1
|
Noureddine M, Mikolajek H, Morgan NV, Denning C, Loughna S, Gehmlich K, Mohammed F. Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J Gen Physiol 2025; 157:e202413684. [PMID: 39918740 PMCID: PMC11804879 DOI: 10.1085/jgp.202413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
α-actinin (ACTN) is a pivotal member of the actin-binding protein family, crucial for the anchoring and organization of actin filaments within the cytoskeleton. Four isoforms of α-actinin exist: two non-muscle isoforms (ACTN1 and ACTN4) primarily associated with actin stress fibers and focal adhesions, and two muscle-specific isoforms (ACTN2 and ACTN3) localized to the Z-disk of the striated muscle. Although these isoforms share structural similarities, they exhibit distinct functional characteristics that reflect their specialized roles in various tissues. Genetic variants in α-actinin isoforms have been implicated in a range of pathologies, including cardiomyopathies, thrombocytopenia, and non-cardiovascular diseases, such as nephropathy. However, the precise impact of these genetic variants on the α-actinin structure and their contribution to disease pathogenesis remains poorly understood. This review provides a comprehensive overview of the structural and functional attributes of the four α-actinin isoforms, emphasizing their roles in actin crosslinking and sarcomere stabilization. Furthermore, we present detailed structural modeling of select ACTN1 and ACTN2 variants to elucidate mechanisms underlying disease pathogenesis, with a particular focus on macrothrombocytopenia and hypertrophic cardiomyopathy. By advancing our understanding of α-actinin's role in both normal cellular function and disease states, this review lays the groundwork for future research and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Halina Mikolajek
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Neil V. Morgan
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Jaouadi H, Morel V, Martel H, Lindenbaum P, Lamy de la Chapelle L, Herbane M, Lucas C, Magdinier F, Habib G, Schott JJ, Zaffran S, Nguyen K. Exome sequencing data reanalysis of 200 hypertrophic cardiomyopathy patients: the HYPERGEN French cohort 5 years after the initial analysis. Front Med (Lausanne) 2024; 11:1480947. [PMID: 39554508 PMCID: PMC11565434 DOI: 10.3389/fmed.2024.1480947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Background Approximately half of hypertrophic cardiomyopathy (HCM) patients lack a precise genetic diagnosis. The likelihood of identifying clinically relevant variants increased over time. Methods In this study, we conducted a gene-centric reanalysis of exome data of 200 HCM cases 5 years after the initial analysis. This reanalysis prioritized genes with a matched HCM entry in the OMIM database and recently emerging HCM-associated genes gathered using a text mining-based literature review. Further classification of the identified genes and variants was performed using the Clinical Genome Resource (ClinGen) resource and American College of Medical Genetics and Genomics (ACMG) guidelines to assess the robustness of gene-disease association and the clinical actionability of the prioritized variants. Results As expected, the majority of patients carried variants in MYBPC3 and MYH7 genes, 26% (n = 51) and 8% (n = 16), respectively, in accordance with the initial analysis. The vast majority of pathogenic (P) and likely pathogenic (LP) variants were found in MYBPC3 (22 out of 40 variants) and MYH7 (8 out of 16 variants) genes. Three genes-not included in the initial analysis-were identified: SVIL, FHOD3, and TRIM63. Considering only patients with unique variants in the last three genes, there was a 9% enhancement in variant identification. Importantly, SVIL variant carriers presented apical and septal HCM, aortopathies, and severe scoliosis for one patient. Ten patients (5%) carried variants in the FHOD3 gene, six in hotspot regions (exons 12 and 15). We identified seven variants within the TRIM63 gene in 12 patients (6%). Homozygous variants were detected in 2.5% of the cohort in MYBPC3 (n = 1), MYL3 (n = 1), and TRIM63 (n = 3) genes. Conclusion Our study revealed that no variants were found in the ACTC1, TPM1, and TNNI3 genes in the HYPERGEN cohort. However, we identified variants in five out of the eight HCM core genes, with a high prevalence in young patients. We identified variants in three recent HCM-associated genes (SVIL, FHOD3, and TRIM63) in 35 patients, with 18 patients carrying unique variants (9%). Our results further emphasize the usefulness of exome data reanalysis, particularly in genotype-negative patients.
Collapse
Affiliation(s)
- Hager Jaouadi
- Aix Marseille Université, INSERM, Marseille Medical Genetics (MMG), U1251, Marseille, France
| | - Victor Morel
- Department of Medical Genetics, La Timone Hospital, AP-HM, La Timone Children’s Hospital, Marseille, France
| | - Helene Martel
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Pierre Lindenbaum
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du Thorax, Nantes, France
| | | | - Marine Herbane
- Aix Marseille Université, INSERM, Marseille Medical Genetics (MMG), U1251, Marseille, France
| | - Claire Lucas
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Frédérique Magdinier
- Aix Marseille Université, INSERM, Marseille Medical Genetics (MMG), U1251, Marseille, France
| | - Gilbert Habib
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du Thorax, Nantes, France
| | - Stéphane Zaffran
- Aix Marseille Université, INSERM, Marseille Medical Genetics (MMG), U1251, Marseille, France
| | - Karine Nguyen
- Aix Marseille Université, INSERM, Marseille Medical Genetics (MMG), U1251, Marseille, France
- Department of Medical Genetics, La Timone Hospital, AP-HM, La Timone Children’s Hospital, Marseille, France
| |
Collapse
|
3
|
Ranta‐aho J, Felice KJ, Jonson PH, Sarparanta J, Yvorel C, Harzallah I, Touraine R, Pais L, Austin‐Tse CA, Ganesh VS, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Protein-extending ACTN2 frameshift variants cause variable myopathy phenotypes by protein aggregation. Ann Clin Transl Neurol 2024; 11:2392-2405. [PMID: 39095936 PMCID: PMC11537131 DOI: 10.1002/acn3.52154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The objective of the study is to characterize the pathomechanisms underlying actininopathies. Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begin in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2, have been shown to cause distal myopathy. ACTN2, a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered; however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2-related diseases, actininopathies, persists. METHODS Functional characterization in C2C12 cell model of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant and recessive actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. RESULTS The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do form alpha-actinin-2 aggregates. INTERPRETATION The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus, we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
Affiliation(s)
- Johanna Ranta‐aho
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Kevin J. Felice
- Department of Neuromuscular MedicineHospital for Special Care2150 Corbin AvenueNew BritainConnecticut06053USA
| | - Per Harald Jonson
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Jaakko Sarparanta
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Cédric Yvorel
- Cardiology DepartmentHôpital NordHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Ines Harzallah
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Renaud Touraine
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Lynn Pais
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Division of Genetics and Genomics, Boston Children's HospitalHarvard Medical School2 Brookline PlaceBostonMassachusetts02445USA
| | - Christina A. Austin‐Tse
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Vijay S. Ganesh
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Department of NeurologyBrigham and Women's Hospital60 Fenwood RoadBostonMassachusetts02115USA
| | - Melanie C. O'Leary
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
| | - Heidi L. Rehm
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Michael K. Hehir
- Department of NeurologyLarner College of Medicine at the University of Vermont149 Beaumont AvenueBurlingtonVermont05405USA
| | - Sub Subramony
- Department of NeurologyUniversity of Florida College of Medicine1505 SW Archer RoadGainesvilleFlorida32610USA
| | - Qian Wu
- Department of PathologyUniversity of Connecticut School of Medicine263 Farmington AvenueFarmingtonConnecticut06030USA
| | - Bjarne Udd
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Tampere Neuromuscular CenterTampere University and Tampere University HospitalBiokatu 8Tampere33520Finland
| | - Marco Savarese
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| |
Collapse
|
4
|
Wang K, Wang Y, Wan H, Wang J, Hu L, Huang S, Sheng M, Wu J, Han X, Yu Y, Chen P, Chen F. Actn2 defects accelerates H9c2 hypertrophy via ERK phosphorylation under chronic stress. Genes Genomics 2024; 46:1013-1022. [PMID: 38990270 DOI: 10.1007/s13258-024-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND In humans, ACTN2 mutations are identified as highly relevant to a range of cardiomyopathies such as DCM and HCM, while their association with sudden cardiac death has been observed in forensic cases. Although ACTN2 has been shown to regulate sarcomere Z-disc organization, a causal relationship between ACTN2 dysregulation and cardiomyopathies under chronic stress has not yet been investigated. OBJECTIVE In this work, we explored the relationship between Actn2 dysregulation and cardiomyopathies under dexamethasone treatment. METHODS Previous cases of ACTN2 mutations were collected and the conservative analysis was carried out by MEGA 11, the possible impact on the stability and function of ACTN2 affected by these mutations was predicted by Polyphen-2. ACTN2 was suppressed by siRNA in H9c2 cells under dexamethasone treatment to mimic the chronic stress in vitro. Then the cardiac hypertrophic molecular biomarkers were elevated, and the potential pathways were explored by transcriptome analysis. RESULTS Actn2 suppression impaired calcium uptake and increased hypertrophy in H9c2 cells under dexamethasone treatment. Concomitantly, hypertrophic molecular biomarkers were also elevated in Actn2-suppressed cells. Further transcriptome analysis and Western blotting data suggested that Actn2 suppression led to the excessive activation of the MAPK pathway and ERK cascade. In vitro pharmaceutical intervention with ERK inhibitors could partially reverse the morphological changes and inhibit the excessive cardiac hypertrophic molecular biomarkers in H9c2 cells. CONCLUSION Our study revealed a functional role of ACTN2 under chronic stress, loss of ACTN2 function accelerated H9c2 hypertrophy through ERK signaling. A commercial drug, Ibudilast, was identified to reverse cell hypertrophy in vitro.
Collapse
Affiliation(s)
- Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hua Wan
- Department of Health Management, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuainan Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mingchen Sheng
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayi Wu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Han
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Ramdat Misier NL, Amesz JH, Taverne YJHJ, Nguyen H, van Schie MS, Knops P, Schinkel AFL, de Jong PL, Brundel BJJM, de Groot NMS. Biatrial arrhythmogenic substrate in patients with hypertrophic obstructive cardiomyopathy. Heart Rhythm 2024; 21:819-827. [PMID: 38246568 DOI: 10.1016/j.hrthm.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. OBJECTIVE The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. METHODS Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. RESULTS Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%-3.6%] vs 2.6% [2.1%-6.4%], P = .541; CB: 1.7% [0.9%-3.1%] vs 1.5% [0.5%-2.8%], P = .600; LVA: 4.7% [1.6%-7.7%] vs 2.9% [2.1%-7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. CONCLUSION In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population.
Collapse
Affiliation(s)
| | - Jorik H Amesz
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hoang Nguyen
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arend F L Schinkel
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter L de Jong
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Fumagalli C, Zocchi C, Ciabatti M, Milazzo A, Cappelli F, Fumagalli S, Pieroni M, Olivotto I. From Atrial Fibrillation Management to Atrial Myopathy Assessment: The Evolving Concept of Left Atrium Disease in Hypertrophic Cardiomyopathy. Can J Cardiol 2024; 40:876-886. [PMID: 38286174 DOI: 10.1016/j.cjca.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent genetically inherited cardiovascular disorder in adults and a significant cause of heart failure and sudden cardiac death. Historically, atrial fibrillation (AF) has been considered as a critical aspect in HCM patients as it is considered to be a marker of disease progression, escalates the frequency of heart failure hospitalisations, increases the risk of thromboembolic events, and worsens quality of life and outcome. Increasing evidence suggests that AF is the result of a subtle long-standing process that starts early in the history of HCM. The process of left atrial dilation accompanied by morphologic and functional remodelling is the quintessential prerequisite for the onset of AF. This review aims to describe the current understanding of AF pathophysiology in HCM, emphasising the role of left atrial myopathy in its development. In addition, we discuss risk factors and management strategies specific to AF in the context of HCM, providing insights into the complexities and challenges of treating this specific patient population.
Collapse
Affiliation(s)
- Carlo Fumagalli
- Cardiomyopathy Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy.
| | - Chiara Zocchi
- Cardiomyopathy Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Cardiovascular Department, San Donato Hospital, Arezzo, Italy
| | | | - Alessandra Milazzo
- Cardiomyopathy Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Cappelli
- Cardiomyopathy Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Fumagalli
- Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, Department of Experimental and Clinical Medicine, University of Florence and AOU Careggi, Florence, Italy
| | | | - Iacopo Olivotto
- Cardiomyopathy Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Meyer Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Florence, Italy
| |
Collapse
|
7
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Caudal A, Snyder MP, Wu JC. Harnessing human genetics and stem cells for precision cardiovascular medicine. CELL GENOMICS 2024; 4:100445. [PMID: 38359791 PMCID: PMC10879032 DOI: 10.1016/j.xgen.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 02/17/2024]
Abstract
Human induced pluripotent stem cell (iPSC) platforms are valuable for biomedical and pharmaceutical research by providing tissue-specific human cells that retain patients' genetic integrity and display disease phenotypes in a dish. Looking forward, combining iPSC phenotyping platforms with genomic and screening technologies will continue to pave new directions for precision medicine, including genetic prediction, visualization, and treatment of heart disease. This review summarizes the recent use of iPSC technology to unpack the influence of genetic variants in cardiovascular pathology. We focus on various state-of-the-art genomic tools for cardiovascular therapies-including the expansion of genetic toolkits for molecular interrogation, in vitro population studies, and function-based drug screening-and their current applications in patient- and genome-edited iPSC platforms that are heralding new avenues for cardiovascular research.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
9
|
Ranta-Aho J, Felice KJ, Jonson PH, Sarparanta J, Palmio J, Tasca G, Sabatelli M, Yvorel C, Harzallah I, Touraine R, Pais L, Austin-Tse CA, Ganesh V, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Rare ACTN2 Frameshift Variants Resulting in Protein Extension Cause Distal Myopathy and Hypertrophic Cardiomyopathy through Protein Aggregation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23298671. [PMID: 38293186 PMCID: PMC10827258 DOI: 10.1101/2024.01.17.23298671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begins in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2 , have been shown to cause distal myopathy. ACTN2 , a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered, however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2 -related diseases, actininopathies, persists. Objective The objective of the study is to characterize the pathomechanisms underlying actininopathies. Methods Functional characterization in C2C12 cell models of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. Results The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do produce alpha-actinin-2 aggregates. Interpretation The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
|
10
|
Shafaattalab S, Li AY, Jayousi F, Maaref Y, Dababneh S, Hamledari H, Baygi DH, Barszczewski T, Ruprai B, Jannati S, Nagalingam R, Cool AM, Langa P, Chiao M, Roston T, Solaro RJ, Sanatani S, Toepfer C, Lindert S, Lange P, Tibbits GF. Mechanisms of Pathogenicity of Hypertrophic Cardiomyopathy-Associated Troponin T (TNNT2) Variant R278C +/- During Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.542948. [PMID: 37609317 PMCID: PMC10441323 DOI: 10.1101/2023.06.06.542948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common heritable cardiovascular diseases and variants of TNNT2 (cardiac troponin T) are linked to increased risk of sudden cardiac arrest despite causing limited hypertrophy. In this study, a TNNT2 variant, R278C+/-, was generated in both human cardiac recombinant/reconstituted thin filaments (hcRTF) and human- induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which the R278C+/- variant affects cardiomyocytes at the proteomic and functional levels. The results of proteomics analysis showed a significant upregulation of markers of cardiac hypertrophy and remodeling in R278C+/- vs. the isogenic control. Functional measurements showed that R278C+/- variant enhances the myofilament sensitivity to Ca2+, increases the kinetics of contraction, and causes arrhythmia at frequencies >75 bpm. This study uniquely shows the profound impact of the TNNT2 R278C+/- variant on the cardiomyocyte proteomic profile, cardiac electrical and contractile function in the early stages of cardiac development.
Collapse
Affiliation(s)
- Sanam Shafaattalab
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Alison Y Li
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Dina Hosseini Baygi
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Tiffany Barszczewski
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Balwinder Ruprai
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Shayan Jannati
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Raghu Nagalingam
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Austin M Cool
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Paulina Langa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mu Chiao
- Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Thomas Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, The University of British Columbia 1081 Burrard Street, Level 4 Cardiology Vancouver, BC, V6Z 1Y6, Canada
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shubhayan Sanatani
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | | | - Steffen Lindert
- Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Philipp Lange
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
11
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|
12
|
Palughi M, Sirignano P, Stella N, Rossi M, Fiorani L, Taurino M. Rupture of Splenic Artery Aneurysm in Patient with ACTN2 Mutation. J Clin Med 2023; 12:4729. [PMID: 37510845 PMCID: PMC10380895 DOI: 10.3390/jcm12144729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Here, we report a case of splenic artery aneurysm rupture in a patient with known heterozygosity mutation of the ACTN2 gene (variant c.971G > A p.Arg324Gln). The patient came to our emergency department with epigastric pain radiating to the lumbar area, with an absence of peritonism signs. An abdominal computed tomography angiography showed a ruptured huge (5 cm) splenic artery aneurysm. Therefore, the patient underwent emergency endovascular coil embolization with complete aneurysm exclusion. The postoperative course was uneventful, until postoperative day five when the patient developed a symptomatic supraventricular tachycardia in the absence of echocardiographic alterations. The signs and symptoms disappeared after three days of medical management. The patient was discharged on the 14th postoperative day in good clinical condition under verapamil and anti-platelet therapy. Although ACTN2 mutation was associated with cardiac and peripheral vascular disease occurrence, to the best of our knowledge, the present case is the first report of a visceral (splenic) aneurysm directly linked with this rare mutation.
Collapse
Affiliation(s)
- Martina Palughi
- Vascular and Endovascular Surgery Unit, Sant'Andrea Hospital of Rome, Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, 00189 Rome, Italy
| | - Pasqualino Sirignano
- Vascular and Endovascular Surgery Unit, Sant'Andrea Hospital of Rome, Department of General and Specialistic Surgery, "Sapienza" University of Rome, 00189 Rome, Italy
| | - Nazzareno Stella
- Vascular and Endovascular Surgery Unit, Sant'Andrea Hospital of Rome, Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, 00189 Rome, Italy
| | - Michele Rossi
- Interventional Radiology Unit, Sant'Andrea Hospital of Rome, Department Medical-Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, 00189 Rome, Italy
| | - Laura Fiorani
- Cariology Unit, Sant'Andrea Hospital of Rome, 00189 Rome, Italy
| | - Maurizio Taurino
- Vascular and Endovascular Surgery Unit, Sant'Andrea Hospital of Rome, Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, 00189 Rome, Italy
| |
Collapse
|
13
|
Atang AE, Rebbeck RT, Thomas DD, Avery AW. Cardiomyopathy-associated variants alter the structure and function of the α-actinin-2 actin-binding domain. Biochem Biophys Res Commun 2023; 670:12-18. [PMID: 37271035 DOI: 10.1016/j.bbrc.2023.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.
Collapse
Affiliation(s)
- Alexandra E Atang
- Department of Chemistry, Oakland University, Rochester, MI, 48309-4479, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, MI, 48309-4479, USA.
| |
Collapse
|
14
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Broadway-Stringer S, Jiang H, Wadmore K, Hooper C, Douglas G, Steeples V, Azad AJ, Singer E, Reyat JS, Galatik F, Ehler E, Bennett P, Kalisch-Smith JI, Sparrow DB, Davies B, Djinovic-Carugo K, Gautel M, Watkins H, Gehmlich K. Insights into the Role of a Cardiomyopathy-Causing Genetic Variant in ACTN2. Cells 2023; 12:721. [PMID: 36899856 PMCID: PMC10001372 DOI: 10.3390/cells12050721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hypertrophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocardiography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Resolution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell-cycle defects and mitochondrial dysfunction. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteasomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteasomal system is activated; a mechanism that has been implicated in cardiomyopathies previously. In parallel, a lack of functional alpha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell-cycle defects, the likely cause of the death of the embryos. The defects also have wide-ranging morphological consequences.
Collapse
Affiliation(s)
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Kirsty Wadmore
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Amar J. Azad
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Evie Singer
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 9RT, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9RT, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 9RT, UK
| | | | - Duncan B. Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Benjamin Davies
- Transgenic Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kristina Djinovic-Carugo
- European Molecular Biology Laboratory, 38000 Grenoble, France
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Mathias Gautel
- School of Basic and Medical Biosciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9RT, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
16
|
Ranta-Aho J, Olive M, Vandroux M, Roticiani G, Dominguez C, Johari M, Torella A, Böhm J, Turon J, Nigro V, Hackman P, Laporte J, Udd B, Savarese M. Mutation update for the ACTN2 gene. Hum Mutat 2022; 43:1745-1756. [PMID: 36116040 PMCID: PMC10087778 DOI: 10.1002/humu.24470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Montse Olive
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marie Vandroux
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | | | - Cristina Dominguez
- Department of Neurology, Neuromuscular Unit, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Johann Böhm
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | - Janina Turon
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jocelyn Laporte
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Wazzan AA, Galli E, Lacout M, Paven E, L'official G, Schnell F, Oger E, Donal E. Could echocardiographic left atrial characterization have additive value for detecting risks of atrial arrhythmias and stroke in patients with hypertrophic cardiomyopathy? Eur Heart J Cardiovasc Imaging 2022; 24:616-624. [PMID: 35793319 DOI: 10.1093/ehjci/jeac131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Atrial arrhythmia (AA) is considered a turning point for prognosis in patients with hypertrophic cardiomyopathy (HCM). We sought to assess whether the occurrence of AA and stroke could be estimated by an echocardiographic evaluation. METHODS AND RESULTS A total of 216 patients with HCM (52 ± 16 years old) were analysed. All patients underwent transthoracic echocardiography for the evaluation of left atrial volume (LAV), peak left atrial strain (PLAS), and peak atrial contraction strain. The patients were followed for 2.9 years for the occurrence of a composite endpoint including AA and/or stroke and peripheral embolism. Among the 216 patients, 78 (36%) met the composite endpoint. These patients were older (57.1 ± 14.4 vs. 50.3 ± 16.7 years; P = 0.0035), had a higher prevalence of arterial hypertension (62.3 vs. 42.3%; P = 0.005), and had higher NT-proBNP. The LAV (47 ± 20 vs. 37.2 ± 15.7 mL/m²; P = 0.0001) was significantly higher in patients who met the composite endpoint, whereas PLAS was significantly impaired (19.3 ± 9.54 vs. 26.6 ± 9.12%; P < 0.0001). After adjustment, PLAS was independently associated with events with an odds ratio of 0.42 (95% confidence interval 0.29-0.61; P < 0.0001). Stroke occurred in 67% of the patients without any clinical AA. The PLAS with a cut-off of under 15.5% provided event prediction with 91% specificity. Using a 15% cut-off, PLAS also demonstrated a predictive value for new-onset of AA. CONCLUSION The decrease in PLAS was strongly associated with the risk of stroke, even in patients without any documented AA. Its value for guiding the management of patients with HCM requires further investigation.
Collapse
Affiliation(s)
- Adrien Al Wazzan
- University of Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Elena Galli
- University of Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Marion Lacout
- University of Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Elise Paven
- University of Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | | | - Frederic Schnell
- University of Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Emmanuel Oger
- EA Reperes, CHU Rennes, University of Rennes, Rennes, France
| | - Erwan Donal
- University of Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| |
Collapse
|
18
|
Kraoua L, Jaouadi H, Allouche M, Achour A, Kaouther H, Ahmed HB, Chaker L, Maazoul F, Ouarda F, Zaffran S, M'rad R. Molecular autopsy and clinical family screening in a case of sudden cardiac death reveals ACTN2 mutation related to hypertrophic/dilated cardiomyopathy and a novel LZTR1 variant associated with Noonan syndrome. Mol Genet Genomic Med 2022; 10:e1954. [PMID: 35656879 PMCID: PMC9266615 DOI: 10.1002/mgg3.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/28/2023] Open
Abstract
Background Genetic cardiac diseases are the main trigger of sudden cardiac death (SCD) in young adults. Hypertrophic cardiomyopathy (HCM) is the most prevalent cardiomyopathy and accounts for 0.5 to 1% of SCD cases per year. Methods Herein, we report a family with a marked history of SCD focusing on one SCD young adult case and one pediatric case with HCM. Results For the deceased young adult, postmortem whole‐exome sequencing (WES) revealed a missense variant in the ACTN2 gene: c.355G > A; p.(Ala119Thr) confirming the mixed hypertrophic/dilated cardiomyopathy phenotype detected in the autopsy. For the pediatric case, WES allowed us the identification of a novel frameshift variant in the LZTR1 gene: c.1745delT; p.(Val582Glyfs*10) which confirms a clinical suspicion of HCM related to Noonan syndrome. Conclusion The present study adds further evidence on the pathogenicity of ACTN2: p. Ala119Thr variant in SCD and expands the mutational spectrum of the LZTR1 gene related to Noonan syndrome.
Collapse
Affiliation(s)
- Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia.,LR99ES10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hager Jaouadi
- INSERM, Marseille Medical Genetics, Aix Marseille Univ, Marseille, France
| | - Mohamed Allouche
- Department of Legal Medicine, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Achour
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia.,LR99ES10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hakim Kaouther
- Department of Pediatric Cardiology, La Rabta Hospital, Tunis, Tunisia
| | - Habib Ben Ahmed
- Department of Cardiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Lilia Chaker
- Cardiologist of Free Practice, Urbain Nord Center, Tunis, Tunisia
| | - Faouzi Maazoul
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Fatma Ouarda
- Department of Pediatric Cardiology, La Rabta Hospital, Tunis, Tunisia
| | - Stéphane Zaffran
- INSERM, Marseille Medical Genetics, Aix Marseille Univ, Marseille, France
| | - Ridha M'rad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia.,LR99ES10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
19
|
Mandeş L, Roşca M, Ciupercă D, Călin A, Beladan CC, Enache R, Cuculici A, Băicuş C, Jurcuţ R, Ginghină C, Popescu BA. Electrocardiographic and Echocardiographic Predictors of Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2022; 9:905128. [PMID: 35711369 PMCID: PMC9196883 DOI: 10.3389/fcvm.2022.905128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients with hypertrophic cardiomyopathy (HCM) have an increased prevalence of atrial fibrillation (AF) compared to the general population, and left atrium (LA) remodeling is strongly correlated with the risk of AF. This prospective, monocentric study aimed to assess the role of LA electrocardiographic and echocardiographic (structural and functional) parameters in predicting the risk for incident AF in patients with HCM.Methods and ResultsThe study population consisted of 126 HCM patients in sinus rhythm (52.6 ± 16.2 years, 54 men), 118 of them without documented AF. During a median follow-up of 56 (7–124) months, 39 (30.9%) developed a new episode of AF. Multivariable analysis showed that LA booster pump function (assessed by ASr, HR = 4.24, CI = 1.84–9.75, and p = 0.038) and electrical dispersion (assessed by P wave dispersion – Pd, HR = 1.044, CI = 1.029–1.058, and p = 0.001), and not structural parameters (LA diameter, LA volume) were independent predictors of incident AF. Seventy-two patients had a LA diameter < 45 mm, and 16 of them (22.2%) had an AF episode during follow-up. In this subgroup, only Pd emerged as an independent predictor for incident AF (HR = 1.105, CI = 1.059–1.154, and p = 0.002), with good accuracy (AUC = 0.89).ConclusionLeft atrium booster pump function (ASr) and electrical dispersion (Pd) are related to the risk of incident AF in HCM patients. These parameters can provide further stratification of the risk for AF in this setting, including in patients considered at lower risk for AF based on the conventional assessment of LA size.
Collapse
Affiliation(s)
- Leonard Mandeş
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Monica Roşca
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Daniela Ciupercă
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
| | - Andreea Călin
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Carmen C. Beladan
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Roxana Enache
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Andreea Cuculici
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Cristian Băicuş
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
| | - Ruxandra Jurcuţ
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Carmen Ginghină
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
| | - Bogdan A. Popescu
- Cardiology Department, University of Medicine and Pharmacy “Carol Davila”- Euroecolab, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu,” Bucharest, Romania
- *Correspondence: Bogdan A. Popescu,
| |
Collapse
|
20
|
Thaxton C, Goldstein J, DiStefano M, Wallace K, Witmer PD, Haendel MA, Hamosh A, Rehm HL, Berg JS. Lumping versus splitting: How to approach defining a disease to enable accurate genomic curation. CELL GENOMICS 2022; 2:100131. [PMID: 35754516 PMCID: PMC9221396 DOI: 10.1016/j.xgen.2022.100131] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dilemma of how to categorize and classify diseases has been debated for centuries. The field of medical genetics has historically approached nosology based on clinical phenotypes observed in patients and families. Advances in genomic sequencing and understanding of genetic contributions to disease often provoke a need to reassess these classifications. The Clinical Genome Resource (ClinGen) has developed frameworks to classify the strength of evidence underlying monogenic gene-disease relationships, variant pathogenicity, and clinical actionability. It is therefore necessary to define the disease entity being evaluated, which can be challenging for genes associated with multiple conditions and/or a broad phenotypic spectrum. We therefore developed criteria to guide "lumping and splitting" decisions and improve consistency in defining monogenic gene-disease relationships. Here, we outline the precuration process, the lumping and splitting guidelines with examples, and describe the implications for clinical diagnosis, informatics, and care management.
Collapse
Affiliation(s)
- Courtney Thaxton
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA,Lead contact,Correspondence:
| | - Jennifer Goldstein
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Kathleen Wallace
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - P. Dane Witmer
- Johns Hopkins Genomics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melissa A. Haendel
- Center for Health AI, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Heidi L. Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan S. Berg
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Resdal Dyssekilde J, Frederiksen TC, Christiansen MK, Hasle Sørensen R, Pedersen LN, Loof Møller P, Christensen LS, Larsen JM, Thomsen KK, Lindhardt TB, Böttcher M, Molsted S, Havndrup O, Fischer T, Møller DS, Henriksen FL, Johansen JB, Nielsen JC, Bundgaard H, Nygaard M, Jensen HK. Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause. J Am Heart Assoc 2022; 11:e025643. [PMID: 35470684 PMCID: PMC9238593 DOI: 10.1161/jaha.121.025643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background The cause of atrioventricular block (AVB) remains unknown in approximately half of young patients with the diagnosis. Although variants in several genes associated with cardiac conduction diseases have been identified, the contribution of genetic variants in younger patients with AVB is unknown. Methods and Results Using the Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry, we identified all patients younger than 50 years receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. From medical records, we identified patients with unknown cause of AVB at time of pacemaker implantation. These patients were invited to a genetic screening using a panel of 102 genes associated with inherited cardiac diseases. We identified 471 living patients with AVB of unknown cause, of whom 226 (48%) accepted participation. Median age at the time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 123 (54%) were men. We found pathogenic or likely pathogenic variants in genes associated with or possibly associated with AVB in 12 patients (5%). Most variants were found in the LMNA gene (n=5). LMNA variant carriers all had a family history of either AVB and/or sudden cardiac death. Conclusions In young patients with AVB of unknown cause, we found a possible genetic cause in 1 out of 20 participating patients. Variants in the LMNA gene were most common and associated with a family history of AVB and/or sudden cardiac death, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members.
Collapse
Affiliation(s)
| | - Tanja Charlotte Frederiksen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | | | | | | | | | | | | | | | - Tommi Bo Lindhardt
- Department of Cardiology Copenhagen University HospitalHerlev and Gentofte Hospital Hellerup Denmark
| | - Morten Böttcher
- Department of Cardiology Regional Hospital Herning Herning Denmark
| | - Stig Molsted
- Department of Clinical Research North Zealand Hospital Hillerød Denmark
| | - Ole Havndrup
- Department of Cardiology Zealand University Hospital Roskilde Denmark
| | | | | | | | | | - Jens Cosedis Nielsen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | - Henning Bundgaard
- Department of Cardiology The Heart Center Rigshospitalet Copenhagen Denmark.,Department of Clinical Medicine University of Copenhagen Denmark
| | - Mette Nygaard
- Department of Biomedicine Health Aarhus University Aarhus Denmark.,Department of Health Science and Technology Aalborg Denmark
| | - Henrik Kjærulf Jensen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| |
Collapse
|
22
|
Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol 2022; 19:151-167. [PMID: 34526680 DOI: 10.1038/s41569-021-00608-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 01/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) was traditionally described as an autosomal dominant Mendelian disease but is now increasingly recognized as having a complex genetic aetiology. Although eight core genes encoding sarcomeric proteins account for >90% of the pathogenic variants in patients with HCM, variants in several additional genes (ACTN2, ALPK3, CSRP3, FHOD3, FLNC, JPH2, KLHL24, PLN and TRIM63), encoding non-sarcomeric proteins with diverse functions, have been shown to be disease-causing in a small number of patients. Genome-wide association studies (GWAS) have identified numerous loci in cardiomyopathy case-control studies and biobank investigations of left ventricular functional traits. Genes associated with Mendelian cardiomyopathy are enriched in the putative causal gene lists at these loci. Intriguingly, many loci are associated with both HCM and dilated cardiomyopathy but with opposite directions of effect on left ventricular traits, highlighting a genetic basis underlying the contrasting pathophysiological effects observed in each condition. This overlap extends to rare Mendelian variants with distinct variant classes in several genes associated with HCM and dilated cardiomyopathy. In this Review, we appraise the complex contribution of the non-sarcomeric, HCM-associated genes to cardiomyopathies across a range of variant classes (from common non-coding variants of individually low effect size to complete gene knockouts), which provides insights into the genetic basis of cardiomyopathies, causal genes at GWAS loci and the application of clinical genetic testing.
Collapse
|
23
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
24
|
Vriz O, AlSergani H, Elshaer AN, Shaik A, Mushtaq AH, Lioncino M, Alamro B, Monda E, Caiazza M, Mauro C, Bossone E, Al-Hassnan ZN, Albert-Brotons D, Limongelli G. A complex unit for a complex disease: the HCM-Family Unit. Monaldi Arch Chest Dis 2021; 92. [PMID: 34964577 DOI: 10.4081/monaldi.2021.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a group of heterogeneous disorders that are most commonly passed on in a heritable manner. It is a relatively rare disease around the globe, but due to increased rates of consanguinity within the Kingdom of Saudi Arabia, we speculate a high incidence of undiagnosed cases. The aim of this paper is to elucidate a systematic approach in dealing with HCM patients and since HCM has variable presentation, we have summarized differentials for diagnosis and how different subtypes and genes can have an impact on the clinical picture, management and prognosis. Moreover, we propose a referral multi-disciplinary team HCM-Family Unit in Saudi Arabia and an integrated role in a network between King Faisal Hospital and Inherited and Rare Cardiovascular Disease Unit-Monaldi Hospital, Italy (among the 24 excellence centers of the European Reference Network (ERN) GUARD-Heart). Graphical Abstract.
Collapse
Affiliation(s)
- Olga Vriz
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Hani AlSergani
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | | | | | | | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| | - Bandar Alamro
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| | - Ciro Mauro
- Department of Cardiology, Cardarelli Hospital, Naples.
| | | | - Zuhair N Al-Hassnan
- Cardiovascular Genetics Program and Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh.
| | - Dimpna Albert-Brotons
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| |
Collapse
|
25
|
Lindholm ME, Jimenez-Morales D, Zhu H, Seo K, Amar D, Zhao C, Raja A, Madhvani R, Abramowitz S, Espenel C, Sutton S, Caleshu C, Berry GJ, Motonaga KS, Dunn K, Platt J, Ashley EA, Wheeler MT. Mono- and Biallelic Protein-Truncating Variants in Alpha-Actinin 2 Cause Cardiomyopathy Through Distinct Mechanisms. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003419. [PMID: 34802252 PMCID: PMC8692448 DOI: 10.1161/circgen.121.003419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. METHODS Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used co-immunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres. RESULTS Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 (alpha-actinin 1) and GJA1 (gap junction protein alpha 1), 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. CONCLUSIONS Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.
Collapse
Affiliation(s)
- Malene E. Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Han Zhu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - David Amar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Chunli Zhao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Archana Raja
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Roshni Madhvani
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Sarah Abramowitz
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Cedric Espenel
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, USA
| | - Shirley Sutton
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Colleen Caleshu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- GeneMatters, San Francisco, CA
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Kara S. Motonaga
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, USA
| | - Kyla Dunn
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, USA
| | - Julia Platt
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Euan A. Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
| |
Collapse
|
26
|
Lin Y, Huang J, Zhu Z, Zhang Z, Xian J, Yang Z, Qin T, Chen L, Huang J, Huang Y, Wu Q, Hu Z, Lin X, Xu G. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis 2021; 16:496. [PMID: 34819141 PMCID: PMC8611834 DOI: 10.1186/s13023-021-02112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background The left ventricular noncompaction cardiomyopathy (LVNC) is a rare subtype of cardiomyopathy associated with a high risk of heart failure (HF), thromboembolism, arrhythmia, and sudden cardiac death. Methods The proband with overlap phenotypes of LVNC and hypertrophic cardiomyopathy (HCM) complicates atrial fibrillation (AF), ventricular tachycardia (VT), and HF due to the diffuse myocardial lesion, which were diagnosed by electrocardiogram, echocardiogram and cardiac magnetic resonance imaging. Peripheral blood was collected from the proband and his relatives. DNA was extracted from the peripheral blood of proband for high-throughput target capture sequencing. The Sanger sequence verified the variants. The protein was extracted from the skin of the proband and healthy volunteer. The expression difference of desmocollin2 was detected by Western blot. Results The novel heterozygous truncated mutation (p.K47Rfs*2) of the DSC2 gene encoding an important component of desmosomes was detected by targeted capture sequencing. The western blots showed that the expressing level of functional desmocollin2 protein (~ 94kd) was lower in the proband than that in the healthy volunteer, indicating that DSC2 p.K47Rfs*2 obviously reduced the functional desmocollin2 protein expression in the proband. Conclusion The heterozygous DSC2 p.K47Rfs*2 remarkably and abnormally reduced the functional desmocollin2 expression, which may potentially induce the overlap phenotypes of LVNC and HCM, complicating AF, VT, and HF.
Collapse
Affiliation(s)
- Yubi Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jiana Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Reproductive Center, The Six Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhiling Zhu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zuoquan Zhang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianzhong Xian
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhe Yang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Tingfeng Qin
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Linxi Chen
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Jingmin Huang
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Yin Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Qiaoyun Wu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhenyu Hu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Xiufang Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Geyang Xu
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
27
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
28
|
Park J, Cho YG, Park HW, Cho JS. Case Report: Novel Likely Pathogenic ACTN2 Variant Causing Heterogeneous Phenotype in a Korean Family With Left Ventricular Non-compaction. Front Pediatr 2021; 9:609389. [PMID: 33859969 PMCID: PMC8042379 DOI: 10.3389/fped.2021.609389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Left ventricular non-compaction (LVNC) is a very rare primary cardiomyopathy with a genetic etiology, resulting from the failure of myocardial development during embryogenesis, and it carries a high risk of left ventricular dysfunction, thromboembolic phenomenon, and malignant arrhythmias. Here, we report the first case of familial LVNC in Korea, caused by a novel ACTN2 missense variant. We performed duo exome sequencing (ES) to examine the genome of the proband and his father. A 15-year-old boy was admitted for the evaluation of exertional dyspnea for 2 weeks. He was diagnosed with LVNC with a dilated cardiomyopathy phenotype [left ventricular end-diastolic dimension 60 mm, interventricular septal dimension 8.2 mm by transthoracic echocardiography (TTE)]. For the screening of familial cardiomyopathy, TTE and cardiac magnetic resonance imaging (cMRI) were performed, which revealed hypertrophic and isolated LVNC in the proband's father and sister, respectively. In particular, the cMRI revealed dense hypertrabeculation with focal aneurysmal changes in the apical septal wall in the proband's father. ES of the father-son duo identified a novel heterozygous c.668T>C variant of the ACTN2 gene (NM_001103.3:c.668T>C, p.Leu223Pro; no rsID) as the candidate cause of autosomal dominant LVNC. Sanger sequencing confirmed this novel variant in the proband, his father, and sister, but not in the proband's grandmother. Even within families harboring the same variant, a variable risk of adverse outcomes is common. Therefore, familial screening for patients with LVNC associated with ACTN2 variant should be performed for early detection of the LVNC phenotype associated with poor outcomes, such as dilated LVNC.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Ha Wook Park
- Department of Cardiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Sun Cho
- Department of Cardiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
29
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
30
|
Ahluwalia M, Ho CY. Cardiovascular genetics: the role of genetic testing in diagnosis and management of patients with hypertrophic cardiomyopathy. Heart 2020; 107:183-189. [PMID: 33172912 DOI: 10.1136/heartjnl-2020-316798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
Genetic testing in hypertrophic cardiomyopathy (HCM) is a valuable tool to manage patients and their families. Genetic testing can help inform diagnosis and differentiate HCM from other disorders that also result in increased left ventricular wall thickness, thereby directly impacting treatment. Moreover, genetic testing can definitively identify at-risk relatives and focus family management. Pathogenic variants in sarcomere and sarcomere-related genes have been implicated in causing HCM, and targeted gene panel testing is recommended for patients once a clinical diagnosis has been established. If a pathogenic or likely pathogenic variant is identified in a patient with HCM, predictive genetic testing is recommended for their at-risk relatives to determine who is at risk and to guide longitudinal screening and risk stratification. However, there are important challenges and considerations to implementing genetic testing in clinical practice. Genetic testing results can have psychological and other implications for patients and their families, emphasising the importance of genetic counselling before and after genetic testing. Determining the clinical relevance of genetic testing results is also complex and requires expertise in understanding of human genetic variation and clinical manifestations of the disease. In this review, we discuss the genetics of HCM and how to integrate genetic testing in clinical practice.
Collapse
Affiliation(s)
- Monica Ahluwalia
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
32
|
The challenge of assessing variant pathogenicity in candidate Z-disc genes: The example of TCAP in hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:329-330. [PMID: 32654878 DOI: 10.1016/j.repc.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
33
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
34
|
Lopes LR. The challenge of assessing variant pathogenicity in candidate Z-disc genes: The example of TCAP in hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Reevaluating the Mutation Classification in Genetic Studies of Bradycardia Using ACMG/AMP Variant Classification Framework. Int J Genomics 2020; 2020:2415850. [PMID: 32211440 PMCID: PMC7061116 DOI: 10.1155/2020/2415850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Next-generation sequencing (NGS) has become more accessible, leading to an increasing number of genetic studies of familial bradycardia being reported. However, most of the variants lack full evaluation. The relationship between genetic factors and bradycardia should be summarized and reevaluated. METHODS We summarized genetic studies published in the PubMed database from 2008/1/1 to 2019/9/1 and used the ACMG/AMP classification framework to analyze related sequence variants. RESULTS We identified 88 articles, 99 sequence variants, and 34 genes after searching the PubMed database and classified ABCC9, ACTN2, CACNA1C, DES, HCN4, KCNQ1, KCNH2, LMNA, MECP2, LAMP2, NPPA, SCN5A, and TRPM4 as high-priority genes causing familial bradycardia. Most mutated genes have been reported as having multiple clinical manifestations. CONCLUSIONS For patients with familial CCD, 13 high-priority genes are recommended for evaluation. For genetic studies, variants should be carefully evaluated using the ACMG/AMP variant classification framework before publication.
Collapse
|
36
|
Mazzarotto F, Olivotto I, Walsh R. Advantages and Perils of Clinical Whole-Exome and Whole-Genome Sequencing in Cardiomyopathy. Cardiovasc Drugs Ther 2020; 34:241-253. [DOI: 10.1007/s10557-020-06948-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Poetsch MS, Guan K. iPSCs for modeling of sarcomeric cardiomyopathies. RECENT ADVANCES IN IPSC DISEASE MODELING, VOLUME 1 2020:237-273. [DOI: 10.1016/b978-0-12-822227-0.00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Prondzynski M, Lemoine MD, Zech AT, Horváth A, Di Mauro V, Koivumäki JT, Kresin N, Busch J, Krause T, Krämer E, Schlossarek S, Spohn M, Friedrich FW, Münch J, Laufer SD, Redwood C, Volk AE, Hansen A, Mearini G, Catalucci D, Meyer C, Christ T, Patten M, Eschenhagen T, Carrier L. Disease modeling of a mutation in α-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol Med 2019; 11:e11115. [PMID: 31680489 PMCID: PMC6895603 DOI: 10.15252/emmm.201911115] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany
| | - Antonia Tl Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - András Horváth
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Vittoria Di Mauro
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jussi T Koivumäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nico Kresin
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Josefine Busch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tobias Krause
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Michael Spohn
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Münch
- Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany.,Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Daniele Catalucci
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Meyer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
39
|
Good JM, Fellmann F, Bhuiyan ZA, Rotman S, Pruvot E, Schläpfer J. ACTN2 variant associated with a cardiac phenotype suggestive of left-dominant arrhythmogenic cardiomyopathy. HeartRhythm Case Rep 2019; 6:15-19. [PMID: 31956495 PMCID: PMC6962717 DOI: 10.1016/j.hrcr.2019.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Jean-Marc Good
- Department of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Florence Fellmann
- Department of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Zahurul A Bhuiyan
- Department of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Etienne Pruvot
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürg Schläpfer
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Lipshultz SE, Law YM, Asante-Korang A, Austin ED, Dipchand AI, Everitt MD, Hsu DT, Lin KY, Price JF, Wilkinson JD, Colan SD. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e9-e68. [PMID: 31132865 DOI: 10.1161/cir.0000000000000682] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this scientific statement from the American Heart Association, experts in the field of cardiomyopathy (heart muscle disease) in children address 2 issues: the most current understanding of the causes of cardiomyopathy in children and the optimal approaches to diagnosis cardiomyopathy in children. Cardiomyopathies result in some of the worst pediatric cardiology outcomes; nearly 40% of children who present with symptomatic cardiomyopathy undergo a heart transplantation or die within the first 2 years after diagnosis. The percentage of children with cardiomyopathy who underwent a heart transplantation has not declined over the past 10 years, and cardiomyopathy remains the leading cause of transplantation for children >1 year of age. Studies from the National Heart, Lung, and Blood Institute-funded Pediatric Cardiomyopathy Registry have shown that causes are established in very few children with cardiomyopathy, yet genetic causes are likely to be present in most. The incidence of pediatric cardiomyopathy is ≈1 per 100 000 children. This is comparable to the incidence of such childhood cancers as lymphoma, Wilms tumor, and neuroblastoma. However, the published research and scientific conferences focused on pediatric cardiomyopathy are sparcer than for those cancers. The aim of the statement is to focus on the diagnosis and classification of cardiomyopathy. We anticipate that this report will help shape the future research priorities in this set of diseases to achieve earlier diagnosis, improved clinical outcomes, and better quality of life for these children and their families.
Collapse
|
41
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
42
|
Müller D, Hagenah D, Biswanath S, Coffee M, Kampmann A, Zweigerdt R, Heisterkamp A, Kalies SMK. Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Sci Rep 2019; 9:3625. [PMID: 30842507 PMCID: PMC6403391 DOI: 10.1038/s41598-019-40308-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/13/2019] [Indexed: 11/24/2022] Open
Abstract
A highly organized cytoskeleton architecture is the basis for continuous and controlled contraction in cardiomyocytes (CMs). Abnormalities in cytoskeletal elements, like the Z-disc, are linked to several diseases. It is challenging to reveal the mechanisms of CM failure, endogenous repair, or mechanical homeostasis on the scale of single cytoskeletal elements. Here, we used a femtosecond (fs) laser to ablate single Z-discs in human pluripotent stem cells (hPSC) -derived CMs (hPSC-CM) and neonatal rat CMs. We show, that CM viability was unaffected by the loss of a single Z-disc. Furthermore, more than 40% of neonatal rat and 68% of hPSC-CMs recovered the Z-disc loss within 24 h. Significant differences to control cells, after the Z-disc loss, in terms of cell perimeter, x- and y-expansion and calcium homeostasis were not found. Only 14 days in vitro old hPSC-CMs reacted with a significant decrease in cell area, x- and y-expansion 24 h past nanosurgery. This demonstrates that CMs can compensate the loss of a single Z-disc and recover a regular sarcomeric pattern during spontaneous contraction. It also highlights the significant potential of fs laser-based nanosurgery to physically micro manipulate CMs to investigate cytoskeletal functions and organization of single elements.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany. .,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany. .,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| | - Dorian Hagenah
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Santoshi Biswanath
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Michelle Coffee
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Andreas Kampmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Clinic for Cranio-Maxillo-Facial Surgery, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Stefan M K Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
43
|
Lornage X, Romero NB, Grosgogeat CA, Malfatti E, Donkervoort S, Marchetti MM, Neuhaus SB, Foley AR, Labasse C, Schneider R, Carlier RY, Chao KR, Medne L, Deleuze JF, Orlikowski D, Bönnemann CG, Gupta VA, Fardeau M, Böhm J, Laporte J. ACTN2 mutations cause "Multiple structured Core Disease" (MsCD). Acta Neuropathol 2019; 137:501-519. [PMID: 30701273 DOI: 10.1007/s00401-019-01963-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.
Collapse
Affiliation(s)
- Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France
- INSERM U1258, 67404, Illkirch, France
- CNRS, UMR7104, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Norma B Romero
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013, Paris, France
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Claire A Grosgogeat
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edoardo Malfatti
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
- Neurology Department, Raymond-Poincaré teaching hospital, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, AP-HP, 92380, Garches, France
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael M Marchetti
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Clémence Labasse
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Raphaël Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France
- INSERM U1258, 67404, Illkirch, France
- CNRS, UMR7104, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Robert Y Carlier
- Neurolocomotor Division, Department of Radiology, Raymond Poincare Hospital, University Hospitals Paris-Ile-de-France West, Public Hospital Network of Paris, 92380, Garches, France
- Versailles Saint-Quentin-en-Yvelines University, 78000, Versailles, France
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02115, USA
| | - Livija Medne
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de biologie François Jacob, CEA, 91000, Evry, France
| | - David Orlikowski
- CIC 1429, INSERM, AP-HP, Hôpital Raymond Poincaré, 92380, Garches, France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michel Fardeau
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013, Paris, France
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France
- INSERM U1258, 67404, Illkirch, France
- CNRS, UMR7104, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France.
- INSERM U1258, 67404, Illkirch, France.
- CNRS, UMR7104, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
44
|
Philipson DJ, Rader F, Siegel RJ. Risk factors for atrial fibrillation in hypertrophic cardiomyopathy. Eur J Prev Cardiol 2019; 28:658-665. [PMID: 30727760 DOI: 10.1177/2047487319828474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Atrial fibrillation is the most common sustained arrhythmia in hypertrophic cardiomyopathy (HCM), occurring in approximately 25% of patients, which is four to six times more common than in similarly aged patients of the general population. Atrial fibrillation is poorly tolerated by HCM patients, largely due to their dependence on atrial systole for left ventricular filling. HCM patients who develop atrial fibrillation have an increased rate of heart failure related mortality and disabling or fatal thromboembolic events, as well as functional deterioration due to progressive heart failure when left untreated. Atrial fibrillation is both common in HCM and may lead to significant morbidity and mortality. Accurate risk stratification for atrial fibrillation in this population is crucial as contemporary treatments are highly successful. In this paper, we review the current understanding of known risk factors for atrial fibrillation, including different imaging-based parameters that assess left atrial structural and functional remodeling, electrocardiographic changes that reflect left atrial electrical remodeling, and a focus on comorbid obstructive sleep apnea, and in addition we review variables that have been reported to be predictive of atrial fibrillation. Last, we summarize the accumulating evidence for HCM patients having an intrinsic atrial myopathy.
Collapse
Affiliation(s)
| | - Florian Rader
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert J Siegel
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
45
|
Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, Dougherty K, Harrison SM, McGlaughon J, Milko LV, Morales A, Seifert BA, Strande N, Thomson K, Peter van Tintelen J, Wallace K, Walsh R, Wells Q, Whiffin N, Witkowski L, Semsarian C, Ware JS, Hershberger RE, Funke B. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:e002460. [PMID: 30681346 PMCID: PMC6410971 DOI: 10.1161/circgen.119.002460] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Genetic testing for families with hypertrophic cardiomyopathy (HCM) provides a significant opportunity to improve care. Recent trends to increase gene panel sizes often mean variants in genes with questionable association are reported to patients. Classification of HCM genes and variants is critical, as misclassification can lead to genetic misdiagnosis. We show the validity of previously reported HCM genes using an established method for evaluating gene-disease associations. METHODS A systematic approach was used to assess the validity of reported gene-disease associations, including associations with isolated HCM and syndromes including left ventricular hypertrophy. Genes were categorized as having definitive, strong, moderate, limited, or no evidence of disease causation. We also reviewed current variant classifications for HCM in ClinVar, a publicly available variant resource. RESULTS Fifty-seven genes were selected for curation based on their frequent inclusion in HCM testing and prior association reports. Of 33 HCM genes, only 8 (24%) were categorized as definitive ( MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and MYL3); 3 had moderate evidence ( CSRP3, TNNC1, and JPH2; 33%); and 22 (66%) had limited (n=16) or no evidence (n=6). There were 12 of 24 syndromic genes definitively associated with isolated left ventricular hypertrophy. Of 4191 HCM variants in ClinVar, 31% were in genes with limited or no evidence of disease association. CONCLUSIONS The majority of genes previously reported as causative of HCM and commonly included in diagnostic tests have limited or no evidence of disease association. Systematically curated HCM genes are essential to guide appropriate reporting of variants and ensure the best possible outcomes for HCM families.
Collapse
Affiliation(s)
- Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute and Faculty of Medicine and Health, The University of Sydney, University of Sydney, Australia (J.I., C.S.)
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia (J.I., C.S.)
| | - Jennifer Goldstein
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Courtney Thaxton
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Colleen Caleshu
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, CA (C.C.)
| | - Edward W. Corty
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Stephanie B. Crowley
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | | | - Steven M. Harrison
- Laboratory for Molecular Medicine, Partners Healthcare, Harvard Medical School, Cambridge, MA (S.M.H.)
| | - Jennifer McGlaughon
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Laura V. Milko
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Ana Morales
- Division of Human Genetics, Davis Heart and Lung Research Institute (A.M., R.E.H.)
| | - Bryce A. Seifert
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Natasha Strande
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Kate Thomson
- Oxford Medical Genetics Laboratory, United Kingdom (K.T.)
| | - J. Peter van Tintelen
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Cardiovascular Sciences, The Netherlands (J.P.v.T.)
| | - Kathleen Wallace
- Department of Genetics, UNC Chapel Hill, NC (J.G., C.T., E.W.C., S.B.C., J.M., L.V.M., B.A.S., N.S., K.W.)
| | - Roddy Walsh
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (R.W., N.W., J.S.W.)
- Cardiovascular Research Centre at Royal Brompton & Harefield Hospitals NHS Trust, London, United Kingdom (R.W., N.W., J.S.W.)
| | - Quinn Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (Q.W.)
| | - Nicola Whiffin
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (R.W., N.W., J.S.W.)
- Cardiovascular Research Centre at Royal Brompton & Harefield Hospitals NHS Trust, London, United Kingdom (R.W., N.W., J.S.W.)
| | - Leora Witkowski
- Department of Pathology, Harvard Medical School/Massachusetts General Hospital, Boston (L.W., B.F.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute and Faculty of Medicine and Health, The University of Sydney, University of Sydney, Australia (J.I., C.S.)
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia (J.I., C.S.)
| | - James S. Ware
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (R.W., N.W., J.S.W.)
- Cardiovascular Research Centre at Royal Brompton & Harefield Hospitals NHS Trust, London, United Kingdom (R.W., N.W., J.S.W.)
| | - Ray E. Hershberger
- Division of Human Genetics, Davis Heart and Lung Research Institute (A.M., R.E.H.)
- Division of Cardiovascular Medicine, The Ohio State University, Columbus (R.E.H.)
| | - Birgit Funke
- Department of Pathology, Harvard Medical School/Massachusetts General Hospital, Boston (L.W., B.F.)
| |
Collapse
|
46
|
Fan LL, Huang H, Jin JY, Li JJ, Chen YQ, Xiang R. Whole-Exome Sequencing Identifies a Novel Mutation (p.L320R) of Alpha-Actinin 2 in a Chinese Family with Dilated Cardiomyopathy and Ventricular Tachycardia. Cytogenet Genome Res 2019; 157:148-152. [PMID: 30630173 DOI: 10.1159/000496077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a severe cardiovascular disease which can lead to heart failure and sudden cardiac death (SCD). The typical feature of DCM is left ventricular enlargement or dilatation. In some conditions, DCM and arrhythmia can occur concurrently, apparently promoting the prevalence of SCD. According to previous studies, mutations in more than 100 genes have been detected in DCM and/or arrhythmia patients. Here, we report a Chinese family with typical DCM, ventricular tachycardia, syncope, and SCD. Using whole-exome sequencing, a novel, likely pathogenic mutation (c.959T>G/p.L320R) of actinin alpha 2 (ACTN2) was identified in all affected family members. This novel mutation was also predicted to be disease-causing by MutationTaster, SIFT, and Polyphen-2. Our study not only expands the spectrum of ACTN2 mutations and contributes to the genetic diagnosis and counseling of the family, but also provides a new case with overlap phenotype that may be caused by the ACTN2 variant.
Collapse
|
47
|
Li J, Zhang D, Wiersma M, Brundel BJJM. Role of Autophagy in Proteostasis: Friend and Foe in Cardiac Diseases. Cells 2018; 7:cells7120279. [PMID: 30572675 PMCID: PMC6316637 DOI: 10.3390/cells7120279] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Due to ageing of the population, the incidence of cardiovascular diseases will increase in the coming years, constituting a substantial burden on health care systems. In particular, atrial fibrillation (AF) is approaching epidemic proportions. It has been identified that the derailment of proteostasis, which is characterized by the loss of homeostasis in protein biosynthesis, folding, trafficking, and clearance by protein degradation systems such as autophagy, underlies the development of common cardiac diseases. Among various safeguards within the proteostasis system, autophagy is a vital cellular process that modulates clearance of misfolded and proteotoxic proteins from cardiomyocytes. On the other hand, excessive autophagy may result in derailment of proteostasis and therefore cardiac dysfunction. Here, we review the interplay between autophagy and proteostasis in the healthy heart, discuss the imbalance between autophagy and proteostasis during cardiac diseases, including AF, and finally explore new druggable targets which may limit cardiac disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Deli Zhang
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Marit Wiersma
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Cochet H, Morlon L, Vergé MP, Salel M, Camaioni C, Reynaud A, Peyrou J, Ritter P, Jais P, Laurent F, Lafitte S, Montaudon M, Réant P. Predictors of future onset of atrial fibrillation in hypertrophic cardiomyopathy. Arch Cardiovasc Dis 2018; 111:591-600. [DOI: 10.1016/j.acvd.2018.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/03/2018] [Accepted: 03/16/2018] [Indexed: 01/06/2023]
|
49
|
Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DWD, van der Velden J, Brundel BJJM. Untying the knot: protein quality control in inherited cardiomyopathies. Pflugers Arch 2018; 471:795-806. [PMID: 30109411 PMCID: PMC6475634 DOI: 10.1007/s00424-018-2194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensatory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Maike Schuldt
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Dora Knežević
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Marit Wiersma
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, Lai A, Frese K, Pribe-Wolferts R, Amr A, Li DT, Samani OS, Carstensen A, Bordalo DM, Müller M, Fischer C, Shao J, Wang J, Nie M, Yuan L, Haßfeld S, Schwartz C, Zhou M, Zhou Z, Shu Y, Wang M, Huang K, Zeng Q, Cheng L, Fehlmann T, Ehlermann P, Keller A, Dieterich C, Streckfuß-Bömeke K, Liao Y, Gotthardt M, Katus HA, Meder B. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J 2018; 38:3449-3460. [PMID: 29029073 DOI: 10.1093/eurheartj/ehx545] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Aims In this study, we aimed to clinically and genetically characterize LVNC patients and investigate the prevalence of variants in known and novel LVNC disease genes. Introduction Left ventricular non-compaction cardiomyopathy (LVNC) is an increasingly recognized cause of heart failure, arrhythmia, thromboembolism, and sudden cardiac death. We sought here to dissect its genetic causes, phenotypic presentation and outcome. Methods and results In our registry with follow-up of in the median 61 months, we analysed 95 LVNC patients (68 unrelated index patients and 27 affected relatives; definite familial LVNC = 23.5%) by cardiac phenotyping, molecular biomarkers and exome sequencing. Cardiovascular events were significantly more frequent in LVNC patients compared with an age-matched group of patients with non-ischaemic dilated cardiomyopathy (hazard ratio = 2.481, P = 0.002). Stringent genetic classification according to ACMG guidelines revealed that TTN, LMNA, and MYBPC3 are the most prevalent disease genes (13 patients are carrying a pathogenic truncating TTN variant, odds ratio = 40.7, Confidence interval = 21.6-76.6, P < 0.0001, percent spliced in 76-100%). We also identified novel candidate genes for LVNC. For RBM20, we were able to perform detailed familial, molecular and functional studies. We show that the novel variant p.R634L in the RS domain of RBM20 co-segregates with LVNC, leading to titin mis-splicing as revealed by RNA sequencing of heart tissue in mutation carriers, protein analysis, and functional splice-reporter assays. Conclusion Our data demonstrate that the clinical course of symptomatic LVNC can be severe. The identified pathogenic variants and distribution of disease genes-a titin-related pathomechanism is found in every fourth patient-should be considered in genetic counselling of patients. Pathogenic variants in the nuclear proteins Lamin A/C and RBM20 were associated with worse outcome.
Collapse
Affiliation(s)
- Farbod Sedaghat-Hamedani
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Jan Haas
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Feng Zhu
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Christian Geier
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation of Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Augustenburger Platz 1, 13353 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Elham Kayvanpour
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Martin Liss
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Alan Lai
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Karen Frese
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Regina Pribe-Wolferts
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ali Amr
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Daniel Tian Li
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Omid Shirvani Samani
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Avisha Carstensen
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Diana Martins Bordalo
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Marion Müller
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Christine Fischer
- Department of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Jing Shao
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Ming Nie
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Li Yuan
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Sabine Haßfeld
- Department of Cardiology, Virchow Klinikum, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christine Schwartz
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation of Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Min Zhou
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Yanwen Shu
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Min Wang
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Kai Huang
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Longxian Cheng
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Tobias Fehlmann
- Department of Bioinformatics, University of Saarland, Building E2.1, 66123 Saarbrücken, Germany
| | - Philipp Ehlermann
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andreas Keller
- Department of Bioinformatics, University of Saarland, Building E2.1, 66123 Saarbrücken, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany.,Department of Medicine III, Klaus Tschira Institute for Computational Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Katrin Streckfuß-Bömeke
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Yuhua Liao
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Michael Gotthardt
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Hugo A Katus
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Benjamin Meder
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| |
Collapse
|