1
|
Bahout M, Severa G, Kamoun E, Bouhour F, Pegat A, Toutain A, Lagrange E, Duval F, Tard C, De la Cruz E, Féasson L, Jacquin-Piques A, Richard P, Métay C, Cavalli M, Romero NB, Evangelista T, Sole G, Carlier RY, Laforêt P, Acket B, Behin A, Fernández-Eulate G, Léonard-Louis S, Quijano-Roy S, Pereon Y, Salort-Campana E, Nadaj-Pakleza A, Masingue M, Malfatti E, Stojkovic T, Villar-Quiles RN. MYH7-related myopathies: clinical, myopathological and genotypic spectrum in a multicentre French cohort. J Neurol Neurosurg Psychiatry 2025; 96:453-461. [PMID: 39448255 PMCID: PMC12015026 DOI: 10.1136/jnnp-2024-334263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Myosin heavy chain 7 (MYH7)-related myopathies (MYH7-RMs) are a group of muscle disorders linked to pathogenic variants in the MYH7 gene, encoding the slow/beta-cardiac myosin heavy chain, which is highly expressed in skeletal muscle and heart. The phenotype is heterogeneous including distal, predominantly axial or scapuloperoneal myopathies with variable cardiac involvement. METHODS We retrospectively analysed the clinical, muscle MRI, genetic and myopathological features of 57 MYH7 patients. Patients received a thorough neurological (n=57, 100%), cardiac (n=51, 89%) and respiratory (n=45, 79%) assessment. Muscle imaging findings and muscle biopsies were reappraised in 19 (33%) and 27 (47%) patients, respectively. RESULTS We identified three phenotypes with varying degrees of overlap: distal myopathy (70%), scapuloperoneal (23%) and axial with peculiar cervical spine rigidity called the 'sphinx' phenotype (7%). 14% of patients had either dilated cardiomyopathy, hypertrophic cardiomyopathy or left ventricular non-compaction cardiomyopathy. 31% of patients had prominent respiratory involvement, including all patients with the 'sphinx' phenotype. Muscle MRI showed involvement of tibialis anterior, followed by quadriceps, and erector spinae in patients with axial phenotype. Cores represented the most common myopathological lesion. We report 26 pathogenic variants of MYH7 gene, 9 of which are novel. CONCLUSIONS MYH7-RMs have a large phenotypic spectrum, including distal, scapuloperoneal or axial weakness, and variable cardiac and respiratory involvement. Tibialis anterior is constantly and precociously affected both clinically and on muscle imaging. Cores represent the most common myopathological lesion. Our detailed description of MYH7-RMs should improve their recognition and management.
Collapse
Affiliation(s)
- Marie Bahout
- Assistance Publique Hôpitaux de Paris, Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gianmarco Severa
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, Créteil, France
- APHP, Neuromsucular Reference Center, Hôpitaux Universitaires Henri Mondor, Creteil, France
| | - Emna Kamoun
- Service de neurologie, Hôpital Paris-Saclay, Orsay, France
| | - Françoise Bouhour
- Service ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils, Lyon, France
| | - Antoine Pegat
- Service ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils, Lyon, France
| | - Annick Toutain
- CHRU Tours Pôle de Gynécologie Obstétrique Médecine fœtale et Reproduction, Tours, France
| | - Emmeline Lagrange
- Département de Neurologie, Centre de Référence des Maladies Neuromusculaires, CHU de Grenoble, Grenoble, France
| | - Fanny Duval
- Service de Neurologie, CHU Bordeaux, Pessac, France
| | - Celine Tard
- U1172, service de neurologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, CHU de Lille, Lille, France
- Filière nationale, FILNEMUS, France
| | - Elisa De la Cruz
- Filière nationale, FILNEMUS, France
- Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Léonard Féasson
- Filière nationale, FILNEMUS, France
- UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Unit of Myology, Neuromuscular Reference Center Euro-NmD, University Hospital, Saint-Etienne, France
| | - Agnès Jacquin-Piques
- Service de Neurophysiologie adulte, University Hospital Centre Dijon, Dijon, France
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire, Centre de Génétique Moléculaire et Chromosomique, Hôpital Pitié-Salpêtrière, INSERM UMRS1166, Sorbonne Université, Paris, France
| | - Corinne Métay
- Filière nationale, FILNEMUS, France
- AP-HP, Pitie-Salpetriere hospital, Molecular and Chromosomic Genetics Center, Cardiogenetic and myogenetic Functional Unit, and INSERM UMRS 974, Sorbonne University, Institute of Myology, Paris, France
| | - Michele Cavalli
- Filière nationale, FILNEMUS, France
- Peripheral Nervous System and Muscle Department, CHU Nice, Hôpital Pasteur 2, Nice, France
| | - Norma Beatriz Romero
- Unité de morphologie Neuromusculaire, Institut de Myologie, GHU La Pitié-Salpêtrière; Université Pierre et Marie Curie-Paris6; INSERM UMR974, Paris, France
| | - Teresinha Evangelista
- Filière nationale, FILNEMUS, France
- Institut de Myologie, Paris, France
- European Reference Network for Rare Neuromuscular Diseases, (EURO-NMD), France
| | - Guilhem Sole
- Centre de référence des maladies neuromusculaires, Service de neurologie et des maladies neuromusculaires, CHU de Bordeaux (Hôpital Pellegrin), FILNEMUS, EURO-NMD, Bordeaux, France
| | - Robert Yves Carlier
- AP-HP, GHU Paris Saclay, Hôpital Raymond Poincaré, DMU Smart Imaging, UMR1179 INSERM, Garches, France
| | - Pascal Laforêt
- Filière nationale, FILNEMUS, France
- Neurology Department, Raymond Poincaré University Hospital, Assistance Publique des Hopitaux de Paris, Garches, France. Nord-Est-Ile-de-France Neuromuscular Reference Center, Fédération Hospitalo Universitaire PHENIX, Garches, France, INSERM U 1179, Paris-Saclay University, Versailles, France
| | - Blandine Acket
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Anthony Behin
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Gorka Fernández-Eulate
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Sarah Léonard-Louis
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Susana Quijano-Roy
- Filière nationale, FILNEMUS, France
- European Reference Network for Rare Neuromuscular Diseases, (EURO-NMD), France
- APHP, service de Neurologie Pédiatrique et Réanimation, Centre de Référence Neuromusculaire Nord/Est/Ile-de-France (FILNEMUS), Hôpital Raymond Poincaré (UVSQ). GH Université Paris-Saclay, Garches, France
| | - Yann Pereon
- Filière nationale, FILNEMUS, France
- CHU Nantes, Centre de Référence des Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Hôtel-Dieu, Nantes, France
| | - Emmanuelle Salort-Campana
- Filière nationale, FILNEMUS, France
- Centre de référence neuromusculaire PACA réunion Rhône-Alpes, service du Pr Attarian, AP HM, Marseille, France
| | - Aleksandra Nadaj-Pakleza
- Filière nationale, FILNEMUS, France
- Centre de Reference des Maladies Neuromusculaires Nord-Est-Ile de France, Department of Neurology, University Hospital Centre, Strasbourg, France
| | - Marion Masingue
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, Créteil, France
- APHP, Neuromsucular Reference Center, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Filière nationale, FILNEMUS, France
- European Reference Network for Rare Neuromuscular Diseases, (EURO-NMD), France
| | - Tanya Stojkovic
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
- Sorbonne University, Myology research center, UMRS974, Paris, France
| | - Rocío Nur Villar-Quiles
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
- Sorbonne University, Myology research center, UMRS974, Paris, France
| |
Collapse
|
2
|
Lee TM, Ware SM, Kamsheh AM, Bhatnagar S, Absi M, Miller E, Purevjav E, Ryan KA, Towbin JA, Lipshultz SE. Genomics of pediatric cardiomyopathy. Pediatr Res 2025; 97:1381-1392. [PMID: 39922924 PMCID: PMC12106076 DOI: 10.1038/s41390-025-03819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 02/10/2025]
Abstract
Cardiomyopathy in children is a leading cause of heart failure and cardiac transplantation. Disease-associated genetic variants play a significant role in the development of the different subtypes of disease. Genetic testing is increasingly being recognized as the standard of care for diagnosing this heterogeneous group of disorders, guiding management, providing prognostic information, and facilitating family-based risk stratification. The increase in clinical and research genetic testing within the field has led to new insights into this group of disorders. Mutations in genes encoding sarcomere, cytoskeletal, Z-disk, and sarcolemma proteins appear to play a major role in causing the overlapping clinical phenotypes called cardioskeletal myopathies through "final common pathway" links. For myocarditis, the high frequency of infectious exposures and wide spectrum of presentation suggest that genetic factors mediate the development and course of the disease, including genetic risk alleles, an association with cardiomyopathy, and undiagnosed arrhythmogenic cardiomyopathy. Finally, while we have made strides in elucidating the genetic architecture of pediatric cardiomyopathy, understanding the clinical implications of variants of uncertain significance remains a major issue. The need for continued genetic innovation in this field remains great, particularly as a basis to drive forward targeted precision medicine and gene therapy efforts. IMPACT: Cardiomyopathy and skeletal myopathy can occur in the same patient secondary to gene mutations that encode for sarcomeric or cytoskeletal proteins, which are expressed in both muscle groups, highlighting that there are common final pathways of disease. The heterogeneous presentation of myocarditis is likely secondary to a complex interaction of multiple environmental and genetic factors, suggesting a utility to genetic testing in pediatric patients with myocarditis, particularly those in higher risk groups. Given the high prevalence of variants of uncertain significance in genetic testing, better bioinformatic tools and pipelines are needed to resolve their clinical meaning.
Collapse
Affiliation(s)
- Teresa M Lee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Stephanie M Ware
- Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alicia M Kamsheh
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mohammed Absi
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elyse Miller
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaitlin A Ryan
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey A Towbin
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, Buffalo, NY, USA.
| |
Collapse
|
3
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Nasonova SN, Meshkov AN, Zhirov IV, Osmolovskaya YF, Shoshina AA, Gagloev AV, Dzhumaniiazova IH, Zelenova EA, Erema VV, Gusakova MS, Ivanov MV, Terekhov MV, Kashtanova DA, Nekrasova AI, Mitrofanov SI, Shingaliev AS, Yudin VS, Keskinov AA, Gomyranova NV, Chubykina UV, Ezhov MV, Tereshchenko SN, Yudin SM, Boytsov SA. [A clinical case of reverse left ventricular remodeling in patient with pathogenic TTN mutation. Case report]. TERAPEVT ARKH 2024; 96:901-908. [PMID: 39467245 DOI: 10.26442/00403660.2024.09.202852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 10/30/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, sudden cardiac death, and heart transplantation in young patients. The causes of DCM are varied and include genetic factors and metabolic, infectious, toxic and others factors. Today it is known that germline mutations in more than 98 genes can be associated with the occurrence of DCM. However, the penetrance of these genes often depends on a combination of factors, including modifiable ones, i.e. those that change under the influence of the environment. About 20-25% of genetically determined forms of DCM are due to mutations in the titin gene (TTN). Titin is the largest protein in the body, which is an important component of the sarcomer. Although titin is the largest protein in the human body, its role in the physiology of heart and disease is not yet fully understood. However, a mutation in the TTN gene may later represent a potential therapeutic target for genetic and acquired cardiomyopathy. Thus, the analysis of clinical cases of cardiomyopathy in patients with identified mutations in the TTN gene is of great scientific interest. The article presents a clinical case of manifestation of DCM in patient with a revealed pathogenic variant of mutation in the gene TTN and reverse left ventricular remodeling of the against the background of optimal therapy of heart failure in a subsequent outpatient observation.
Collapse
Affiliation(s)
- S N Nasonova
- Chazov National Medical Research Center of Cardiology
| | - A N Meshkov
- Chazov National Medical Research Center of Cardiology
- National Research Center for Therapy and Preventive Medicine
| | - I V Zhirov
- Chazov National Medical Research Center of Cardiology
| | | | - A A Shoshina
- Chazov National Medical Research Center of Cardiology
| | - A V Gagloev
- Chazov National Medical Research Center of Cardiology
| | | | - E A Zelenova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - V V Erema
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - M S Gusakova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - M V Ivanov
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - M V Terekhov
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - D A Kashtanova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - A I Nekrasova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - S I Mitrofanov
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - A S Shingaliev
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - V S Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - A A Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | | | - U V Chubykina
- Chazov National Medical Research Center of Cardiology
| | - M V Ezhov
- Chazov National Medical Research Center of Cardiology
| | | | - S M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - S A Boytsov
- Chazov National Medical Research Center of Cardiology
| |
Collapse
|
5
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
6
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Voinescu OR, Ionac A, Sosdean R, Ionac I, Ana LS, Kundnani NR, Morariu S, Puiu M, Chirita-Emandi A. Genotype-Phenotype Insights of Inherited Cardiomyopathies-A Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:543. [PMID: 38674189 PMCID: PMC11052121 DOI: 10.3390/medicina60040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Background: Cardiomyopathies (CMs) represent a heterogeneous group of primary myocardial diseases characterized by structural and functional abnormalities. They represent one of the leading causes of cardiac transplantations and cardiac death in young individuals. Clinically they vary from asymptomatic to symptomatic heart failure, with a high risk of sudden cardiac death due to malignant arrhythmias. With the increasing availability of genetic testing, a significant number of affected people are found to have an underlying genetic etiology. However, the awareness of the benefits of incorporating genetic test results into the care of these patients is relatively low. Aim: The focus of this review is to summarize the current basis of genetic CMs, including the most encountered genes associated with the main types of cardiomyopathies: hypertrophic, dilated, restrictive arrhythmogenic, and non-compaction. Materials and Methods: For this narrative review, we performed a search of multiple electronic databases, to select and evaluate relevant manuscripts. Results: Advances in genetic diagnosis led to better diagnosis precision and prognosis prediction, especially with regard to the risk of developing arrhythmias in certain subtypes of cardiomyopathies. Conclusions: Implementing the genomic information to benefit future patient care, better risk stratification and management, promises a better future for genotype-based treatment.
Collapse
Affiliation(s)
- Oana Raluca Voinescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adina Ionac
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Raluca Sosdean
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Ioana Ionac
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca Silvia Ana
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Nilima Rajpal Kundnani
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Morariu
- General Medicine Faculty, “Vasile Goldis” West University, 473223 Arad, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy, “Victor Babeș” Eftimie Murgu Sq., 300041 Timisoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy, “Victor Babeș” Eftimie Murgu Sq., 300041 Timisoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| |
Collapse
|
8
|
Brunt KR, Northrup V. Ensuring Equity, Diversity, and Inclusiveness in Genetic Analysis Will Empower the Future of Precision Medicine. JACC. ADVANCES 2024; 3:100769. [PMID: 38939379 PMCID: PMC11198394 DOI: 10.1016/j.jacadv.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Keith R. Brunt
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- Departments of Cardiology & Cardiac Surgery, New Brunswick Heart Center, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Victoria Northrup
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
9
|
Kim MJ, Cha S, Baek JS, Yu JJ, Seo GH, Kang M, Do HS, Lee SE, Lee BH. Genetic heterogeneity of cardiomyopathy and its correlation with patient care. BMC Med Genomics 2023; 16:270. [PMID: 37904158 PMCID: PMC10614404 DOI: 10.1186/s12920-023-01639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/21/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cardiomyopathy, which is a genetically and phenotypically heterogeneous pathological condition, is associated with increased morbidity and mortality. Genetic diagnosis of cardiomyopathy enables accurate phenotypic classification and optimum patient management and counseling. This study investigated the genetic spectrum of cardiomyopathy and its correlation with the clinical course of the disease. METHODS The samples of 72 Korean patients with cardiomyopathy (43 males and 29 females) were subjected to whole-exome sequencing (WES). The familial information and clinical characteristics of the patients were reviewed and analyzed according to their genotypes. RESULTS Dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), left ventricular non-compaction cardiomyopathy, and restrictive cardiomyopathy was detected in 41 (56.9%), 25 (34.7%), 4 (5.6%), and 2 (2.8%) patients, respectively. WES analysis revealed positive results in 37 (51.4%) patients. Subsequent familial testing identified ten additional familial cases. Among DCM cases, 19 (46.3%) patients exhibited positive results, with TTN variants being the most common alteration, followed by LMNA and MYH7 variants. Meanwhile, among HCM cases, 15 (60%) patients exhibited positive results with MYH7 variants being the most common alteration. In six patients with positive results, extracardiac surveillance was warranted based on disease information. The incidence of worse outcomes, such as mortality and life-threatening arrhythmic events, in patients with DCM harboring LMNA variants, was higher than that in patients with DCM harboring TTN or MYH7 variants. CONCLUSIONS Diverse genotypes were identified in a substantial proportion of patients with cardiomyopathy. Genetic diagnosis enables personalized disease surveillance and management.
Collapse
Affiliation(s)
- Mi Jin Kim
- Division of Pediatric Cardiology, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seulgi Cha
- Division of Pediatric Cardiology, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Suk Baek
- Division of Pediatric Cardiology, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Jin Yu
- Division of Pediatric Cardiology, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Minji Kang
- Genome Research Center for Birth Defects and Genetic Diseases, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyo-Sang Do
- Genome Research Center for Birth Defects and Genetic Diseases, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Sang Eun Lee
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicines, Seoul, Korea.
| |
Collapse
|
10
|
Koshy L, Ganapathi S, Jeemon P, Madhuma M, Vysakh Y, Lakshmikanth L, Harikrishnan S. Sarcomeric gene variants among Indians with hypertrophic cardiomyopathy: A scoping review. Indian J Med Res 2023; 158:119-135. [PMID: 37787257 PMCID: PMC10645028 DOI: 10.4103/ijmr.ijmr_3567_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 10/04/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease that frequently causes sudden cardiac death (SCD) among young adults. Several pathogenic mutations in genes encoding the cardiac sarcomere have been identified as diagnostic factors for HCM and proposed as prognostic markers for SCD. The objective of this review was to determine the scope of available literature on the variants encoding sarcomere proteins associated with SCD reported among Indian patients with HCM. The eligibility criteria for the scoping review included full text articles that reported the results of genetic screening for sarcomeric gene mutations in HCM patients of Indian south Asian ancestry. We systematically reviewed studies from the databases of Medline, Scopus, Web of Science core collection and Google Scholar. The electronic search strategy included a combination of generic terms related to genetics, disease and population. The protocol of the study was registered with Open Science Framework (https://osf.io/53gde/). A total of 19 articles were identified that reported pathogenic or likely pathogenic (P/LP) variants within MYH7, MYBPC3, TNNT2, TNNI3 and TPM1 genes, that included 16 singletons, one de novo and one digenic mutation (MYH7/ TPM1) associated with SCD among Indian patients. Evidence from functional studies and familial segregation implied a plausible mechanistic role of these P/LP variants in HCM pathology. This scoping review has compiled all the P/LP variants reported to-date among Indian patients and summarized their association with SCD. Single homozygous, de novo and digenic mutations were observed to be associated with severe phenotypes compared to single heterozygous mutations. The abstracted genetic information was updated with reference sequence ID (rsIDs) and compiled into freely accessible HCMvar database, available at https://hcmvar.heartfailure.org.in/. This can be used as a population specific genetic database for reference by clinicians and researchers involved in the identification of diagnostic and prognostic markers for HCM.
Collapse
Affiliation(s)
- Linda Koshy
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Sanjay Ganapathi
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Panniyammakal Jeemon
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - M. Madhuma
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Y. Vysakh
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - L.R. Lakshmikanth
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Sivadasanpillai Harikrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Alkhunaizi E, Martin N, Jelin AC, Rosner M, Bailey DJ, Steiner LA, Lakhani S, Ji W, Katzman PJ, Forster KR, Jarinova O, Shannon P, Chitayat D, Care4Rare Canada Consortium. Fetal akinesia deformation sequence syndrome associated with recessive TTN variants. Am J Med Genet A 2023; 191:760-769. [PMID: 36495114 PMCID: PMC9928776 DOI: 10.1002/ajmg.a.63071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Arthrogryposis multiplex congenita (AMC) [also known as multiple joints contracture or Fetal Akinesia Deformation Sequence (FADS)] is etiologically a heterogeneous condition with an estimated incidence of approximately 1 in 3000 live births and much higher incidence when prenatally diagnosed cases are included. The condition can be acquired or secondary to fetal exposures and can also be caused by a variety of single-gene disorders affecting the brain, spinal cord, peripheral nerves, neuromuscular junction, muscle, and a variety of disorders affecting the connective tissues (Niles et al., Prenatal Diagnosis, 2019; 39:720-731). The introduction of next-generation gene sequencing uncovered many genes and causative variants of AMC but also identified genes that cause both dominant and recessive inherited conditions with the variability of clinical manifestations depending on the genes and variants. Molecular diagnosis in these cases is not only important for prognostication but also for the determination of recurrence risk and for providing reproductive options including preimplantation and prenatal diagnosis. TTN, the largest known gene in the human genome, has been known to be associated with autosomal dominant dilated cardiomyopathy. However, homozygote and compound heterozygote pathogenic variants with recessive inheritance have rarely been reported. We report the effect of recessive variants located within the fetal IC and/or N2BA isoforms in association with severe FADS in three families. All parents were healthy obligate carriers and none of them had cardiac or skeletal muscle abnormalities. This report solidifies FADS as an alternative phenotypic presentation associated with homozygote/compound heterozygous pathogenic variants in the TTN.
Collapse
Affiliation(s)
- Ebba Alkhunaizi
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Martin
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Angie C. Jelin
- Department of Gynecology and Obstetrics and Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Mara Rosner
- Department of Gynecology and Obstetrics, Center for Fetal Therapy, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Diana J. Bailey
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Laurie A. Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Saquib Lakhani
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Philip J. Katzman
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Katherine R. Forster
- Department of Gynecology and Obstetrics, Center for Fetal Therapy, Johns Hopkins Hospital, Baltimore, Maryland, USA
- Division of Maternal Fetal Medicine, Sibley Memorial Hospital, Johns Hopkins Medicine, Washington, Washington, USA
| | - Olga Jarinova
- Department of Pathology and Laboratory Medicine, CHEO Genetics Diagnostic Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
Chui MMC, Mak CCY, Yu MHC, Wong SYY, Lun KS, Yung TC, Kwong AKY, Chow PC, Chung BHY. Evaluating High-Confidence Genes in Conotruncal Cardiac Defects by Gene Burden Analyses. J Am Heart Assoc 2023; 12:e028226. [PMID: 36789878 PMCID: PMC10111484 DOI: 10.1161/jaha.122.028226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background In nonsyndromic conotruncal cardiac defects, the use of next-generation sequencing for clinical diagnosis is increasingly adopted, but gene-disease associations in research are only partially translated to diagnostic panels, suggesting a need for evidence-based consensus. Methods and Results In an exome data set of 245 patients with conotruncal cardiac defects, we performed burden analysis on a high-confidence congenital heart disease gene list (n=132) with rare (<0.01%) and ultrarare (absent in the Genome Aggregation Database) protein-altering variants. Overall, we confirmed an excess of rare variants compared with ethnicity-matched controls and identified 2 known genes (GATA6, NOTCH1) and 4 candidate genes supported by the literature (ANKRD11, DOCK6, NPHP4, and STRA6). Ultrarare variant analysis was performed in combination with 3 other published studies (n=1451) and identified 3 genes (FLT4, NOTCH1, TBX1) to be significant, whereas a subgroup analysis involving 391 Chinese subjects identified only GATA6 as significant. Conclusions We suggest that these significant genes in our rare and ultrarare burden analyses warrant prioritization for clinical testing implied for rare inherited and de novo variants. Additionally, associations on ClinVar for these genes were predominantly variants of uncertain significance. Therefore, a more stringent assessment of gene-disease associations in a larger and ethnically diverse cohort is required to be prudent for future curation of conotruncal cardiac defect genes.
Collapse
Affiliation(s)
- Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Mullin H C Yu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Sandra Y Y Wong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Kin-Shing Lun
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Tak-Cheung Yung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Pak-Cheong Chow
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine Queen Mary Hospital Hong Kong SAR China
| |
Collapse
|
13
|
Parker F, Tang AAS, Rogers B, Carrington G, dos Remedios C, Li A, Tomlinson D, Peckham M. Affimers targeting proteins in the cardiomyocyte Z-disc: Novel tools that improve imaging of heart tissue. Front Cardiovasc Med 2023; 10:1094563. [PMID: 36865889 PMCID: PMC9971620 DOI: 10.3389/fcvm.2023.1094563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Dilated Cardiomyopathy is a common form of heart failure. Determining how this disease affects the structure and organization of cardiomyocytes in the human heart is important in understanding how the heart becomes less effective at contraction. Here we isolated and characterised Affimers (small non-antibody binding proteins) to Z-disc proteins ACTN2 (α-actinin-2), ZASP (also known as LIM domain binding protein 3 or LDB3) and the N-terminal region of the giant protein titin (TTN Z1-Z2). These proteins are known to localise in both the sarcomere Z-discs and the transitional junctions, found close to the intercalated discs that connect adjacent cardiomyocytes. We use cryosections of left ventricles from two patients diagnosed with end-stage Dilated Cardiomyopathy who underwent Orthotopic Heart Transplantation and were whole genome sequenced. We describe how Affimers substantially improve the resolution achieved by confocal and STED microscopy compared to conventional antibodies. We quantified the expression of ACTN2, ZASP and TTN proteins in two patients with dilated cardiomyopathy and compared them with a sex- and age-matched healthy donor. The small size of the Affimer reagents, combined with a small linkage error (the distance from the epitope to the dye label covalently bound to the Affimer) revealed new structural details in Z-discs and intercalated discs in the failing samples. Affimers are thus useful for analysis of changes to cardiomyocyte structure and organisation in diseased hearts.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Anna A. S. Tang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Brendan Rogers
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Glenn Carrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Cris dos Remedios
- Mechanobiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Amy Li
- Sydney Heart Bank, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, VIC, Australia
- Centre for Healthy Futures, Torrens University Australia, Surrey Hills, NSW, Australia
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Panwar D, Singh KG, Mathur S, Prasad B, Joshi A, Lal V, Thatai A. Heterozygous missense variant in the TTN gene causing Tibial muscular dystrophy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tibial muscular dystrophy (TMD), tardive, is a dominantly inherited mild degenerative disorder of anterior tibial muscles. Mutations of Titin (TTN) have been reported in patients with different phenotypes such as skeletal muscular abnormalities or complex overlapping disorders of muscles. Titin (TTN) is a large 363 exon gene that encodes an abundant protein (the longest polypeptide known in nature) expressed in the heart and skeletal muscles.
Methods
DNA from peripheral blood sample was extracted, whole exome sequencing (WES) was performed, and a neuromuscular disorders related gene-filtering strategy was used to analyse the disease-causing mutations. Further, sanger sequencing was applied to confirm the variant.
Results
A novel missense variant (c.41529G > C;p.Arg13843Ser) of TTN gene was identified in a patient with lower limb weakness, occasional tongue fasciculation and mild scoliosis. This variant leads to a substitution of arginine with serine, causing structural changes in titin protein that is responsible for the TMD disease.
Conclusion
The novel variant detected has widened the genetic spectrum of TTN-associated diseases, further functional studies will aid in establishing the clinical diagnosis.
Collapse
|
15
|
Ware SM, Bhatnagar S, Dexheimer PJ, Wilkinson JD, Sridhar A, Fan X, Shen Y, Tariq M, Schubert JA, Colan SD, Shi L, Canter CE, Hsu DT, Bansal N, Webber SA, Everitt MD, Kantor PF, Rossano JW, Pahl E, Rusconi P, Lee TM, Towbin JA, Lal AK, Chung WK, Miller EM, Aronow B, Martin LJ, Lipshultz SE. The genetic architecture of pediatric cardiomyopathy. Am J Hum Genet 2022; 109:282-298. [PMID: 35026164 DOI: 10.1016/j.ajhg.2021.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023] Open
Abstract
To understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.
Collapse
|
16
|
Vogiatzi G, Lazaros G, Oikonomou E, Lazarou E, Vavuranakis E, Tousoulis D. Role of genetic testing in cardiomyopathies: Α primer for cardiologists. World J Cardiol 2022; 14:29-39. [PMID: 35126870 PMCID: PMC8788175 DOI: 10.4330/wjc.v14.i1.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recent advances in cardiovascular genetics have transformed genetic testing into a valuable part of management of families with inherited cardiomyopathies. As novel mutations have been identified, understanding when to consider genetic testing has emerged as an important consideration in the management of these cases. Specific genetic testing has a paramount importance in the risk stratification of family members, in the prognosis of probands at higher risk of a serious phenotype expression, and finally in the identification of new mutations, all of which are discussed in this review. The indications for each type of cardiomyopathy are described, along with the limitations of genetic testing. Finally, the importance of public sharing of variants in large data sets is emphasized. The ultimate aim of this review is to present key messages about the genetic testing process in order to minimize potential harms and provide suggestions to specialized clinicians who act as a part of a multidisciplinary team in order to offer the best care to families with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Georgia Vogiatzi
- The Third Department of Cardiology, Sotiria Hospital, Athens 11527, Greece.
| | - George Lazaros
- The First Department of Cardiology, Hippokration Hospital, Athens 11526, Greece
| | - Evangelos Oikonomou
- The First Department of Cardiology, Hippokration Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Emilia Lazarou
- The First Department of Cardiology, Hippokration Hospital, Athens 11526, Greece
| | | | - Dimitris Tousoulis
- The First Department of Cardiology, Hippokration Hospital, Athens 11526, Greece
| |
Collapse
|
17
|
Clinical Implication of Genetic Testing in Dilated Cardiomyopathy. INTERNATIONAL JOURNAL OF HEART FAILURE 2022; 4:1-11. [PMID: 36262197 PMCID: PMC9383343 DOI: 10.36628/ijhf.2021.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
Dilated cardiomyopathy (DCM) is one of the important causes of heart failure (HF). With the rapidly evolving technologies for gene analysis and tremendous advances in knowledge of HF genetics, the importance of genetic testing in DCM is currently highlighted. Several genetic variants causing DCM have been identified and this information is used for diagnosis, risk stratification and family screening of DCM patients. However, there are still several challenges in applying genetic testing to real clinical practice. In this review, we will summarize recent understandings in DCM genetics and provide an evidence-based practical guide to the use of genetic testing for DCM patients.
Collapse
|
18
|
Hassoun R, Budde H, Mügge A, Hamdani N. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. Int J Mol Sci 2021; 22:11154. [PMID: 34681814 PMCID: PMC8541428 DOI: 10.3390/ijms222011154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
19
|
Kahr PC, Tao G, Kadow ZA, Hill MC, Zhang M, Li S, Martin JF. A novel transgenic Cre allele to label mouse cardiac conduction system. Dev Biol 2021; 478:163-172. [PMID: 34245725 PMCID: PMC8482537 DOI: 10.1016/j.ydbio.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Abstract
The cardiac conduction system is a network of heterogeneous cell population that initiates and propagates electric excitations in the myocardium. Purkinje fibers, a network of specialized myocardial cells, comprise the distal end of the conduction system in the ventricles. The developmental origins of Purkinje fibers and their roles during cardiac physiology and arrhythmia have been reported. However, it is not clear if they play a role during ischemic injury and heart regeneration. Here we introduce a novel tamoxifen-inducible Cre allele that specifically labels a broad range of components in the cardiac conduction system while excludes other cardiac cell types and vital organs. Using this new allele, we investigated the cellular and molecular response of Purkinje fibers to myocardial injury. In a neonatal mouse myocardial infarction model, we observed significant increase in Purkinje cell number in regenerating myocardium. RNA-Seq analysis using laser-captured Purkinje fibers showed a unique transcriptomic response to myocardial infarction. Our finds suggest a novel role of cardiac Purkinje fibers in heart injury.
Collapse
Affiliation(s)
- Peter C Kahr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Nayor M, Shen L, Hunninghake GM, Kochunov P, Barr RG, Bluemke DA, Broeckel U, Caravan P, Cheng S, de Vries PS, Hoffmann U, Kolossváry M, Li H, Luo J, McNally EM, Thanassoulis G, Arnett DK, Vasan RS. Progress and Research Priorities in Imaging Genomics for Heart and Lung Disease: Summary of an NHLBI Workshop. Circ Cardiovasc Imaging 2021; 14:e012943. [PMID: 34387095 PMCID: PMC8486340 DOI: 10.1161/circimaging.121.012943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with genomic information to resolve phenotypic heterogeneity associated with genomic variation, improve risk prediction, discover prevention approaches, and enable precision diagnosis and treatment. Contemporary bioimaging methods provide exceptional resolution generating discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite substantial progress in combining high-dimensional bioimaging and genomic data, methods for imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a workshop to review cutting-edge approaches and methodologies in imaging genomics studies, and to establish research priorities for future investigation. This report summarizes the presentations and discussions at the workshop. In particular, we highlight the need for increased availability of imaging genomics data in diverse populations, dedicated focus on less common conditions, and centralization of efforts around specific disease areas.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary M. Hunninghake
- Division of Pulmonary and Critical Care Medicine, Harvard
Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of
Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - R. Graham Barr
- Department of Medicine and Department of Epidemiology,
Mailman School of Public Health, Columbia University Irving Medical Center, New
York, NY
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin-Madison
School of Medicine and Public Health, Madison, WI
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics,
Medicine and Physiology, Children’s Research Institute and Genomic Sciences
and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Peter Caravan
- Institute for Innovation in Imaging, Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical
School, Charlestown, MA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute,
Cedars-Sinai Medical Center, Los Angeles, CA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX
| | - Udo Hoffmann
- Department of Radiology, Harvard Medical School,
Massachusetts General Hospital, Boston, Massachusetts
| | - Márton Kolossváry
- Department of Radiology, Harvard Medical School,
Massachusetts General Hospital, Boston, Massachusetts
| | - Huiqing Li
- Division of Cardiovascular Sciences, National Heart,
Lung, and Blood Institute, Bethesda, MD
| | - James Luo
- Division of Cardiovascular Sciences, National Heart,
Lung, and Blood Institute, Bethesda, MD
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University
Feinberg School of Medicine, Chicago, IL
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University
Health Center and Research Institute, Montreal, Quebec, Canada
| | - Donna K. Arnett
- College of Public Health, University of Kentucky,
Lexington KY
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology, and
Cardiology, Department of Medicine, Department of Epidemiology, Boston University
Schools of Medicine and Public Health, and Center for Computing and Data Sciences,
Boston University, Boston, MA
| |
Collapse
|
21
|
Koshy L, Jeemon P, Ganapathi S, Madhavan M, Urulangodi M, Sharma M, Harikrishnan S. Association of South Asian-specific MYBPC3Δ deletion polymorphism and cardiomyopathy: A systematic review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy (DCM), which include genetic and nongenetic forms, is the most common form of cardiomyopathy. DCM is characterized by left ventricular or biventricular dilation with impaired contraction. In the United States, DCM is a burden to healthcare that accounts for approximately 10,000 deaths and 46,000 hospitalizations annually. In this review, we will focus on the genetic forms of DCM and on recent advances in the understanding of cytoskeletal, sarcomeric, desmosomal, nuclear membrane, and RNA binding genes that contribute to the complexity and genetic heterogeneity of DCM. RECENT FINDINGS Although mutations in TTN remain the most common identifiable cause of genetic DCM, there is a growing appreciation for arrhythmogenic-prone DCM due to mutations in LMNA, desmosomal genes, and the recently described FLNC gene encoding the structural filamin C protein. Mutations in RBM20 highlight the relevance of RNA splicing regulation in the pathogenesis of DCM. Although expanded genetic testing has improved access to genetic diagnostic studies for many patients, the molecular mechanisms in the pathogenesis of the disease remained largely unknown. SUMMARY : The identification of the molecular causes and subsequent insight into the molecular mechanisms of DCM is expanding our understanding of DCM pathogenesis and highlights the complexity of DCM and the need to develop multifaceted strategies to treat the various causes of DCM.
Collapse
Affiliation(s)
- Suet Nee Chen
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Luisa Mestroni
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
- Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew R. G. Taylor
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
- Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is the most common sustained cardiac arrhythmia. In addition to traditional risk factors, it is increasingly recognized that a genetic component underlies atrial fibrillation development. This review aims to provide an overview of the genetic cause of atrial fibrillation and clinical applications, with a focus on recent developments. RECENT FINDINGS Genome-wide association studies have now identified around 140 genetic loci associated with atrial fibrillation. Studies into the effects of several loci and their tentative gene targets have identified novel pathways associated with atrial fibrillation development. However, further validations of causality are still needed for many implicated genes. Genetic variants at identified loci also help predict individual atrial fibrillation risk and response to different therapies. SUMMARY Continued advances in the field of genetics and molecular biology have led to significant insight into the genetic underpinnings of atrial fibrillation. Potential clinical applications of these studies include the identification of new therapeutic targets and development of genetic risk scores to optimize management of this common cardiac arrhythmia.
Collapse
Affiliation(s)
- Jitae A. Kim
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G. Chelu
- Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| |
Collapse
|
24
|
Xiao L, Li C, Sun Y, Chen Y, Wei H, Hu D, Yu T, Li X, Jin L, Shi L, Marian AJ, Wang DW. Clinical Significance of Variants in the TTN Gene in a Large Cohort of Patients With Sporadic Dilated Cardiomyopathy. Front Cardiovasc Med 2021; 8:657689. [PMID: 33996946 PMCID: PMC8120103 DOI: 10.3389/fcvm.2021.657689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mutations in the TTN gene are the most common causes of dilated cardiomyopathy (DCM). The clinical significance of TTN gene variants remains inadequately understood. Methods: Whole-exome sequencing and phenotypic characterisation were performed, and patients were followed up for a median of 44 months. Results: We analyzed the association of the TTN variants with the clinical outcomes in a prospective study of 1,041 patients with sporadic DCM. TTN truncating variants (tTTN) were detected in 120 (11.5%) patients as compared with 2.4/10,000 East Asian populations in the Genome Aggregation Database (GnomAD; p < 0.0001). Pathogenic TTN missense variants were also enriched in DCM as compared with the GnomAD populations (27.6 vs. 5.9%, p < 0.0001). DCM patients with tTTN had a lower left ventricular ejection fraction (28.89 ± 8.72 vs. 31.81 ± 9.97, p = 0.002) and a lower frequency of the left bundle branch block (3.3 vs. 11.3%, p = 0.011) than those without or with mutations in other known causal genes (OCG). However, tTTN were not associated with the composite primary endpoint of cardiac death and heart transplantation during the follow-up period [adjusted hazard ratio (HR): 0.912; 95% confidence interval: 0.464–1.793; p = 0.790]. There was also no sex-dependent effect. Concomitant tTTN and pathogenic variants in OCG were present in only eight DCM patients and did not affect the outcome. Conclusion: The phenotype of DCM caused by tTTN, major causes of sporadic DCM, is not distinctly different from those caused by other causal genes for DCM.
Collapse
Affiliation(s)
- Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqing Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Li Jin
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Leming Shi
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ali J Marian
- Center for Cardiovascular Genetics, Houston, TX, United States
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Ware SM, Wilkinson JD, Tariq M, Schubert JA, Sridhar A, Colan SD, Shi L, Canter CE, Hsu DT, Webber SA, Dodd DA, Everitt MD, Kantor PF, Addonizio LJ, Jefferies JL, Rossano JW, Pahl E, Rusconi P, Chung WK, Lee T, Towbin JA, Lal AK, Bhatnagar S, Aronow B, Dexheimer PJ, Martin LJ, Miller EM, Sleeper LA, Razoky H, Czachor J, Lipshultz SE. Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study. J Am Heart Assoc 2021; 10:e017731. [PMID: 33906374 PMCID: PMC8200745 DOI: 10.1161/jaha.120.017731] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Pediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first‐degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01873963.
Collapse
Affiliation(s)
- Stephanie M Ware
- Departments of Pediatrics and Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN
| | | | - Muhammad Tariq
- Faculty of Applied Medical Sciences University of Tabuk Kingdom of Saudi Arabia
| | - Jeffrey A Schubert
- Departments of Pediatrics and Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN
| | - Arthi Sridhar
- Departments of Pediatrics and Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN
| | - Steven D Colan
- Department of Cardiology and Harvard Medical School Boston Children's Hospital Boston MA
| | - Ling Shi
- New England Research Institutes Watertown MA
| | | | - Daphne T Hsu
- Albert Einstein College of Medicine and Children's Hospital at Montefiore Bronx NY
| | - Steven A Webber
- Monroe Carell Jr. Children's Hospital at Vanderbilt Nashville TN
| | - Debra A Dodd
- Monroe Carell Jr. Children's Hospital at Vanderbilt Nashville TN
| | | | - Paul F Kantor
- Keck School of Medicine and Children's Hospital Los Angeles University of Southern California Los Angeles CA
| | | | | | | | - Elfriede Pahl
- Ann and Robert H. Lurie Children's Hospital Chicago IL
| | - Paolo Rusconi
- University of Miami Miller School of Medicine Miami FL
| | | | - Teresa Lee
- Columbia University Medical Center New York NY
| | | | | | - Surbhi Bhatnagar
- University of Cincinnati School of Medicine and Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Bruce Aronow
- University of Cincinnati School of Medicine and Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Phillip J Dexheimer
- University of Cincinnati School of Medicine and Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Lisa J Martin
- University of Cincinnati School of Medicine and Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Erin M Miller
- University of Cincinnati School of Medicine and Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Lynn A Sleeper
- Department of Cardiology and Harvard Medical School Boston Children's Hospital Boston MA
| | - Hiedy Razoky
- Wayne State University School of Medicine Detroit MI
| | - Jason Czachor
- Wayne State University School of Medicine Detroit MI
| | - Steven E Lipshultz
- Jacobs School of Medicine and Biomedical Sciences at University at Buffalo NY.,John R. Oishei Children's Hospital Buffalo NY
| | | |
Collapse
|
26
|
Hirayama-Yamada K, Inagaki N, Hayashi T, Kimura A. A Novel Titin Truncation Variant Linked to Familial Dilated Cardiomyopathy Found in a Japanese Family and Its Functional Analysis in Genome-Edited Model Cells. Int Heart J 2021; 62:359-366. [PMID: 33678800 DOI: 10.1536/ihj.20-664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure. TTN, which encodes titin protein, is a representative causative gene of DCM, and is presented mainly as a truncation variant. However, TTN truncation variants are also found in healthy individuals, and it is therefore important to evaluate the pathogenicity of each variant. In this study, we analyzed 67 cardiomyopathy-associated genes in a male Japanese patient who was hospitalized for recurrent severe heart failure and identified a novel truncation variant, TTN Ser17456Arg fs*14. This TTN truncation variant was located in the A-band region. Moreover, the patient's mother with heart failure harbored the same variant, whereas the father and brother without heart failure did not harbor the variant. To examine the functional changes associated with the truncation variant, H9c2 cells were subjected to genome editing to generate cells with a homologous truncation variant. The cells were differentiated using all-trans-retinoic acid, and the mRNA expression of skeletal actin and cardiac actin were found to be increased and decreased, respectively, consistent with known changes in patients with DCM or heart failure. In contrast, another cell with the titin truncation variant used as a control showed no changes in heart failure-related genes. In summary, we found a novel TTN truncation variant in familial DCM patients and confirmed its functional changes using a relatively simple cell model. The novel truncation variant was identified as a pathogenic and disease-causing mutation.
Collapse
Affiliation(s)
- Kayoko Hirayama-Yamada
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU)
| | - Natsuko Inagaki
- Department of Cardiology, Tokyo Medical University.,Department of Clinical Genetics Center, Tokyo Medical University
| | - Takeharu Hayashi
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU).,Laboratory for Integrated Research Projects on Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU).,Department of Physiology, Tokai University School of Medicine
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU).,Laboratory for Integrated Research Projects on Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU).,Research Core, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
27
|
Alimohamed MZ, Johansson LF, Posafalvi A, Boven LG, van Dijk KK, Walters L, Vos YJ, Westers H, Hoedemaekers YM, Sinke RJ, Sijmons RH, Sikkema-Raddatz B, Jongbloed JDH, van der Zwaag PA. Diagnostic yield of targeted next generation sequencing in 2002 Dutch cardiomyopathy patients. Int J Cardiol 2021; 332:99-104. [PMID: 33662488 DOI: 10.1016/j.ijcard.2021.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible.
Collapse
Affiliation(s)
- Mohamed Z Alimohamed
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Lennart F Johansson
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Anna Posafalvi
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Ludolf G Boven
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Krista K van Dijk
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Lisa Walters
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Yvonne J Vos
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Helga Westers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Yvonne M Hoedemaekers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Rolf H Sijmons
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Birgit Sikkema-Raddatz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Paul A van der Zwaag
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
28
|
Guelly C, Abilova Z, Nuralinov O, Panzitt K, Akhmetova A, Rakhimova S, Kozhamkulov U, Kairov U, Molkenov A, Seisenova A, Trajanoski S, Abildinova Rashbayeva G, Kaussova G, Windpassinger C, Lee JH, Zhumadilov Z, Bekbossynova M, Akilzhanova A. Patients with coronary heart disease, dilated cardiomyopathy and idiopathic ventricular tachycardia share overlapping patterns of pathogenic variation in cardiac risk genes. PeerJ 2021; 9:e10711. [PMID: 33552729 PMCID: PMC7821765 DOI: 10.7717/peerj.10711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Background Ventricular tachycardia (VT) is a major cause of sudden cardiac death (SCD). Clinical investigations can sometimes fail to identify the underlying cause of VT and the event is classified as idiopathic (iVT). VT contributes significantly to the morbidity and mortality in patients with coronary artery disease (CAD) and dilated cardiomyopathy (DCM). Since mutations in arrhythmia-associated genes frequently determine arrhythmia susceptibility screening for disease-predisposing variants could improve VT diagnostics and prevent SCD in patients. Methods Ninety-two patients diagnosed with coronary heart disease (CHD), DCM, or iVT were included in our study. We evaluated genetic profiles and variants in known cardiac risk genes by targeted next generation sequencing (NGS) using a newly designed custom panel of 96 genes. We hypothesized that shared morphological and phenotypical features among these subgroups may have an overlapping molecular base. To our knowledge, this was the first study of the deep sequencing of 96 targeted cardiac genes in Kazakhstan. The clinical significance of the sequence variants was interpreted according to the guidelines developed by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) in 2015. The ClinVar and Varsome databases were used to determine the variant classifications. Results Targeted sequencing and stepwise filtering of the annotated variants identified a total of 307 unique variants in 74 genes, totally 456 variants in the overall study group. We found 168 mutations listed in the Human Genome Mutation Database (HGMD) and another 256 rare/unique variants with elevated pathogenic potential. There was a predominance of high- to intermediate pathogenicity variants in LAMA2, MYBPC3, MYH6, KCNQ1, GAA, and DSG2 in CHD VT patients. Similar frequencies were observed in DCM VT, and iVT patients, pointing to a common molecular disease association. TTN, GAA, LAMA2, and MYBPC3 contained the most variants in the three subgroups which confirm the impact of these genes in the complex pathogenesis of cardiomyopathies and VT. The classification of 307 variants according to ACMG guidelines showed that nine (2.9%) variants could be classified as pathogenic, nine (2.9%) were likely pathogenic, 98 (31.9%) were of uncertain significance, 73 (23.8%) were likely benign, and 118 (38.4%) were benign. CHD VT patients carry rare genetic variants with increased pathogenic potential at a comparable frequency to DCM VT and iVT patients in genes related to sarcomere function, nuclear function, ion flux, and metabolism. Conclusions In this study we showed that in patients with VT secondary to coronary artery disease, DCM, or idiopathic etiology multiple rare mutations and clinically significant sequence variants in classic cardiac risk genes associated with cardiac channelopathies and cardiomyopathies were found in a similar pattern and at a comparable frequency.
Collapse
Affiliation(s)
- Christian Guelly
- Center of Medical Research, Medical University of Graz, Graz, Austria
| | - Zhannur Abilova
- Laboratory of Genomic and Personalized Medicine, Center for Life Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Katrin Panzitt
- Center of Medical Research, Medical University of Graz, Graz, Austria
| | - Ainur Akhmetova
- Laboratory of Genomic and Personalized Medicine, Center for Life Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Saule Rakhimova
- Laboratory of Genomic and Personalized Medicine, Center for Life Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Askhat Molkenov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ainur Seisenova
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Slave Trajanoski
- Center of Medical Research, Medical University of Graz, Graz, Austria
| | | | | | | | - Joseph H Lee
- Sergievsky Center Taub Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Zhaxybay Zhumadilov
- Laboratory of Genomic and Personalized Medicine, Center for Life Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
29
|
Eberly LA, Day SM, Ashley EA, Jacoby DL, Jefferies JL, Colan SD, Rossano JW, Semsarian C, Pereira AC, Olivotto I, Ingles J, Seidman CE, Channaoui N, Cirino AL, Han L, Ho CY, Lakdawala NK. Association of Race With Disease Expression and Clinical Outcomes Among Patients With Hypertrophic Cardiomyopathy. JAMA Cardiol 2021; 5:83-91. [PMID: 31799990 DOI: 10.1001/jamacardio.2019.4638] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Importance Racial differences are recognized in multiple cardiovascular parameters, including left ventricular hypertrophy and heart failure, which are 2 major manifestations of hypertrophic cardiomyopathy. The association of race with disease expression and outcomes among patients with hypertrophic cardiomyopathy is not well characterized. Objective To assess the association between race, disease expression, care provision, and clinical outcomes among patients with hypertrophic cardiomyopathy. Design, Setting, and Participants This retrospective cohort study included data on black and white patients with hypertrophic cardiomyopathy from the US-based sites of the Sarcomeric Human Cardiomyopathy Registry from 1989 through 2018. Exposures Self-identified race. Main Outcomes and Measures Baseline characteristics; genetic architecture; adverse outcomes, including cardiac arrest, cardiac transplantation or left ventricular assist device implantation, implantable cardioverter-defibrillator therapy, all-cause mortality, atrial fibrillation, stroke, and New York Heart Association (NYHA) functional class III or IV heart failure; and septal reduction therapies. The overall composite outcome consists of the first occurrence of any component of the ventricular arrhythmic composite end point, cardiac transplantation, left ventricular assist device implantation, NYHA class III or IV heart failure, atrial fibrillation, stroke, or all-cause mortality. Results Of 2467 patients with hypertrophic cardiomyopathy at the time of analysis, 205 (8.3%) were black (130 male [63.4%]; mean [SD] age, 40.0 [18.6] years) and 2262 (91.7%) were white (1351 male [59.7%]; mean [SD] age, 45.5 [20.5] years). Compared with white patients, black patients were younger at the time of diagnosis (mean [SD], 36.5 [18.2] vs 41.9 [20.2] years; P < .001), had higher prevalence of NYHA class III or IV heart failure at presentation (36 of 205 [22.6%] vs 174 of 2262 [15.8%]; P = .001), had lower rates of genetic testing (111 [54.1%] vs 1404 [62.1%]; P = .03), and were less likely to have sarcomeric mutations identified by genetic testing (29 [26.1%] vs 569 [40.5%]; P = .006). Implantation of implantable cardioverter-defibrillators did not vary by race; however, invasive septal reduction was less common among black patients (30 [14.6%] vs 521 [23.0%]; P = .007). Black patients had less incident atrial fibrillation (35 [17.1%] vs 608 [26.9%]; P < .001). Black race was associated with increased development of NYHA class III or IV heart failure (hazard ratio, 1.45; 95% CI, 1.08-1.94) which persisted on multivariable Cox proportional hazards regression (hazard ratio, 1.97; 95% CI, 1.34-2.88). There were no differences in the associations of race with stroke, ventricular arrhythmias, all-cause mortality, or the overall composite outcome. Conclusions and Relevance The findings suggest that black patients with hypertrophic cardiomyopathy are diagnosed at a younger age, are less likely to carry a sarcomere mutation, have a higher burden of functionally limited heart failure, and experience inequities in care with lower use of invasive septal reduction therapy and genetic testing compared with white patients. Further study is needed to assess whether higher rates of heart failure may be associated with underlying ancestry-based disease pathways, clinical management, or structural inequities.
Collapse
Affiliation(s)
- Lauren A Eberly
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sharlene M Day
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Euan A Ashley
- Stanford Center for Inherited Heart Disease, Palo Alto, California
| | - Daniel L Jacoby
- Section of Cardiovascular Medicine, Yale University, New Haven, Connecticut
| | - John Lynn Jefferies
- Heart Institute and the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Joseph W Rossano
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and The University of Sydney, Sydney, New South Wales, Australia
| | - Alexandre C Pereira
- Heart Institute (Instituto do Coração da Universidade de São Paulo), University of São Paulo Medical School, São Paulo, Brazil
| | - Iacopo Olivotto
- Cardiomyopathy Unit and Genetic Unit, Careggi University Hospital, Florence, Italy
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and The University of Sydney, Sydney, New South Wales, Australia
| | - Christine E Seidman
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nadine Channaoui
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Allison L Cirino
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Larry Han
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carolyn Y Ho
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Neal K Lakdawala
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy (DCM) frequently involves an underlying genetic etiology, but the clinical approach for genetic diagnosis and application of results in clinical practice can be complex. RECENT FINDINGS International sequence databases described the landscape of genetic variability across populations, which informed guidelines for the interpretation of DCM gene variants. New evidence indicates that loss-of-function mutations in filamin C (FLNC) contribute to DCM and portend high risk of ventricular arrhythmia. A clinical framework aids in referring patients for DCM genetic testing and applying results to patient care. Results of genetic testing can change medical management, particularly in a subset of genes that increase risk for life-threatening ventricular arrhythmias, and can influence decisions for defibrillator therapy. Clinical screening and cascade genetic testing of family members should be diligently pursued to identify those at risk of developing DCM.
Collapse
Affiliation(s)
- Lisa D Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Simpson Querrey Biomedical Research Center 8-404, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 2020; 9:jcm9092770. [PMID: 32859027 PMCID: PMC7564493 DOI: 10.3390/jcm9092770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin’s length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin’s mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin’s contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.
Collapse
|
32
|
Rich KA, Moscarello T, Siskind C, Brock G, Tan CA, Vatta M, Winder TL, Elsheikh B, Vicini L, Tucker B, Palettas M, Hershberger RE, Kissel JT, Morales A, Roggenbuck J. Novel heterozygous truncating titin variants affecting the A-band are associated with cardiomyopathy and myopathy/muscular dystrophy. Mol Genet Genomic Med 2020; 8:e1460. [PMID: 32815318 PMCID: PMC7549586 DOI: 10.1002/mgg3.1460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Variants in TTN are frequently identified in the genetic evaluation of skeletal myopathy or cardiomyopathy. However, due to the high frequency of TTN variants in the general population, incomplete penetrance, and limited understanding of the spectrum of disease, interpretation of TTN variants is often difficult for laboratories and clinicians. Currently, cardiomyopathy is associated with heterozygous A-band TTN variants, whereas skeletal myopathy is largely associated with homozygous or compound heterozygous TTN variants. Recent reports show pathogenic variants in TTN may result in a broader phenotypic spectrum than previously recognized. METHODS Here we report the results of a multisite study that characterized the phenotypes of probands with variants in TTN. We investigated TTN genotype-phenotype correlations in probands with skeletal myopathy and/or cardiomyopathy. Probands with TTN truncating variants (TTNtv) or pathogenic missense variants were ascertained from two academic medical centers. Variants were identified via clinical genetic testing and reviewed according to the American College of Medical Genetics criteria. Clinical and family history data were documented via retrospective chart review. Family studies were performed for probands with atypical phenotypes. RESULTS Forty-nine probands were identified with TTNtv or pathogenic missense variants. Probands were classified by clinical presentation: cardiac (n = 30), skeletal muscle (n = 12), or both (cardioskeletal, n = 7). Within the cardioskeletal group, 5/7 probands had heterozygous TTNtv predicted to affect the distal (3') end of the A-band. All cardioskeletal probands had onset of proximal-predominant muscle weakness before diagnosis of cardiovascular disease, five pedigrees support dominant transmission. CONCLUSION Although heterozygous TTNtv in the A-band is known to cause dilated cardiomyopathy, we present evidence that these variants may in some cases cause a novel, dominant skeletal myopathy with a limb-girdle pattern of weakness. These findings emphasize the importance of multidisciplinary care for patients with A-band TTNtv who may be at risk for multisystem disease.
Collapse
Affiliation(s)
- Kelly A Rich
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Tia Moscarello
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, CA, USA
| | - Carly Siskind
- Stanford Health Care, Stanford University, Stanford, CA, USA
| | - Guy Brock
- The Ohio State University Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | | | | | | | - Bakri Elsheikh
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Leah Vicini
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Brianna Tucker
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, CA, USA
| | - Marilly Palettas
- The Ohio State University Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Ray E Hershberger
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - John T Kissel
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ana Morales
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Invitae Corporation, San Francisco, CA, USA
| | - Jennifer Roggenbuck
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
33
|
Tadros HJ, Life CS, Garcia G, Pirozzi E, Jones EG, Datta S, Parvatiyar MS, Chase PB, Allen HD, Kim JJ, Pinto JR, Landstrom AP. Meta-analysis of cardiomyopathy-associated variants in troponin genes identifies loci and intragenic hot spots that are associated with worse clinical outcomes. J Mol Cell Cardiol 2020; 142:118-125. [PMID: 32278834 PMCID: PMC7275889 DOI: 10.1016/j.yjmcc.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Chelsea S Life
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Gustavo Garcia
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Elisa Pirozzi
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward G Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Hugh D Allen
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
34
|
Mazzarotto F, Olivotto I, Boschi B, Girolami F, Poggesi C, Barton PJR, Walsh R. Contemporary Insights Into the Genetics of Hypertrophic Cardiomyopathy: Toward a New Era in Clinical Testing? J Am Heart Assoc 2020; 9:e015473. [PMID: 32306808 PMCID: PMC7428545 DOI: 10.1161/jaha.119.015473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic testing for hypertrophic cardiomyopathy (HCM) is an established clinical technique, supported by 30 years of research into its genetic etiology. Although pathogenic variants are often detected in patients and used to identify at-risk relatives, the effectiveness of genetic testing has been hampered by ambiguous genetic associations (yielding uncertain and potentially false-positive results), difficulties in classifying variants, and uncertainty about genotype-negative patients. Recent case-control studies on rare variation, improved data sharing, and meta-analysis of case cohorts contributed to new insights into the genetic basis of HCM. In particular, although research into new genes and mechanisms remains essential, reassessment of Mendelian genetic associations in HCM argues that current clinical genetic testing should be limited to a small number of validated disease genes that yield informative and interpretable results. Accurate and consistent variant interpretation has benefited from new standardized variant interpretation guidelines and innovative approaches to improve classification. Most cases lacking a pathogenic variant are now believed to indicate non-Mendelian HCM, with more benign prognosis and minimal risk to relatives. Here, we discuss recent advances in the genetics of HCM and their application to clinical genetic testing together with practical issues regarding implementation. Although this review focuses on HCM, many of the issues discussed are also relevant to other inherited cardiac diseases.
Collapse
Affiliation(s)
- Francesco Mazzarotto
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Cardiovascular Research CenterRoyal Brompton and Harefield NHS Foundation TrustLondonUnited Kingdom
- National Heart and Lung InstituteImperial College LondonUnited Kingdom
- Department of Clinical and Experimental MedicineUniversity of FlorenceItaly
| | - Iacopo Olivotto
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Department of Clinical and Experimental MedicineUniversity of FlorenceItaly
| | - Beatrice Boschi
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Genetic UnitCareggi University HospitalFlorenceItaly
| | - Francesca Girolami
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
- Department of Paediatric CardiologyMeyer Children's HospitalFlorenceItaly
| | - Corrado Poggesi
- Department of Clinical and Experimental MedicineUniversity of FlorenceItaly
| | - Paul J. R. Barton
- Cardiovascular Research CenterRoyal Brompton and Harefield NHS Foundation TrustLondonUnited Kingdom
- National Heart and Lung InstituteImperial College LondonUnited Kingdom
| | - Roddy Walsh
- Department of Clinical and Experimental CardiologyHeart CenterAcademic Medical CenterAmsterdamthe Netherlands
| |
Collapse
|
35
|
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Division Victor Chang Cardiac Research Institute Darlinghurst Australia.,Cardiology Department St. Vincent's Hospital Darlinghurst Australia.,Faculty of Medicine UNSW Sydney Kensington Australia
| | - Renee Johnson
- Molecular Cardiology Division Victor Chang Cardiac Research Institute Darlinghurst Australia
| |
Collapse
|
36
|
Ramchand J, Wallis M, Macciocca I, Lynch E, Farouque O, Martyn M, Phelan D, Chong B, Lockwood S, Weintraub R, Thompson T, Trainer A, Zentner D, Vohra J, Chetrit M, Hare DL, James P. Prospective Evaluation of the Utility of Whole Exome Sequencing in Dilated Cardiomyopathy. J Am Heart Assoc 2020; 9:e013346. [PMID: 31931689 PMCID: PMC7033851 DOI: 10.1161/jaha.119.013346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Dilated cardiomyopathy may be heritable but shows extensive genetic heterogeneity. The utility of whole exome sequencing as a first-line genetic test for patients with dilated cardiomyopathy in a contemporary "real-world" setting has not been specifically established. Using whole exome sequencing with rigorous, evidence-based variant interpretation, we aimed to identify the prevalence of a molecular diagnosis in patients with dilated cardiomyopathy in a clinical setting. Methods and Results Whole exome sequencing was performed in eligible patients (n=83) with idiopathic or familial dilated cardiomyopathy. Variants were prioritized for curation in up to 247 genes and classified using American College of Medical Genetics and Genomics-based criteria. Ten (12%) had a pathogenic or likely pathogenic variant. Eight (10%) participants had truncating TTN variants classified as variants of uncertain significance. Five (6%) participants had variants of unknown significance according to strict American College of Medical Genetics and Genomics criteria but classified as either pathogenic or likely pathogenic by other clinical laboratories. Pathogenic or likely pathogenic variants were found in 8 genes (all within tier 1 genes), 2 (20%) of which are not included in a standard commercially available dilated cardiomyopathy panel. Using our bioinformatics pipeline, there was an average of 0.74 variants of uncertain significance per case with ≈0.75 person-hours needed to interpret each of these variants. Conclusions Whole exome sequencing is an effective diagnostic tool for patients with dilated cardiomyopathy. With stringent classification using American College of Medical Genetics and Genomics criteria, the rate of detection of pathogenic variants is lower than previous reports. Efforts to improve adherence to these guidelines will be important to prevent erroneous misclassification of nonpathogenic variants in dilated cardiomyopathy genetic testing and inappropriate cascade screening.
Collapse
Affiliation(s)
- Jay Ramchand
- Department of Medicine Austin Health The University of Melbourne Heidelberg Victoria Australia.,Department of Cardiology Austin Health Heidelberg Victoria Australia
| | - Mathew Wallis
- Department of Genetics Austin Health Heidelberg Victoria Australia
| | - Ivan Macciocca
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Elly Lynch
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia.,Melbourne Genomics Health Alliance Melbourne Victoria Australia
| | - Omar Farouque
- Department of Medicine Austin Health The University of Melbourne Heidelberg Victoria Australia.,Department of Cardiology Austin Health Heidelberg Victoria Australia
| | - Melissa Martyn
- Melbourne Genomics Health Alliance Melbourne Victoria Australia.,Department of Paediatrics University of Melbourne Parkville Victoria Australia.,Murdoch Children's Research Institute Parkville Victoria Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Siobhan Lockwood
- Monash Cardiovascular Research Centre and Monash Heart Monash University and Monash Health Melbourne Australia
| | - Robert Weintraub
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Tina Thompson
- Genetic Medicine Melbourne Health Parkville Victoria Australia
| | - Alison Trainer
- Genetic Medicine Melbourne Health Parkville Victoria Australia
| | - Dominica Zentner
- Department of Cardiology Melbourne Health Parkville Victoria Australia.,Genetic Medicine Melbourne Health Parkville Victoria Australia.,Royal Melbourne Hospital Clinical School Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Victoria Australia
| | - Jitendra Vohra
- Department of Cardiology Melbourne Health Parkville Victoria Australia.,Genetic Medicine Melbourne Health Parkville Victoria Australia.,Royal Melbourne Hospital Clinical School Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Victoria Australia
| | | | - David L Hare
- Department of Medicine Austin Health The University of Melbourne Heidelberg Victoria Australia.,Department of Cardiology Austin Health Heidelberg Victoria Australia
| | - Paul James
- Genetic Medicine Melbourne Health Parkville Victoria Australia
| |
Collapse
|
37
|
Fatkin D, Huttner IG, Kovacic JC, Seidman J, Seidman CE. Precision Medicine in the Management of Dilated Cardiomyopathy. J Am Coll Cardiol 2019; 74:2921-2938. [DOI: 10.1016/j.jacc.2019.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
|
38
|
Tharp CA, Haywood ME, Sbaizero O, Taylor MRG, Mestroni L. The Giant Protein Titin's Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Front Physiol 2019; 10:1436. [PMID: 31849696 PMCID: PMC6892752 DOI: 10.3389/fphys.2019.01436] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, sudden cardiac death and heart transplant. DCM is inherited in approximately 50% of cases, in which the most frequent genetic defects are truncation variants of the titin gene (TTNtv). TTN encodes titin, which is the largest protein in the body and is an essential component of the sarcomere. Titin serves as a biological spring, spanning half of the sarcomere and connecting the Z-disk to the M-line, with scaffold and signaling functions. Truncations of titin are believed to lead to either haploinsufficiency and loss-of-function, or to a “poison peptide” effect. However, other titin mechanisms are postulated to influence cardiac function including post-translational modifications, in particular changes in titin phosphorylation that alters the stiffness of the protein, and diversity of alternative splicing that generates different titin isoforms. In this article, we review the role of TTN mutations in development of DCM, how differential expression of titin isoforms relate to DCM pathophysiology, and discuss how post-translational modifications of titin can affect cardiomyocyte function. Current research efforts aim to elucidate the contribution of titin to myofibril assembly, stability, and signal transduction, and how mutant titin leads to cardiac dysfunction and human disease. Future research will need to translate this knowledge toward novel therapeutic approaches that can modulate titin transcriptional and post-translational defects to treat DCM and heart failure.
Collapse
Affiliation(s)
- Charles A Tharp
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mary E Haywood
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Luisa Mestroni
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
39
|
Yeh JK, Liu WH, Wang CY, Lu JJ, Chen CH, Wu-Chou YH, Chang PY, Chang SC, Yang CH, Tsai ML, Ho MY, Hsieh IC, Wen MS. Targeted Next Generation Sequencing for Genetic Mutations of Dilated Cardiomyopathy. ACTA CARDIOLOGICA SINICA 2019; 35:571-584. [PMID: 31879508 PMCID: PMC6859096 DOI: 10.6515/acs.201911_35(6).20190402a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/02/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Approximately one-third of cases of dilated cardiomyopathy (DCM) are caused by genetic mutations. With new sequencing technologies, numerous variants have been associated with this inherited cardiomyopathy, however the prevalence and genotype-phenotype correlations in different ethnic cohorts remain unclear. This study aimed to investigate the variants in Chinese DCM patients and correlate them with clinical presentations and prognosis. METHODS AND RESULTS From September 2013 to December 2016, 70 index patients underwent DNA sequencing for 12 common disease-causing genes with next generation sequencing. Using a bioinformatics filtering process, 12 rare truncating variants (7 nonsense variants, 4 frameshift variants, and 1 splice site variant) and 29 rare missense variants were identified. Of these, 3 patients were double heterozygotes and 10 patients were compound heterozygotes. Overall, 47.1% (33/70) of the index patients had the seputatively pathogenic variants. The majority (33/41, 80.4%) of these variants were located in titin (TTN). More than 80% of the TTN variants (27/33, 81.8%) were distributed in the A band region of the sarcomere. Patients carrying these variants did not have a different phenotype in disease severity, clinical outcome and reversibility of ventricular function compared with non-carriers. CONCLUSIONS Several new rare variants were identified in a Chinese population in this study, indicating that there are ethnic differences in genetic mutations in DCM patients. TTN remains the major disease-causing gene. Our results could be a reference for future genetic tests in Chinese populations. No specific genotype-phenotype correlations were found, however a prospective large cohort study may be needed to confirm our findings.
Collapse
Affiliation(s)
| | - Wei-Hsiu Liu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Chao-Yung Wang
- Department of Cardiology
- College of Medicine, Chang Gung University, Taoyuan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- College of Medicine, Chang Gung University, Taoyuan
| | | | - Yah-Huei Wu-Chou
- Department of Medical Research, Linkou Chang Gung Memorial Hospital and Graduate of Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | | | | | | | - I-Chang Hsieh
- Department of Cardiology
- College of Medicine, Chang Gung University, Taoyuan
| | - Ming-Shien Wen
- Department of Cardiology
- College of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
40
|
Viswanathan SK, Puckelwartz MJ, Mehta A, Ramachandra CJA, Jagadeesan A, Fritsche-Danielson R, Bhat RV, Wong P, Kandoi S, Schwanekamp JA, Kuffel G, Pesce LL, Zilliox MJ, Durai UNB, Verma RS, Molokie RE, Suresh DP, Khoury PR, Thomas A, Sanagala T, Tang HC, Becker RC, Knöll R, Shim W, McNally EM, Sadayappan S. Association of Cardiomyopathy With MYBPC3 D389V and MYBPC3Δ25bpIntronic Deletion in South Asian Descendants. JAMA Cardiol 2019; 3:481-488. [PMID: 29641836 DOI: 10.1001/jamacardio.2018.0618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Importance The genetic variant MYBPC3Δ25bp occurs in 4% of South Asian descendants, with an estimated 100 million carriers worldwide. MYBPC3 Δ25bp has been linked to cardiomyopathy and heart failure. However, the high prevalence of MYBPC3Δ25bp suggests that other stressors act in concert with MYBPC3Δ25bp. Objective To determine whether there are additional genetic factors that contribute to the cardiomyopathic expression of MYBPC3Δ25bp. Design, Setting, andParticipants South Asian individuals living in the United States were screened for MYBPC3Δ25bp, and a subgroup was clinically evaluated using electrocardiograms and echocardiograms at Loyola University, Chicago, Illinois, between January 2015 and July 2016. Main Outcomes and Measures Next-generation sequencing of 174 cardiovascular disease genes was applied to identify additional modifying gene mutations and correlate genotype-phenotype parameters. Cardiomyocytes derived from human-induced pluripotent stem cells were established and examined to assess the role of MYBPC3Δ25bp. Results In this genotype-phenotype study, individuals of South Asian descent living in the United States from both sexes (36.23% female) with a mean population age of 48.92 years (range, 18-84 years) were recruited. Genetic screening of 2401 US South Asian individuals found an MYBPC3Δ25bpcarrier frequency of 6%. A higher frequency of missense TTN variation was found in MYBPC3Δ25bp carriers compared with noncarriers, identifying distinct genetic backgrounds within the MYBPC3Δ25bp carrier group. Strikingly, 9.6% of MYBPC3Δ25bp carriers also had a novel MYBPC3 variant, D389V. Family studies documented D389V was in tandem on the same allele as MYBPC3Δ25bp, and D389V was only seen in the presence of MYBPC3Δ25bp. In contrast to MYBPC3Δ25bp, MYBPC3Δ25bp/D389V was associated with hyperdynamic left ventricular performance (mean [SEM] left ventricular ejection fraction, 66.7 [0.7%]; left ventricular fractional shortening, 36.6 [0.6%]; P < .03) and stem cell-derived cardiomyocytes exhibited cellular hypertrophy with abnormal Ca2+ transients. Conclusions and Relevance MYBPC3Δ25bp/D389V is associated with hyperdynamic features, which are an early finding in hypertrophic cardiomyopathy and thought to reflect an unfavorable energetic state. These findings support that a subset of MYBPC3Δ25bp carriers, those with D389V, account for the increased risk attributed to MYBPC3Δ25bp.
Collapse
Affiliation(s)
- Shiv Kumar Viswanathan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio.,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | | | - Ashish Mehta
- National Heart Research Institute Singapore.,Cardiovascular Academic Clinical Program, DUKE-NUS Medical School, Singapore.,PSC and Phenotyping Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | | | - Regina Fritsche-Danielson
- Cardiovascular and Metabolic Disease Innovative Medicines and Early Development Unit, AstraZeneca Research and Development, Gothenburg, Sweden
| | - Ratan V Bhat
- Cardiovascular and Metabolic Disease Innovative Medicines and Early Development Unit, AstraZeneca Research and Development, Gothenburg, Sweden
| | - Philip Wong
- National Heart Research Institute Singapore.,Cardiovascular and Metabolic Disorders Program, DUKE-NUS Medical School, Singapore.,Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Sangeetha Kandoi
- Heart, Lung and Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio.,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois.,Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Jennifer A Schwanekamp
- Heart, Lung and Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Gina Kuffel
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois
| | - Lorenzo L Pesce
- Computation Institute, The University of Chicago, Chicago, Illinois
| | - Michael J Zilliox
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois
| | - U Nalla B Durai
- Divison of Hematology and Oncology, University of Illinois at Chicago
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Robert E Molokie
- Divison of Hematology and Oncology, University of Illinois at Chicago
| | | | - Philip R Khoury
- Heart Institute, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Annie Thomas
- Marcella Niehoff School of Nursing, Loyola University Chicago, Maywood, Illinois
| | - Thriveni Sanagala
- Department of Cardiology and Echocardiography and Cardiographics, Loyola University Chicago, Maywood, Illinois
| | - Hak Chiaw Tang
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Richard C Becker
- Heart, Lung and Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ralph Knöll
- Cardiovascular and Metabolic Disease Innovative Medicines and Early Development Unit, AstraZeneca Research and Development, Gothenburg, Sweden.,Integrated Cardio-Metabolic Centre, Myocardial Genetics, Karolinska Institutet, University Hospital, Heart and Vascular Theme, Stockholm, Sweden
| | - Winston Shim
- National Heart Research Institute Singapore.,Cardiovascular and Metabolic Disorders Program, DUKE-NUS Medical School, Singapore
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois.,Associate Editor for Translational Science
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio.,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
41
|
Huttner IG, Wang LW, Santiago CF, Horvat C, Johnson R, Cheng D, von Frieling-Salewsky M, Hillcoat K, Bemand TJ, Trivedi G, Braet F, Hesselson D, Alford K, Hayward CS, Seidman JG, Seidman CE, Feneley MP, Linke WA, Fatkin D. A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002135. [PMID: 30354343 DOI: 10.1161/circgen.118.002135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.
Collapse
Affiliation(s)
- Inken G Huttner
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.)
| | - Louis W Wang
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - Celine F Santiago
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.)
| | - Claire Horvat
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Renee Johnson
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Delfine Cheng
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia (D.C., F.B.)
| | | | - Karen Hillcoat
- Kevin Alford Cardiology, Port Macquarie, NSW Australia (K.H., K.A.)
| | - Timothy J Bemand
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Gunjan Trivedi
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Filip Braet
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia (D.C., F.B.).,Cellular Imaging Facility, Charles Perkins Centre (F.B.).,Australian Centre for Microscopy and Microanalysis (F.B.)
| | - Dan Hesselson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,University of Sydney, Camperdown, NSW, Australia. Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia (D.H.)
| | - Kevin Alford
- Kevin Alford Cardiology, Port Macquarie, NSW Australia (K.H., K.A.)
| | - Christopher S Hayward
- Cardiac Physiology and Transplantation Division (C.S.H., M.P.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - J G Seidman
- Howard Hughes Medical Institute, MD (J.G.S.).,Department of Genetics, Harvard Medical School (J.G.S., C.E.S.)
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School (J.G.S., C.E.S.).,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.)
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division (C.S.H., M.P.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Germany (M.v.F.-S., W.A.L.)
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| |
Collapse
|
42
|
Affiliation(s)
- Diane Fatkin
- From the Molecular Cardiology Division, Victor Chang Cardiac Research Institute (D.F., R.J.); Cardiology Department, St. Vincent's Hospital (D.F.); and Faculty of Medicine, University of New South Wales; Sydney, Australia (D.F.).
| | - Renee Johnson
- From the Molecular Cardiology Division, Victor Chang Cardiac Research Institute (D.F., R.J.); Cardiology Department, St. Vincent's Hospital (D.F.); and Faculty of Medicine, University of New South Wales; Sydney, Australia (D.F.)
| |
Collapse
|
43
|
|
44
|
Abstract
PURPOSE OF REVIEW This review discusses the basic and evolving echocardiographic and cardiac magnetic resonance (CMR) approaches in the diagnosis and management of patients with hypertrophic cardiomyopathy (HCM). RECENT FINDINGS Newer imaging technologies and techniques in both echocardiography and CMR have proved to add incremental value to our understanding of HCM. 3D reconstruction in echocardiography and CMR allows for more accurate morphological and volumetric assessment of the left ventricle. Echocardiographic and CMR-based left atrial assessment, including for its mechanical properties, has been shown to be correlated to outcomes and development of atrial fibrillation. Tissue characterization and scar burden quantification by late gadolinium enhancement on CMR has revolutionized our understanding of fibrotic processes in HCM and their contribution to disease severity and clinical outcomes. Cardiac imaging plays a crucial role in HCM patients. Using echocardiography and CMR as complementary modalities allows for improved diagnostics, optimization of treatment, and better prognostication.
Collapse
|
45
|
Ahmad F, McNally EM, Ackerman MJ, Baty LC, Day SM, Kullo IJ, Madueme PC, Maron MS, Martinez MW, Salberg L, Taylor MR, Wilcox JE. Establishment of Specialized Clinical Cardiovascular Genetics Programs: Recognizing the Need and Meeting Standards: A Scientific Statement From the American Heart Association. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e000054. [DOI: 10.1161/hcg.0000000000000054] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular genetics is a rapidly evolving subspecialty within cardiovascular medicine, and its growth is attributed to advances in genome sequencing and genetic testing and the expanding understanding of the genetic basis of multiple cardiac conditions, including arrhythmias (channelopathies), heart failure (cardiomyopathies), lipid disorders, cardiac complications of neuromuscular conditions, and vascular disease, including aortopathies. There have also been great advances in clinical diagnostic methods, as well as in therapies to ameliorate symptoms, slow progression of disease, and mitigate the risk of adverse outcomes. Emerging challenges include interpretation of genetic test results and the evaluation, counseling, and management of genetically at-risk family members who have inherited pathogenic variants but do not yet manifest disease. With these advances and challenges, there is a need for specialized programs combining both cardiovascular medicine and genetics expertise. The integration of clinical cardiovascular findings, including those obtained from physical examination, imaging, and functional assessment, with genetic information allows for improved diagnosis, prognostication, and cascade family testing to identify and to manage risk, and in some cases to provide genotype-specific therapy. This emerging subspecialty may ultimately require a new cardiovascular subspecialist, the genetic cardiologist, equipped with these combined skills, to permit interpretation of genetic variation within the context of phenotype and to extend the utility of genetic testing. This scientific statement outlines current best practices for delivering cardiovascular genetic evaluation and care in both the pediatric and the adult settings, with a focus on team member expertise and conditions that most benefit from genetic evaluation.
Collapse
|
46
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
47
|
Akinrinade O, Heliö T, Lekanne Deprez RH, Jongbloed JDH, Boven LG, van den Berg MP, Pinto YM, Alastalo TP, Myllykangas S, Spaendonck-Zwarts KV, van Tintelen JP, van der Zwaag PA, Koskenvuo J. Relevance of Titin Missense and Non-Frameshifting Insertions/Deletions Variants in Dilated Cardiomyopathy. Sci Rep 2019; 9:4093. [PMID: 30858397 PMCID: PMC6412046 DOI: 10.1038/s41598-019-39911-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Recent advancements in next generation sequencing (NGS) technology have led to the identification of the giant sarcomere gene, titin (TTN), as a major human disease gene. Truncating variants of TTN (TTNtv) especially in the A-band region account for 20% of dilated cardiomyopathy (DCM) cases. Much attention has been focused on assessment and interpretation of TTNtv in human disease; however, missense and non-frameshifting insertions/deletions (NFS-INDELs) are difficult to assess and interpret in clinical diagnostic workflow. Targeted sequencing covering all exons of TTN was performed on a cohort of 530 primary DCM patients from three cardiogenetic centres across Europe. Using stringent bioinformatic filtering, twenty-nine and two rare TTN missense and NFS-INDELs variants predicted deleterious were identified in 6.98% and 0.38% of DCM patients, respectively. However, when compared with those identified in the largest available reference population database, no significant enrichment of such variants was identified in DCM patients. Moreover, DCM patients and reference individuals had comparable frequencies of splice-region missense variants with predicted splicing alteration. DCM patients and reference populations had comparable frequencies of rare predicted deleterious TTN missense variants including splice-region missense variants suggesting that these variants are not independently causative for DCM. Hence, these variants should be classified as likely benign in the clinical diagnostic workflow, although a modifier effect cannot be excluded at this stage.
Collapse
Affiliation(s)
- Oyediran Akinrinade
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland.
| | - Tiina Heliö
- Heart and Lung Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ludolf G Boven
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yigal M Pinto
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tero-Pekka Alastalo
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Blueprint Genetics, Helsinki, Finland
| | - Samuel Myllykangas
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Blueprint Genetics, Helsinki, Finland
| | - Karin van Spaendonck-Zwarts
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Durrer Centre for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Paul A van der Zwaag
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | | |
Collapse
|
48
|
Deacon DC, Happe CL, Chen C, Tedeschi N, Manso AM, Li T, Dalton ND, Peng Q, Farah EN, Gu Y, Tenerelli KP, Tran VD, Chen J, Peterson KL, Schork NJ, Adler ED, Engler AJ, Ross RS, Chi NC. Combinatorial interactions of genetic variants in human cardiomyopathy. Nat Biomed Eng 2019; 3:147-157. [PMID: 30923642 PMCID: PMC6433174 DOI: 10.1038/s41551-019-0348-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of morbidity and mortality worldwide; yet how genetic variation and environmental factors impact DCM heritability remains unclear. Here, we report that compound genetic interactions between DNA sequence variants contribute to the complex heritability of DCM. By using genetic data from a large family with a history of DCM, we discovered that heterozygous sequence variants in the TROPOMYOSIN 1 (TPM1) and VINCULIN (VCL) genes cose-gregate in individuals affected by DCM. In vitro studies of patient-derived and isogenic human-pluripotent-stem-cell-derived cardio-myocytes that were genome-edited via CRISPR to create an allelic series of TPM1 and VCL variants revealed that cardiomyocytes with both TPM1 and VCL variants display reduced contractility and sarcomeres that are less organized. Analyses of mice genetically engineered to harbour these human TPM1 and VCL variants show that stress on the heart may also influence the variable penetrance and expressivity of DCM-associated genetic variants in vivo. We conclude that compound genetic variants can interact combinatorially to induce DCM, particularly when influenced by other disease-provoking stressors.
Collapse
Affiliation(s)
- Dekker C Deacon
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Cassandra L Happe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chao Chen
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Neil Tedeschi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ana Maria Manso
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Veterans Administration Healthcare San Diego, San Diego, CA, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nancy D Dalton
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin P Tenerelli
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Vivien D Tran
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ju Chen
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas J Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Eric D Adler
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Veterans Administration Healthcare San Diego, San Diego, CA, USA.
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Marian AJ. The Case of "Missing Causal Genes" and the Practice of Medicine: A Sherlock Holmes Approach of Deductive Reasoning. Circ Res 2018; 119:21-4. [PMID: 27340268 DOI: 10.1161/circresaha.116.308830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ali J Marian
- From the Department of Medicine, Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Texas Heart Institute, Houston.
| |
Collapse
|
50
|
Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, Chiaw TH, Loong CCW, Pua CJ, Raphael C, Prasad S, Barton PJ, Funke B, Watkins H, Ware JS, Cook SA. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J 2018; 38:3461-3468. [PMID: 28082330 PMCID: PMC5837460 DOI: 10.1093/eurheartj/ehw603] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
Aim Hypertrophic cardiomyopathy (HCM) exhibits genetic heterogeneity that is dominated by variation in eight sarcomeric genes. Genetic variation in a large number of non-sarcomeric genes has also been implicated in HCM but not formally assessed. Here we used very large case and control cohorts to determine the extent to which variation in non-sarcomeric genes contributes to HCM. Methods and results We sequenced known and putative HCM genes in a new large prospective HCM cohort (n = 804) and analysed data alongside the largest published series of clinically genotyped HCM patients (n = 6179), previously published HCM cohorts and reference population samples from the exome aggregation consortium (ExAC, n = 60 706) to assess variation in 31 genes implicated in HCM. We found no significant excess of rare (minor allele frequency < 1:10 000 in ExAC) protein-altering variants over controls for most genes tested and conclude that novel variants in these genes are rarely interpretable, even for genes with previous evidence of co-segregation (e.g. ACTN2). To provide an aid for variant interpretation, we integrated HCM gene sequence data with aggregated pedigree and functional data and suggest a means of assessing gene pathogenicity in HCM using this evidence. Conclusion We show that genetic variation in the majority of non-sarcomeric genes implicated in HCM is not associated with the condition, reinforce the fact that the sarcomeric gene variation is the primary cause of HCM known to date and underscore that the aetiology of HCM is unknown in the majority of patients.
Collapse
Affiliation(s)
- Roddy Walsh
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK
| | - Rachel Buchan
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK
| | - Alicja Wilk
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK
| | - Shibu John
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK
| | - Leanne E Felkin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK
| | - Kate L Thomson
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK.,Radcliffe Department of Medicine, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Tang Hak Chiaw
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore, Singapore
| | - Calvin Chin Woon Loong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore, Singapore
| | - Claire Raphael
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Sanjay Prasad
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Paul J Barton
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK
| | - Birgit Funke
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, 65 Lansdowne Street, Cambridge, MA 02139, USA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Hugh Watkins
- Radcliffe Department of Medicine, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.,The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - James S Ware
- Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK.,Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Stuart A Cook
- Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, UK.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore, Singapore.,Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.,Division of Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, 8 College Road, 169857 Singapore, Singapore
| |
Collapse
|