1688 New York State African-American newborns was genotyped for the TTR V122I allele. We also compiled new data from the Jackson Heart Study and previously unpublished data from the Dallas Heart Study, plus data from a San Diego "wellness study", providing 15 650 additional allelotypes to those already reported. RESULTS Among the New York newborns, the TTR V122I allele was present in 65/3376 alleles (allele prevalence 0.0193). The combined available data from all the non-selected African-American cohorts showed the TTR variant allele to be present in 451/26 062 alleles (allele prevalence of 0.0173), slightly but not significantly lower than our previously published estimates. CONCLUSIONS The allele prevalence for TTR V122I in African-Americans is 0.0173. Of African-Americans under age 65, 3.43% carry at least one copy of the variant amyloidogenic allele.
Collapse
|
38
|
Lieb W, Chen MH, Teumer A, de Boer RA, Lin H, Fox ER, Musani SK, Wilson JG, Wang TJ, Völzke H, Petersen AK, Meisinger C, Nauck M, Schlesinger S, Li Y, Menard J, Hercberg S, Wichmann HE, Völker U, Rawal R, Bidlingmaier M, Hannemann A, Dörr M, Rettig R, van Gilst WH, van Veldhuisen DJ, Bakker SJL, Navis G, Wallaschofski H, Meneton P, van der Harst P, Reincke M, Vasan RS. Genome-wide meta-analyses of plasma renin activity and concentration reveal association with the kininogen 1 and prekallikrein genes. ACTA ACUST UNITED AC 2014; 8:131-40. [PMID: 25477429 DOI: 10.1161/circgenetics.114.000613] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) is critical for regulation of blood pressure and fluid balance and influences cardiovascular remodeling. Dysregulation of the RAAS contributes to cardiovascular and renal morbidity. The genetic architecture of circulating RAAS components is incompletely understood. METHODS AND RESULTS We meta-analyzed genome-wide association data for plasma renin activity (n=5275), plasma renin concentrations (n=8014), and circulating aldosterone (n=13289) from ≤4 population-based cohorts of European and European-American ancestry, and assessed replication of the top results in an independent sample (n=6487). Single-nucleotide polymorphisms (SNPs) in 2 independent loci displayed associations with plasma renin activity at genome-wide significance (P<5×10(-8)). A third locus was close to this threshold (rs4253311 in kallikrein B [KLKB1], P=5.5×10(-8)). Two of these loci replicated in an independent sample for both plasma renin and aldosterone concentrations (SNP rs5030062 in kininogen 1 [KNG1]: P=0.001 for plasma renin, P=0.024 for plasma aldosterone concentration; and rs4253311 with P<0.001 for both plasma renin and aldosterone concentration). SNPs in the NEBL gene reached genome-wide significance for plasma renin concentration in the discovery sample (top SNP rs3915911; P=8.81×10(-9)), but did not replicate (P=0.81). No locus reached genome-wide significance for aldosterone. SNPs rs5030062 and rs4253311 were not related to blood pressure or renal traits; in a companion study, variants in the kallikrein B locus were associated with B-type natriuretic peptide concentrations in blacks. CONCLUSIONS We identified 2 genetic loci (kininogen 1 and kallikrein B) influencing key components of the RAAS, consistent with the close interrelation between the kallikrein-kinin system and the RAAS.
Collapse
|
39
|
Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2014; 18:40-51. [PMID: 25427668 DOI: 10.1159/000367962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.
Collapse
|
40
|
Wells QS, Farber-Eger E, Crawford DC. Extraction of echocardiographic data from the electronic medical record is a rapid and efficient method for study of cardiac structure and function. J Clin Bioinforma 2014; 4:12. [PMID: 25276338 PMCID: PMC4177384 DOI: 10.1186/2043-9113-4-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Measures of cardiac structure and function are important human phenotypes that are associated with a range of clinical outcomes. Studying these traits in large populations can be time consuming and costly. Utilizing data from large electronic medical records (EMRs) is one possible solution to this problem. We describe the extraction and filtering of quantitative transthoracic echocardiographic data from the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study, a large, racially diverse, EMR-based cohort (n = 15,863). Results There were 6,076 echocardiography reports for 2,834 unique adult subjects. Missing data were uncommon with over 90% of data points present. Data irregularities are primarily related to inconsistent use of measurement units and transcriptional errors. The reported filtering method requires manual review of very few data points (<1%), and filtered echocardiographic parameters are similar to published data from epidemiologic populations of similar ethnicity. Moreover, the cohort is comparable in size, and in some cases larger than community-based cohorts of similar race/ethnicity. Conclusions These results demonstrate that echocardiographic data can be efficiently extracted from EMRs, and suggest that EMR-based cohorts have the potential to make major contributions toward the study of epidemiologic and genotype-phenotype associations for cardiac structure and function in diverse populations.
Collapse
Affiliation(s)
- Quinn S Wells
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA ; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA ; Vanderbilt University Medical Center, 2525 West End Avenue, Suite 300, Nashville TN 37203, USA
| | - Eric Farber-Eger
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Dana C Crawford
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232, USA ; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
41
|
de Marvao A, Dawes TJW, Shi W, Minas C, Keenan NG, Diamond T, Durighel G, Montana G, Rueckert D, Cook SA, O’Regan DP. Population-based studies of myocardial hypertrophy: high resolution cardiovascular magnetic resonance atlases improve statistical power. J Cardiovasc Magn Reson 2014; 16:16. [PMID: 24490638 PMCID: PMC3914701 DOI: 10.1186/1532-429x-16-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/29/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cardiac phenotypes, such as left ventricular (LV) mass, demonstrate high heritability although most genes associated with these complex traits remain unidentified. Genome-wide association studies (GWAS) have relied on conventional 2D cardiovascular magnetic resonance (CMR) as the gold-standard for phenotyping. However this technique is insensitive to the regional variations in wall thickness which are often associated with left ventricular hypertrophy and require large cohorts to reach significance. Here we test whether automated cardiac phenotyping using high spatial resolution CMR atlases can achieve improved precision for mapping wall thickness in healthy populations and whether smaller sample sizes are required compared to conventional methods. METHODS LV short-axis cine images were acquired in 138 healthy volunteers using standard 2D imaging and 3D high spatial resolution CMR. A multi-atlas technique was used to segment and co-register each image. The agreement between methods for end-diastolic volume and mass was made using Bland-Altman analysis in 20 subjects. The 3D and 2D segmentations of the LV were compared to manual labeling by the proportion of concordant voxels (Dice coefficient) and the distances separating corresponding points. Parametric and nonparametric data were analysed with paired t-tests and Wilcoxon signed-rank test respectively. Voxelwise power calculations used the interstudy variances of wall thickness. RESULTS The 3D volumetric measurements showed no bias compared to 2D imaging. The segmented 3D images were more accurate than 2D images for defining the epicardium (Dice: 0.95 vs 0.93, P<0.001; mean error 1.3 mm vs 2.2 mm, P<0.001) and endocardium (Dice 0.95 vs 0.93, P<0.001; mean error 1.1 mm vs 2.0 mm, P<0.001). The 3D technique resulted in significant differences in wall thickness assessment at the base, septum and apex of the LV compared to 2D (P<0.001). Fewer subjects were required for 3D imaging to detect a 1 mm difference in wall thickness (72 vs 56, P<0.001). CONCLUSIONS High spatial resolution CMR with automated phenotyping provides greater power for mapping wall thickness than conventional 2D imaging and enables a reduction in the sample size required for studies of environmental and genetic determinants of LV wall thickness.
Collapse
Affiliation(s)
- Antonio de Marvao
- From the Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Timothy JW Dawes
- From the Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Wenzhe Shi
- Department of Computing, Imperial College London, Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Christopher Minas
- Department of Mathematics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Niall G Keenan
- Department of Cardiology, Imperial College NHS Healthcare Trust, Du Cane Road, London W12 0HS, UK
| | - Tamara Diamond
- From the Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Giuliana Durighel
- From the Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Giovanni Montana
- Department of Mathematics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Stuart A Cook
- From the Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Department of Cardiology, National Heart Centre Singapore, 17 Third Hospital Ave, Singapore 168752, Singapore
- Duke-NUS, 8 College Road, Singapore 169857, Singapore
| | - Declan P O’Regan
- From the Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|