1
|
Letarte LA, Raje V, Feliberti JP, Antoine SM, Bindra AS, Yaranov DM, Yehya A, Garcia RA, Patel P, Fudim M, Howard B, Rao VN, Hicks A, Mahmood K, Gupta R, Rollins A, Alam A, McCann P, Raval NY. Beyond GDMT: bridging the therapeutic gap in heart failure. Heart Fail Rev 2025:10.1007/s10741-025-10512-3. [PMID: 40304825 DOI: 10.1007/s10741-025-10512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Guideline-directed medical therapy is the backbone of heart failure treatment. However, patients continue to experience heart failure symptoms, impaired quality of life, and reduced functional status despite guideline-directed medical and device treatment. There is a void in treatment alternatives between guideline-directed therapy and the advanced heart failure surgical options of heart transplant (HT) and left ventricular assist device (LVAD). Cardiac contractility modulation and baroreceptor activation therapies are shown to improve heart failure symptoms, quality of life, and exertional capacity in select patients and complement our current treatment paradigm. The purpose of this paper is to review these novel Food and Drug Administration (FDA)-approved heart failure therapies and facilitate the identification of appropriate candidates.
Collapse
Affiliation(s)
| | - Vikram Raje
- Georgia Heart Institute, Gainesville, GA, USA
| | | | | | | | | | - Amin Yehya
- Sentara Norfolk General Hospital, Norfolk, VA, USA
- Old Dominion University, Norfolk, VA, USA
| | | | | | | | | | - Vishal N Rao
- Advanced Heart Failure/Transplant Cardiology, Medical University of South Carolina, Charleston, United States
| | | | - Kiran Mahmood
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richa Gupta
- MedStar Washington Hospital Center, Washington, D.C., USA
- Georgetown University, Washington, D.C., USA
| | | | - Amit Alam
- New York University Langone Medical Center, New York, NY, USA
| | | | | |
Collapse
|
2
|
Jordan J, Tank J, Heusser K, Reuter H. Baroreflex activation therapy through electrical carotid sinus stimulation. Auton Neurosci 2024; 256:103219. [PMID: 39549378 DOI: 10.1016/j.autneu.2024.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
An imbalance between cardiovascular parasympathetic and sympathetic activity towards sympathetic predominance has been implicated in the pathogenesis of treatment-resistant arterial hypertension and heart failure. Arterial baroreceptors control efferent cardiovascular autonomic activity and have, therefore, been recognized as potential treatment targets. Baroreflex activation therapy through electrical carotid sinus stimulation is a device-based approach to modulate cardiovascular autonomic activity. Electrical carotid sinus stimulation lowered blood pressure in various hypertensive animal models and improved cardiac remodeling and survival in preclinical models of heart failure. In human mechanistic profiling studies, electrical carotid sinus stimulation lowered blood pressure through sympathetic inhibition with substantial inter-individual variability. The first-generation device reduced blood pressure in controlled and uncontrolled clinical trials. Controlled clinical trials proving efficacy in blood pressure reduction in patients with hypertension do not exist for the currently available second-generation carotid sinus stimulator. Investigations in heart failure patients showed improved symptoms, quality of life, and natriuretic peptide biomarkers. Electrical carotid sinus stimulation is an interesting technology to modulate cardiovascular autonomic control. However, controlled trials with hard clinical endpoints are required.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany.
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hannes Reuter
- Department for Cardiology, Angiology, Pneumology and Intensive Care Medicine, University of Cologne, Germany; Department of Cardiology and Intensive Care Medicine, Ev. Krankenhaus Köln-Weyertal, Cologne, Germany
| |
Collapse
|
3
|
Schäfer AKC, Wallbach M, Schroer C, Lehnig LY, Lüders S, Hasenfuß G, Wachter R, Koziolek MJ. Effects of baroreflex activation therapy on cardiac function and morphology. ESC Heart Fail 2024; 11:3360-3367. [PMID: 38970313 PMCID: PMC11424325 DOI: 10.1002/ehf2.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
AIMS Arterial hypertension (aHTN) plays a fundamental role in the pathogenesis and prognosis of heart failure with preserved ejection fraction (HFpEF). The risk of heart failure increases with therapy-resistant arterial hypertension (trHTN), defined as inadequate blood pressure (BP) control ≥140/90 mmHg despite taking ≥3 antihypertensive medications including a diuretic. This study investigates the effects of the BP lowering baroreflex activation therapy (BAT) on cardiac function and morphology in patients with trHTN with and without HFpEF. METHODS Sixty-four consecutive patients who had been diagnosed with trHTN and received BAT implantation between 2012 and 2016 were prospectively observed. Office BP, electrocardiographic and echocardiographic data were collected before and after BAT implantation. RESULTS Mean patients' age was 59.1 years, 46.9% were male, and mean body mass index (BMI) was 33.2 kg/m2. The prevalence of diabetes mellitus was 38.8%, atrial fibrillation was 12.2%, and chronic kidney disease (CKD) stage ≥3 was 40.8%. Twenty-eight patients had trHTN with HFpEF, and 21 patients had trHTN without HFpEF. Patients with HFpEF were significantly older (64.7 vs. 51.6 years, P < 0.0001), had a lower BMI (30.0 vs. 37.2 kg/m2, P < 0.0001), and suffered more often from CKD-stage ≥3 (64 vs. 20%, P = 0.0032). After BAT implantation, mean office BP dropped in patients with and without HFpEF (from 169 ± 5/86 ± 4 to 143 ± 4/77 ± 3 mmHg [P = 0.0019 for systolic BP and 0.0403 for diastolic BP] and from 170 ± 5/95 ± 4 to 149 ± 6/88 ± 5 mmHg [P = 0.0019 for systolic BP and 0.0763 for diastolic BP]), while a significant reduction of the intake of calcium-antagonists, α2-agonists and direct vasodilators, as well as a decrease in average dosage of ACE-inhibitors and α2-agonists could be seen. Within the study population, a decrease in heart rate from 74 ± 2 to 67 ± 2 min-1 (P = 0.0062) and lengthening of QRS-time from 96 ± 3 to 106 ± 4 ms (P = 0.0027) and QTc-duration from 422 ± 5 to 432 ± 5 ms (P = 0.0184) were detectable. The PQ duration was virtually unchanged. In patients without HF, no significant changes of echocardiographic parameters could be seen. In patients with HFpEF, posterior wall diameter decreased significantly from 14.0 ± 0.5 to 12.7 ± 0.3 mm (P = 0.0125), left ventricular mass (LVM) declined from 278.1 ± 15.8 to 243.9 ± 13.4 g (P = 0.0203), and e' lateral increased from 8.2 ± 0.4 to 9.0 ± 0.4 cm/s (P = 0.0471). CONCLUSIONS BAT reduced systolic and diastolic BP and was associated with morphological and functional improvement of HFpEF.
Collapse
Affiliation(s)
- Ann-Kathrin C Schäfer
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Manuel Wallbach
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Charlotte Schroer
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Luca-Yves Lehnig
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Stephan Lüders
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- St. Josefs Hospital, Cloppenburg, Germany
| | - Gerhard Hasenfuß
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
- Department of Cardiology and Pulmonology, University Medical Centre, Göttingen, Germany
| | - Rolf Wachter
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
- Department of Cardiology and Pulmonology, University Medical Centre, Göttingen, Germany
| | - Michael J Koziolek
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
4
|
Ruddy JM, Kroman A, Baicu CF, Zile MR. Baroreflex Activation Therapy in Patients with Heart Failure with a Reduced Ejection Fraction. Heart Fail Clin 2024; 20:39-50. [PMID: 37953020 DOI: 10.1016/j.hfc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A randomized, controlled trial of baroreflex activation therapy (BAT) in patients with heart failure and reduced ejection fraction demonstrated that BAT was safe and significantly improved patient-centered symptomatic outcomes, increasing exercise capacity, improving quality of life, decreasing n-terminal pro B-type natriuretic peptide (NT-proBNP), and improving functional class. BAT was approved by the FDA for improvement of symptoms of heart failure for patients who remain symptomatic despite treatment with guideline-directed management, are New York Heart Association Class III or Class II (with a recent history of Class III), have a left ventricular ejection fraction ≤ 35%, an NT-proBNP < 1600 pg/mL and excluding patients indicated for cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Jean M Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA; Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA.
| | - Anne Kroman
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Catalin F Baicu
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Michael R Zile
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Wang D, Veltmann C, Bauersachs J, Duncker D. Antiarrhythmic effects of baroreceptor activation therapy in chronic heart failure: a case report. Eur Heart J Case Rep 2023; 7:ytad520. [PMID: 37954563 PMCID: PMC10633707 DOI: 10.1093/ehjcr/ytad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Background Autonomic imbalance represents a keystone of chronic heart failure (HF) with substantial clinical and prognostic implications. Baroreceptor activation therapy (BAT) is a new therapeutic strategy to target the autonomic dysbalance by electrical stimulation of carotid baroreceptors. Besides its known beneficial effects on HF parameters, BAT is also supposed to trigger potential antiarrhythmic effects, which may additionally contribute to HF improvement. Case summary We report on a 70-year-old male with progredient shortness of breath and advanced HF in the context of an extensive cardiovascular history. After optimization of pharmacologic and device-related therapy, the decision was made to implant a BAT system (Barostim Neo, CVRx) to improve functional cardiac parameters and support symptomatic improvement. Implantation was associated with an overall clinical improvement assessed during outpatient visits every 6 months. Frequency of ventricular arrhythmic events declined, and atrial fibrillation ceased spontaneously. Echocardiography revealed an amelioration in left ventricular systolic function. Numbers of HF hospitalization decreased after Barostim implantation. Discussion We present a patient with an extensive cardiovascular history and fully exploited pharmacologic and device-related therapy, who showed improvement in New York Heart Association (NYHA) functional classification, left ventricular systolic function, and reduction of arrhythmic events following implantation of the BAT device. This case presents an additional positive potential of BAT for HF patients in terms of reduction of arrhythmia burden. These results should be confirmed by further clinical trials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Veltmann
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - David Duncker
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Pahuja M, Akhtar KH, Krishan S, Nasir YM, Généreux P, Stavrakis S, Dasari TW. Neuromodulation Therapies in Heart Failure: A State-of-the-Art Review. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101199. [PMID: 39131073 PMCID: PMC11307467 DOI: 10.1016/j.jscai.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 08/13/2024]
Abstract
Heart failure (HF) continues to impact the population globally with increasing prevalence. While the pathophysiology of HF is quite complex, the dysregulation of the autonomic nervous system, as evident in heightened sympathetic activity, serves as an attractive pathophysiological target for newer therapies and HF. The degree of neurohormonal activation has been found to correlate to the severity of symptoms, decline in functional capacity, and mortality. Neuromodulation of the autonomic nervous system aims to restore the balance between sympathetic nervous system and the parasympathetic nervous system. Given that autonomic dysregulation plays a major role in the development and progression of HF, restoring this balance may potentially have an impact on the core pathophysiological mechanisms and various HF syndromes. Autonomic modulation has been proposed as a potential therapeutic strategy aimed at reduction of systemic inflammation. Such therapies, complementary to drug and device-based therapies may lead to improved patient outcomes and reduce disease burden. Most professional societies currently do not provide a clear recommendation on the use of neuromodulation techniques in HF. These include direct and indirect vagal nerve stimulation, spinal cord stimulation, baroreflex activation therapy, carotid sinus stimulation, aortic arch stimulation, splanchnic nerve modulation, cardiopulmonary nerve stimulation, and renal sympathetic nerve denervation. In this review, we provide a comprehensive overview of neuromodulation in HF.
Collapse
Affiliation(s)
- Mohit Pahuja
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Khawaja Hassan Akhtar
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Satyam Krishan
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yusra Minahil Nasir
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Philippe Généreux
- Department of Medicine, Section of Cardiovascular Medicine, Morristown Medical Center, Morristown, New Jersey
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun W. Dasari
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Coats AJ, Abraham WT, Zile MR, Lindenfeld JA, Weaver FA, Fudim M, Bauersachs J, Duval S, Galle E, Zannad F. Baroreflex activation therapy with the Barostim™ device in patients with heart failure with reduced ejection fraction: a patient level meta-analysis of randomized controlled trials. Eur J Heart Fail 2022; 24:1665-1673. [PMID: 35713888 PMCID: PMC9796660 DOI: 10.1002/ejhf.2573] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) remains associated with high morbidity and mortality, poor quality of life (QoL) and significant exercise limitation. Sympatho-vagal imbalance has been shown to predict adverse prognosis and symptoms in HFrEF, yet it has not been specifically targeted by any guideline-recommended device therapy to date. Barostim™, which directly addresses this imbalance, is the first Food and Drug Administration approved neuromodulation technology for HFrEF. We aimed to analyse all randomized trial evidence to evaluate the effect of baroreflex activation therapy (BAT) on heart failure symptoms, QoL and N-terminal pro-brain natriuretic peptide (NT-proBNP) in HFrEF. METHODS AND RESULTS An individual patient data (IPD) meta-analysis was performed on all eligible trials that randomized HFrEF patients to BAT + guideline-directed medical therapy (GDMT) or GDMT alone (open label). Endpoints included 6-month changes in 6-min hall walk (6MHW) distance, Minnesota Living With Heart Failure (MLWHF) QoL score, NT-proBNP, and New York Heart Association (NYHA) class in all patients and three subgroups. A total of 554 randomized patients were included. In all patients, BAT provided significant improvement in 6MHW distance of 49 m (95% confidence interval [CI] 33, 64), MLWHF QoL of -13 points (95% CI -17, -10), and 3.4 higher odds of improving at least one NYHA class (95% CI 2.3, 4.9) when comparing from baseline to 6 months. These improvements were similar, or better, in patients who had baseline NT-proBNP <1600 pg/ml, regardless of the cardiac resynchronization therapy indication status. CONCLUSION An IPD meta-analysis suggests that BAT improves exercise capacity, NYHA class, and QoL in HFrEF patients receiving GDMT. These clinically meaningful improvements were consistent across the range of patients studies. BAT was also associated with an improvement in NT-proBNP in subjects with a lower baseline NT-proBNP.
Collapse
Affiliation(s)
| | - William T. Abraham
- Division of Cardiovascular MedicineThe Ohio State UniversityColumbusOHUSA
| | - Michael R. Zile
- The Medical University of South Carolina and the RHJ Department of Veterans Affairs Medical CenterCharlestonSCUSA
| | | | - Fred A. Weaver
- Division of Vascular Surgery and Endovascular Therapy, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Marat Fudim
- Duke University Medical CenterDurhamNCUSA,Duke Clinical Research InstituteDurhamNCUSA
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Sue Duval
- Cardiovascular DivisionUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | | | - Faiez Zannad
- Université de Lorraine, Inserm Centre d'Investigation, CHUUniversité de LorraineNancyFrance
| |
Collapse
|
9
|
Abstract
Autonomic imbalance with a sympathetic dominance is acknowledged to be a critical determinant of the pathophysiology of chronic heart failure with reduced ejection fraction (HFrEF), regardless of the etiology. Consequently, therapeutic interventions directly targeting the cardiac autonomic nervous system, generally referred to as neuromodulation strategies, have gained increasing interest and have been intensively studied at both the pre-clinical level and the clinical level. This review will focus on device-based neuromodulation in the setting of HFrEF. It will first provide some general principles about electrical neuromodulation and discuss specifically the complex issue of dose-response with this therapeutic approach. The paper will thereafter summarize the rationale, the pre-clinical and the clinical data, as well as the future prospectives of the three most studied form of device-based neuromodulation in HFrEF. These include cervical vagal nerve stimulation (cVNS), baroreflex activation therapy (BAT), and spinal cord stimulation (SCS). BAT has been approved by the Food and Drug Administration for use in patients with HfrEF, while the other two approaches are still considered investigational; VNS is currently being investigated in a large phase III Study.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Department of Veteran's Affairs Medical Center , Charleston, SC , USA
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| |
Collapse
|
10
|
Nottebohm PI, Dumitrescu D, Hamacher S, Hohmann C, Madershahian N, Baldus S, Reuter H, Halbach M. Cardiopulmonary function during exercise in heart failure with reduced ejection fraction following baroreflex activation therapy. Ther Adv Cardiovasc Dis 2022; 16:17539447221131203. [PMID: 36305639 PMCID: PMC9619265 DOI: 10.1177/17539447221131203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023] Open
Abstract
PURPOSE Baroreflex activation therapy has favorable effects in heart failure patients. We report the results of a single-center study of baroreflex activation therapy in heart failure with reduced ejection fraction including cardiopulmonary exercise testing for the first time to show the effect on exercise capacity. METHODS A total of 17 patients were treated with baroreflex activation therapy. Eligibility criteria were the New York Heart Association class ⩾III and ejection fraction ⩽35% on guideline-directed medical and device therapy. The New York Heart Association class, quality of life, and 6-min hall walk distance were assessed in all patients. Twelve patients underwent cardiopulmonary exercise testing before and 8.9 ± 6.4 months after initiation of baroreflex activation therapy. RESULTS The New York Heart Association class and 6-min hall walk distance improved after baroreflex activation therapy, while quality of life remained stable. Weight-adapted peak oxygen uptake increased significantly from 10.1 (8.2-12.9) ml/min/kg to 12.1 (10.4-14.6) ml/min/kg (p = 0.041). Maximal heart rate was stable. Maximal oxygen pulse increased from 9.7 (5.5-11.3) to 9.9 (7.1-12.1) ml/heartbeat (p = 0.047) in 10 patients with low maximal oxygen pulse at baseline (<16.5 ml/heartbeat). There was no significant change in maximal oxygen pulse in the whole cohort. Ventilatory efficiency remained stable. CONCLUSION Weight-adapted peak oxygen uptake improved after baroreflex activation therapy, pointing to an enhanced exercise capacity. Ventilatory efficiency and heart rate did not change, while oxygen pulse increased in patients with low oxygen pulse at baseline, indicating an improvement in circulatory efficiency, that is, a beneficial effect on stroke volume and peripheral oxygen extraction.
Collapse
Affiliation(s)
- Pia I. Nottebohm
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Stefanie Hamacher
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Christopher Hohmann
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Navid Madershahian
- Department of Cardiac Surgery, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Stephan Baldus
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Hannes Reuter
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
- Klinik für Innere Medizin – Kardiologie, Evangelisches Klinikum Köln Weyertal, Cologne, Germany
| | | |
Collapse
|
11
|
Kay MW, Jain V, Panjrath G, Mendelowitz D. Targeting Parasympathetic Activity to Improve Autonomic Tone and Clinical Outcomes. Physiology (Bethesda) 2022; 37:39-45. [PMID: 34486396 PMCID: PMC8742722 DOI: 10.1152/physiol.00023.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this review we will briefly summarize the evidence that autonomic imbalance, more specifically reduced parasympathetic activity to the heart, generates and/or maintains many cardiorespiratory diseases and will discuss mechanisms and sites, from myocytes to the brain, that are potential translational targets for restoring parasympathetic activity and improving cardiorespiratory health.
Collapse
Affiliation(s)
- Matthew W. Kay
- 1Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Vivek Jain
- 2Division of Pulmonary Medicine, Department of Medicine, George Washington University, Washington, District of Columbia
| | - Gurusher Panjrath
- 3Division of Cardiology, Department of Medicine, George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- 4Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
12
|
Malangu B, Lanier GM, Frishman WH. Nonpharmacologic Treatment for Heart Failure: A Review of Implantable Carotid Baroreceptor Stimulators As a Therapeutic Option. Cardiol Rev 2021; 29:48-53. [PMID: 32282391 DOI: 10.1097/crd.0000000000000307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There has been significant interest in research for the development of device-based therapy as a treatment option of heart failure (HF), whether it is with reduced or preserved ejection fraction. This is due to the high morbidity and mortality rate in patients with HF despite recent advances in pharmacologic treatment. Following the success of cardiac resynchronization therapy, baroreceptor activation therapy has emerged as another novel device-based treatment for HF. The Barostim neo was developed by CVRx Minneapolis, MN for the treatment of mild to severe HF. The device works by electrically activating the baroreceptor reflex with the goal to restore the maladaptive autonomic imbalance that is seen in patients with HF. Preliminary clinical investigations have given promising results with an encouraging safety profile. Baroreceptor activation therapy as a treatment option is still investigational at this time; however, several trials in different patient populations have already shown benefit with a very good safety profile. In this review, we will summarize the current state of technology and the available literature of the use of baroreceptor activation therapy in patients with different comorbidities, with a focus on this device-based therapy in patients with HF.
Collapse
Affiliation(s)
- Boniface Malangu
- From the Department of Internal Medicine, Rutgers-New Jersey Medical School, Newark, NJ
| | - Gregg M Lanier
- Department of Medicine, Division of Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- Department of Medicine, Division of Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
13
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
14
|
Pelat M, Barbe F, Daveu C, Ly-Nguyen L, Lartigue T, Marque S, Tavares G, Ballet V, Guillon JM, Steinmeyer K, Wirth K, Gögelein H, Arndt P, Rackelmann N, Weston J, Bellevergue P, McCort G, Trellu M, Lucats L, Beauverger P, Pruniaux-Harnist MP, Janiak P, Chézalviel-Guilbert F. SAR340835, a Novel Selective Na +/Ca 2+ Exchanger Inhibitor, Improves Cardiac Function and Restores Sympathovagal Balance in Heart Failure. J Pharmacol Exp Ther 2021; 377:293-304. [PMID: 33602875 DOI: 10.1124/jpet.120.000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
In failing hearts, Na+/Ca2+ exchanger (NCX) overactivity contributes to Ca2+ depletion, leading to contractile dysfunction. Inhibition of NCX is expected to normalize Ca2+ mishandling, to limit afterdepolarization-related arrhythmias, and to improve cardiac function in heart failure (HF). SAR340835/SAR296968 is a selective NCX inhibitor for all NCX isoforms across species, including human, with no effect on the native voltage-dependent calcium and sodium currents in vitro. Additionally, it showed in vitro and in vivo antiarrhythmic properties in several models of early and delayed afterdepolarization-related arrhythmias. Its effect on cardiac function was studied under intravenous infusion at 250,750 or 1500 µg/kg per hour in dogs, which were either normal or submitted to chronic ventricular pacing at 240 bpm (HF dogs). HF dogs were infused with the reference inotrope dobutamine (10 µg/kg per minute, i.v.). In normal dogs, NCX inhibitor increased cardiac contractility (dP/dtmax) and stroke volume (SV) and tended to reduce heart rate (HR). In HF dogs, NCX inhibitor significantly and dose-dependently increased SV from the first dose (+28.5%, +48.8%, and +62% at 250, 750, and 1500 µg/kg per hour, respectively) while significantly increasing dP/dtmax only at 1500 (+33%). Furthermore, NCX inhibitor significantly restored sympathovagal balance and spontaneous baroreflex sensitivity (BRS) from the first dose and reduced HR at the highest dose. In HF dogs, dobutamine significantly increased dP/dtmax and SV (+68.8%) but did not change HR, sympathovagal balance, or BRS. Overall, SAR340835, a selective potent NCX inhibitor, displayed a unique therapeutic profile, combining antiarrhythmic properties, capacity to restore systolic function, sympathovagal balance, and BRS in HF dogs. NCX inhibitors may offer new therapeutic options for acute HF treatment. SIGNIFICANCE STATEMENT: HF is facing growing health and economic burden. Moreover, patients hospitalized for acute heart failure are at high risk of decompensation recurrence, and no current acute decompensated HF therapy definitively improved outcomes. A new potent, Na+/Ca2+ exchanger inhibitor SAR340835 with antiarrhythmic properties improved systolic function of failing hearts without creating hypotension, while reducing heart rate and restoring sympathovagal balance. SAR340835 may offer a unique and attractive pharmacological profile for patients with acute heart failure as compared with current inotrope, such as dobutamine.
Collapse
Affiliation(s)
- Michel Pelat
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Fabrice Barbe
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Cyril Daveu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laetitia Ly-Nguyen
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Thomas Lartigue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Suzanne Marque
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Georges Tavares
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Véronique Ballet
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Jean-Michel Guillon
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Steinmeyer
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Wirth
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Heinz Gögelein
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Petra Arndt
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Nils Rackelmann
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - John Weston
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Patrice Bellevergue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Gary McCort
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marc Trellu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laurence Lucats
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philippe Beauverger
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marie-Pierre Pruniaux-Harnist
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philip Janiak
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Frédérique Chézalviel-Guilbert
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| |
Collapse
|
15
|
Izumi Y, Mennerick SJ, Doherty JJ, Zorumski CF. Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal N-Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. J Pharmacol Exp Ther 2021; 377:181-188. [PMID: 33441369 PMCID: PMC8051516 DOI: 10.1124/jpet.120.000376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ethanol is a noncompetitive inhibitor of N-methyl-d-aspartate receptors (NMDARs) and acutely disrupts hippocampal synaptic plasticity and learning. In the present study, we examined the effects of oxysterol positive allosteric modulators (PAMs) of NMDARs on ethanol-mediated inhibition of NMDARs, block of long-term potentiation (LTP) and long-term depression (LTD) in rat hippocampal slices, and defects in one-trial learning in vivo. We found that 24S-hydroxycholesterol and a synthetic oxysterol analog, SGE-301, overcame effects of ethanol on NMDAR-mediated synaptic responses in the CA1 region but did not alter acute effects of ethanol on LTD; the synthetic oxysterol, however, overcame acute inhibition of LTP. In addition, both oxysterols overcame persistent effects of ethanol on LTP in vitro, and the synthetic analog reversed defects in one-trial inhibitory avoidance learning in vivo. These results indicate that effects of ethanol on both LTP and LTD arise by complex mechanisms beyond NMDAR antagonism and that oxysterol NMDAR PAMS may represent a novel approach for preventing and reversing acute ethanol-mediated changes in cognition. SIGNIFICANCE STATEMENT: Ethanol acutely inhibits hippocampal NMDARs, LTP, and learning. This study found that certain oxysterols that are NMDAR-positive allosteric modulators can overcome the acute effects of ethanol on NMDARs, LTP, and learning. Oxysterols differ in their effects from agents that inhibit integrated cellular stress responses.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Steven J Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - James J Doherty
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| |
Collapse
|
16
|
Sabbah HN, Zhang K, Gupta RC, Xu J, Singh-Gupta V, Ma M, Stauber K, Nguyen N, Adams J. Intravenous Infusion of the β 3-Adrenergic Receptor Antagonist APD418 Improves Left Ventricular Systolic Function in Dogs With Systolic Heart Failure. J Card Fail 2020; 27:242-252. [PMID: 33352205 DOI: 10.1016/j.cardfail.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/08/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Unlike β1- and β2-adrenergic receptors (ARs), β3-AR stimulation inhibits cardiac contractility and relaxation. In the failing left ventricular (LV) myocardium, β3-ARs are upregulated, and can be maladaptive in the setting of decompensation by contributing to LV dysfunction. This study examined the effects of intravenous infusions of the β3-AR antagonist APD418 on cardiovascular function and safety in dogs with systolic heart failure (HF). METHODS AND RESULTS Three separate studies were performed in 21 dogs with coronary microembolization-induced HF (LV ejection fraction [LVEF] of approximately 35%). Studies 1 and 2 (n = 7 dogs each) were APD418 dose escalation studies (dosing range, 0.35-15.00 mg/kg/h) designed to identify an effective dose of APD418 to be used in study 3. Study 3, the sustained efficacy study, (n = 7 dogs) was a 6-hour constant intravenous infusion of APD418 at a dose of 4.224 mg/kg (0.70 mg/kg/h) measuring key hemodynamic endpoints (e.g., EF, cardiac output, the time velocity integral of the mitral inflow velocity waveform representing early filling to time-velocity integral representing left atrial contraction [Ei/Ai]). Studies 1 and 2 showed a dose-dependent increase of LVEF and Ei/Ai, the latter being an index of LV diastolic function. In study 3, infusion of APD418 over 6 hours increased LVEF from 31 ± 1% to 38 ± 1% (P < .05) and increased Ei/Ai from 3.4 ± 0.4 to 4.9 ± 0.5 (P < .05). Vehicle had no effect on the LVEF or Ei/Ai. In study 3, APD418 had no significant effects on the HR or the systemic blood pressure. CONCLUSIONS Intravenous infusions of APD418 in dogs with systolic HF elicit significant positive inotropic and lusitropic effects. These findings support the development of APD418 for the in-hospital treatment of patients with an acute exacerbation of chronic HF.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan.
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Ramesh C Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jiang Xu
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Michael Ma
- Arena Pharmaceuticals, Inc., San Diego, California
| | | | | | - John Adams
- Arena Pharmaceuticals, Inc., San Diego, California
| |
Collapse
|
17
|
Cai G, Guo K, Zhang D, Qin S. The efficacy of baroreflex activation therapy for heart failure: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2020; 99:e22951. [PMID: 33157936 PMCID: PMC7647578 DOI: 10.1097/md.0000000000022951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The efficacy of baroreflex activation therapy for heart failure is elusive. This meta-analysis aims to evaluate the impact of baroreflex activation therapy on treatment efficacy of heart failure. METHODS Several databases including PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases have been searched, and we include randomized controlled trials (RCTs) regarding the efficacy of baroreflex activation therapy for patients with heart failure. RESULTS This meta-analysis includes 4 RCTs. Baroreflex activation therapy shows significantly positive impact on the quality of life score (standard mean difference SMD = -4.61; 95% confidence interval CI = -6.24 to -2.98; P < .00001), 6-minute hall walk (6MHW) distance (SMD = 2.83; 95% CI = 1.44- 4.22; P < .0001), New York Heart Association (NYHA) Class (SMD = -3.23; 95% CI = -4.76 to -1.69; P < .0001), N-terminal pro-brain natriuretic peptide (NT-proBNP) (SMD = -1.24; 95% CI = -1.58 to -0.89; P < .00001) and the duration of hospitalization (SMD = -1.65; 95% CI = -2.90 to -0.39; P = .01) compared with control group for heart failure, but has no obvious effect on left ventricular ejection fraction (LVEF) (SMD = 1.43; 95% CI = -0.15-3.01; P = .08), or the number of hospitalization per year (SMD = -1.17; 95% CI = -2.56-0.22; P = .10). CONCLUSIONS Baroreflex activation therapy can improve the treatment efficacy for heart failure.
Collapse
Affiliation(s)
- Guoqiang Cai
- Department of Cardiology, Dianjiang Traditional Chinese Medicine Hospital, Dianjiang
| | - Kai Guo
- Department of Cardiology, Dianjiang Traditional Chinese Medicine Hospital, Dianjiang
| | - Dongyin Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
18
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
19
|
Zile MR, Lindenfeld J, Weaver FA, Zannad F, Galle E, Rogers T, Abraham WT. Baroreflex Activation Therapy in Patients With Heart Failure With Reduced Ejection Fraction. J Am Coll Cardiol 2020; 76:1-13. [DOI: 10.1016/j.jacc.2020.05.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
20
|
Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic Modulation of Cardiac Arrhythmias: Methods to Assess Treatment and Outcomes. JACC Clin Electrophysiol 2020; 6:467-483. [PMID: 32439031 PMCID: PMC7370838 DOI: 10.1016/j.jacep.2020.02.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of multiple cardiac arrhythmias, including atrial fibrillation and ventricular tachycardia. As such, autonomic modulation represents an attractive therapeutic approach in these conditions. Notably, autonomic modulation exploits the plasticity of the neural tissue to induce neural remodeling and thus obtain therapeutic benefit. Different forms of autonomic modulation include vagus nerve stimulation, tragus stimulation, renal denervation, baroreceptor activation therapy, and cardiac sympathetic denervation. This review seeks to highlight these autonomic modulation therapeutic modalities, which have shown promise in early preclinical and clinical trials and represent exciting alternatives to standard arrhythmia treatment. We also present an overview of the various methods used to assess autonomic tone, including heart rate variability, skin sympathetic nerve activity, and alternans, which can be used as surrogate markers and predictors of the treatment effect. Although the use of autonomic modulation to treat cardiac arrhythmias is supported by strong preclinical data and preliminary studies in humans, in light of the disappointing results of a number of recent randomized clinical trials of autonomic modulation therapies in heart failure, the need for optimization of the stimulation parameters and rigorous patient selection based on appropriate biomarkers cannot be overemphasized.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Kanchan Kulkarni
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
21
|
Zeitler EP, Abraham WT. Novel Devices in Heart Failure. JACC-HEART FAILURE 2020; 8:251-264. [DOI: 10.1016/j.jchf.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
|
22
|
Schmidt R, Rodrigues CG, Schmidt KH, Irigoyen MCC. Safety and efficacy of baroreflex activation therapy for heart failure with reduced ejection fraction: a rapid systematic review. ESC Heart Fail 2020; 7:3-14. [PMID: 31965746 PMCID: PMC7083497 DOI: 10.1002/ehf2.12543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
To retrieve and assess the available data in the literature about the safety and efficacy of baroreflex activation therapy (BAT) in heart failure with reduced ejection fraction (HFrEF) patients, through a rapid systematic review of clinical studies. Rapid systematic review of literature. Searched electronic databases included PubMed, EMBASE, CENTRAL, Scopus, and Web of Science using Mesh and free terms for heart failure and BAT. No language restriction was used for the searches. We included full peer reviewed publications of clinical studies (randomized or not), including patients with HFrEF undergoing BAT, with or without control group, assessing safety and efficacy outcomes. One reviewer conducted the analysis of the selected abstracts and the full-text articles, performed data extraction, and evaluated the methodological quality of the selected articles. The methodological quality was assessed according to the Cochrane Collaboration instruments. A descriptive summary of the results is provided. Of the 441 citations screened, 10 publications were included (three were only conference abstracts), reporting data from three studies. Only one study was a randomized clinical trial. Two studies reported a 6 month following, and the other study analysed outcomes up to 41 months. The procedure seems to be safe when performed by a well-trained multi-professional team. An 86% rate of system and procedure-related complication-free was reported, with no cranial nerve injuries. Improvements in New York Heart Association class of heart failure, quality of life, 6 min walk test, and hospitalization rates, as well as in muscle sympathetic nerve activity. No meta-analysis was conducted because of the lack of homogeneity across studies; the results from each study are reported individually. BAT procedure seems to be safe if appropriate training is provided. Improvements in clinical outcomes were described in all included studies. However, several limitations do not allow us to make conclusive statements on the efficacy of BAT for HFrEF. New well-designed trials are still needed.
Collapse
Affiliation(s)
- Rodrigo Schmidt
- Heart Institute (InCor), Medical SchoolUniversity of Sao PauloSao PauloBrazil
- Institute for Neuro‐Immune MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Miami Veterans Affairs Healthcare SystemMiamiFLUSA
| | | | - Kelen Heinrich Schmidt
- Institute for Neuro‐Immune MedicineNova Southeastern UniversityFort LauderdaleFLUSA(W.O.C.)
| | | |
Collapse
|
23
|
Abstract
Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson
| | - John E Hall
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson.,Mississippi Center for Obesity Research (J.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
24
|
Device therapy in heart failure with reduced ejection fraction-cardiac resynchronization therapy and more. Herz 2019; 43:415-422. [PMID: 29744528 DOI: 10.1007/s00059-018-4710-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In patients with heart failure with reduced ejection fraction (HFrEF), optimal medical treatment includes beta-blockers, ACE inhibitors/angiotensinreceptor-neprilysin inhibitors (ARNI), mineralocorticoid receptor antagonists, and ivabradine when indicated. In device therapy of HFrEF, implantable cardioverter-defibrillators and cardiac resynchronization therapy (CRT) have been established for many years. CRT is the therapy of choice (class I indication) in symptomatic patients with HFrEF and a broad QRS complex with a left bundle branch block (LBBB) morphology. However, the vast majority of heart failure patients show a narrow QRS complex or a non-LBBB morphology. These patients are not candidates for CRT and alternative electrical therapies such as baroreflex activation therapy (BAT) and cardiac contractility modulation (CCM) may be considered. BAT modulates vegetative dysregulation in heart failure. CCM improves contractility, functional capacity, and symptoms. Although a broad data set is available for BAT and CCM, mortality data are still lacking for both methods. This article provides an overview of the device-based therapeutic options for patients with HFrEF.
Collapse
|
25
|
Wang J, Yu Q, Dai M, Zhang Y, Cao Q, Luo Q, Tan T, Zhou Y, Shu L, Bao M. Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure. Life Sci 2019; 222:13-21. [DOI: 10.1016/j.lfs.2019.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
|
26
|
Devgun J, Jobanputra YB, Arustamyan M, Chait R, Ghumman W. Devices and interventions for the prevention of adverse outcomes of tachycardia on heart failure. Heart Fail Rev 2019; 23:507-516. [PMID: 29430580 DOI: 10.1007/s10741-018-9680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is the leading cause of hospitalization in the USA. Despite advances in pharmacologic management, the incidence of HF is on the rise and survivability is persistently reduced. Sympathetic overdrive is implicated in the pathophysiology of HF, particularly HF with reduced ejection fraction (HFrEF). Tachycardia can be particularly deleterious and thus has spurred significant investigation to mitigate its effects. Various modalities including vagus nerve stimulation, baroreceptor activation therapy, spinal cord stimulation, renal sympathetic nerve denervation, left cardiac sympathetic denervation, and carotid body removal will be discussed. However, the effects of these modalities on tachycardia and its outcomes in HFrEF have not been well-studied. Further studies to characterize this are necessary in the future.
Collapse
Affiliation(s)
- Jasneet Devgun
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Avenue Third Floor, Columbus, OH, 43210, USA.
| | - Yash B Jobanputra
- Department of Internal Medicine, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| | | | - Robert Chait
- Department of Cardiology, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| | - Waqas Ghumman
- Department of Cardiology, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| |
Collapse
|
27
|
First granted example of novel FDA trial design under Expedited Access Pathway for premarket approval: BeAT-HF. Am Heart J 2018; 204:139-150. [PMID: 30118942 DOI: 10.1016/j.ahj.2018.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND The Food and Drug Administration (FDA) initiated the Expedited Access Pathway (EAP) to accelerate approval of novel therapies targeting unmet needs for life-threatening conditions. EAP allows for the possibility of initial FDA approval using intermediate end points with postapproval demonstration of improved outcomes. OBJECTIVE Describe the EAP process using the BeAT-HF trial as a case study. METHODS BeAT-HF will examine the safety and effectiveness of baroreflex activation therapy (BAT) in heart failure patients with reduced ejection fraction using an Expedited and Extended Phase design. In the Expedited Phase, BAT plus guideline-directed medical therapy (GDMT) will be compared at 6 months postimplant to GDMT alone using 3 intermediate end points: 6-minute hall walk distance, Minnesota Living with Heart Failure Questionnaire, and N-terminal pro-B-type natriuretic peptide. The rate of heart failure morbidity and cardiovascular mortality will be compared between the arms to evaluate early trending using predictive probability modeling. Sample size of 264 patients randomized 1:1 to BAT + GDMT versus GDMT alone provides 81% power for the Expedited Phase intermediate end points. For the Extended Phase, the heart failure morbidity and cardiovascular mortality end point is based on an expected event rate of 0.4 events/patient/year in the GDMT arm. With an adaptive sample size selection design for robustness to inaccurate assumptions, a sample size of 480-960 randomized patients followed ≥2 years allows detecting a 30% reduction in the primary end point with a power of 97.5%. CONCLUSION Through a unique collaboration with FDA under the EAP, the BeAT-HF trial design allows for the possibility of approval of BAT, initially for symptom relief and subsequently for outcomes improvement.
Collapse
|
28
|
Halbach M, Abraham WT, Butter C, Ducharme A, Klug D, Little WC, Reuter H, Schafer JE, Senni M, Swarup V, Wachter R, Weaver FA, Wilks SJ, Zile MR, Müller-Ehmsen J. Baroreflex activation therapy for the treatment of heart failure with reduced ejection fraction in patients with and without coronary artery disease. Int J Cardiol 2018; 266:187-192. [DOI: 10.1016/j.ijcard.2018.04.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 11/28/2022]
|
29
|
|
30
|
Abstract
Heart failure (HF) is associated with significant morbidity and mortality. The disease is characterised by autonomic imbalance with increased sympathetic activity and withdrawal of parasympathetic activity. Despite the use of medical therapies that target, in part, the neurohormonal axis, rates of HF progression, morbidity and mortality remain high. Emerging therapies centred on neuromodulation of autonomic control of the heart provide an alternative device-based approach to restoring sympathovagal balance. Preclinical studies have proven favourable, while clinical trials have had mixed results. This article highlights the importance of understanding structural/functional organisation of the cardiac nervous system as mechanistic-based neuromodulation therapies evolve.
Collapse
Affiliation(s)
- Peter Hanna
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Jeffrey L Ardell
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| |
Collapse
|
31
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Trembach N, Zabolotskikh I. Arterial baroreflex sensitivity: Relationship with peripheral chemoreflex in patients with chronic heart failure. Artery Res 2018. [DOI: 10.1016/j.artres.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
33
|
Japundžić-Žigon N, Šarenac O, Lozić M, Vasić M, Tasić T, Bajić D, Kanjuh V, Murphy D. Sudden death: Neurogenic causes, prediction and prevention. Eur J Prev Cardiol 2017; 25:29-39. [PMID: 29053016 PMCID: PMC5724572 DOI: 10.1177/2047487317736827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sudden death is a major health problem all over the world. The most common causes of sudden death are cardiac but there are also other causes such as neurological conditions (stroke, epileptic attacks and brain trauma), drugs, catecholamine toxicity, etc. A common feature of all these diverse pathologies underlying sudden death is the imbalance of the autonomic nervous system control of the cardiovascular system. This paper reviews different pathologies underlying sudden death with emphasis on the autonomic nervous system contribution, possibilities of early diagnosis and prognosis of sudden death using various clinical markers including autonomic markers (heart rate variability and baroreflex sensitivity), present possibilities of management and promising prevention by electrical neuromodulation.
Collapse
Affiliation(s)
| | | | - Maja Lozić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Marko Vasić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Tatjana Tasić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Dragana Bajić
- 2 Faculty of Technical Sciences, University of Novi Sad, Serbia
| | - Vladimir Kanjuh
- 3 Department of Medical Sciences, Serbian Academy of Sciences and Arts, Serbia
| | - David Murphy
- 4 School of Clinical Sciences, University of Bristol, UK
| |
Collapse
|
34
|
van Bilsen M, Patel HC, Bauersachs J, Böhm M, Borggrefe M, Brutsaert D, Coats AJS, de Boer RA, de Keulenaer GW, Filippatos GS, Floras J, Grassi G, Jankowska EA, Kornet L, Lunde IG, Maack C, Mahfoud F, Pollesello P, Ponikowski P, Ruschitzka F, Sabbah HN, Schultz HD, Seferovic P, Slart RHJA, Taggart P, Tocchetti CG, Van Laake LW, Zannad F, Heymans S, Lyon AR. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2017; 19:1361-1378. [PMID: 28949064 DOI: 10.1002/ejhf.921] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future?
Collapse
Affiliation(s)
- Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Hospital, Maastricht, the Netherlands
| | - Hitesh C Patel
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Michael Böhm
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Martin Borggrefe
- First Department of Medicine, Cardiology Division, University Medical Centre Mannheim, Mannheim, Germany.,German Centre for Cardiovascular Research, Mannheim, Germany
| | - Dirk Brutsaert
- Department of Cardiology, Antwerp University, Antwerp, Belgium
| | - Andrew J S Coats
- Department of Medicine, Monash University, Melbourne, Vic, Australia.,Department of Medicine, University of Warwick, Coventry, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Gerasimos S Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - John Floras
- University Health Network and Sinai Health System Division of Cardiology, Peter Munk Cardiac Centre, Toronto General and Lunenfeld-Tanenbaum Research Institutes, University of Toronto, Toronto, ON, Canada
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Lilian Kornet
- Medtronic, Inc., Bakken Research Centre, Maastricht, the Netherlands
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Christoph Maack
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Felix Mahfoud
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Peter Taggart
- Department of Cardiovascular Science, University College London, Barts Heart Centre, London, UK
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Linda W Van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Faiez Zannad
- INSERM, Centre for Clinical Investigation 9501, Unit 961, University Hospital Centre, Nancy, France.,Department of Cardiology, Nancy University, University of the Lorraine, Nancy, France
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, the Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| | - Alexander R Lyon
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
35
|
Ad N. Baroreflex Activation Therapy for Patients With Heart Failure and Low Ejection Fraction is Safe and Effective. Semin Thorac Cardiovasc Surg 2017; 28:329-330. [PMID: 28043439 DOI: 10.1053/j.semtcvs.2016.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Niv Ad
- Department of Cardiovascular and Thoracic Surgery, Fairfax Hospital, Falls Church, Virginia.
| |
Collapse
|
36
|
Baroreflex Activation Therapy in Heart Failure With Reduced Ejection Fraction: Available Data and Future Perspective. Curr Heart Fail Rep 2016; 13:71-6. [PMID: 26879389 DOI: 10.1007/s11897-016-0286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Progression of heart failure with reduced ejection fraction (HFrEF) is promoted by sympathovagal imbalance. Baroreflex activation therapy, i.e., electrical stimulation of baroreceptors at the carotid sinus, can restore sympathovagal balance. Large animal studies of baroreflex activation therapy revealed improvements in cardiac function, susceptibility to ventricular arrhythmias, and a survival benefit as compared to untreated controls. Recently, the first randomized and controlled trial of optimal medical and device therapy alone or plus baroreflex activation therapy in patients suffering from HFrEF was published. It demonstrated a reasonable safety profile in this severely ill patient population. Moreover, the study found significant improvements in New York Heart Association class, quality of life, 6-min walk distance, and NT-proBNP levels. This review provides an overview on baroreflex activation therapy for the treatment of HFrEF-from the concept and preclinical findings to most recent clinical data and upcoming trials.
Collapse
|
37
|
Grassi G, Brambilla G, Pizzalla DP, Seravalle G. Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights. Curr Hypertens Rep 2016; 18:60. [DOI: 10.1007/s11906-016-0667-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
39
|
Kishi T. Deep and future insights into neuromodulation therapies for heart failure. J Cardiol 2016; 68:368-372. [PMID: 27293020 DOI: 10.1016/j.jjcc.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
Major pathophysiology of heart failure is an autonomic nervous system dysfunction as a result of excess sympathoexcitation and/or withdrawal of vagal nerve activity. Although we already have various pharmacological and non-pharmacological therapies for heart failure, survival of heart failure patients remains around 50%. To achieve further reductions in morbidity and mortality of heart failure, neuromodulations with devices, such as baroreflex activating therapy, vagal nerve stimulation, renal sympathetic denervation, spinal cord stimulation, and left cardiac sympathetic denervation, have been expected. Although all of these neuromodulations have benefits on heart failure, efficacy, and safety in preclinical and small-sized clinical studies, the benefits on heart failure have been insufficient and controversial compared to our expectations in large-sized randomized trials. However, we should develop and apply these novel therapies for the patients with heart failure in the near future.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| |
Collapse
|
40
|
Smith S, Rossignol P, Willis S, Zannad F, Mentz R, Pocock S, Bisognano J, Nadim Y, Geller N, Ruble S, Linde C. Neural modulation for hypertension and heart failure. Int J Cardiol 2016; 214:320-30. [PMID: 27085120 DOI: 10.1016/j.ijcard.2016.03.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 01/08/2023]
Abstract
Hypertension (HTN) and heart failure (HF) have a significant global impact on health, and lead to increased morbidity and mortality. Despite recent advances in pharmacologic and device therapy for these conditions, there is a need for additional treatment modalities. Patients with sub-optimally treated HTN have increased risk for stroke, renal failure and heart failure. The outcome of HF patients remains poor despite modern pharmacological therapy and with established device therapies such as CRT and ICDs. Therefore, the potential role of neuromodulation via renal denervation, baro-reflex modulation and vagal stimulation for the treatment of resistant HTN and HF is being explored. In this manuscript, we review current evidence for neuromodulation in relation to established drug and device therapies and how these therapies may be synergistic in achieving therapy goals in patients with treatment resistant HTN and heart failure. We describe lessons learned from recent neuromodulation trials and outline strategies to improve the potential for success in future trials. This review is based on discussions between scientists, clinical trialists, and regulatory representatives at the 11th annual CardioVascular Clinical Trialist Forum in Washington, DC on December 5-7, 2014.
Collapse
Affiliation(s)
- S Smith
- The Ohio State University Wexner Medical Center, Department of Internal Medicine and Division of Cardiology, Columbus, OH, USA.
| | - P Rossignol
- Inserm, CIC 1433, Centre Hospitalier Universitaire, Universite´ de Lorraine, F-CRIN INI-CRCT, Nancy, France
| | - S Willis
- The Ohio State University Wexner Medical Center, Department of Internal Medicine and Division of Cardiology, Columbus, OH, USA
| | - F Zannad
- Inserm, CIC 1433, Centre Hospitalier Universitaire, Universite´ de Lorraine, F-CRIN INI-CRCT, Nancy, France
| | - R Mentz
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - S Pocock
- Medical Statistics Unit LSHTM, London, UK
| | - J Bisognano
- University of Rochester Medical Center, Department of Medicine, Cardiology, Rochester, NY, USA
| | - Y Nadim
- CVRx, Inc, Minneapolis, MN, USA
| | - N Geller
- Office of Biostatistics Research, Division of Cardiovascular Sciences, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - S Ruble
- Boston Scientific CRV, St. Paul, MN, USA
| | - C Linde
- Institution of Internal Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
41
|
Pinto TOCT, Lataro RM, Castania JA, Durand MT, Silva CAA, Patel KP, Fazan R, Salgado HC. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure. Am J Physiol Regul Integr Comp Physiol 2016; 310:R612-8. [DOI: 10.1152/ajpregu.00392.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12–13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control ( n = 12) and CHF ( n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.
Collapse
Affiliation(s)
- Tomás O. C. Teixeira Pinto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata M. Lataro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci A. Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina T. Durand
- Department of Medicine, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; and
| | - Carlos A. A. Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio C. Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Abstract
Sympathovagal imbalance contributes to progressive worsening of heart failure (HF) and is associated with untoward clinical outcomes. Based on compelling pre-clinical studies that supported the role of autonomic modulation in HF models, a series of clinical studies were initiated using spinal cord stimulation, vagus nerve stimulation, and baroreceptor activation therapy in patients with HF with a reduced ejection fraction. Whereas the phase II studies with baroreceptor activation therapy remain encouraging, the larger clinical studies with spinal cord stimulation and vagus nerve stimulation have yielded disappointing results. Here we will focus on the pre-clinical studies that supported the role of neuromodulation in the failing heart, as well provide a critical review of the recent clinical trials that have sought to modulate autonomic tone in HF patients. This review will conclude with an analysis of some of the difficulties in translating device-based modulation of the autonomic nervous system from pre-clinical models into successful clinical trials, as well as provide suggestions for how to move the field of neuromodulation forward.
Collapse
Affiliation(s)
- Mirnela Byku
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Douglas L Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110
| |
Collapse
|
43
|
Abstract
Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART.
Collapse
|
44
|
Abstract
Heart failure has emerged as one of the most important diseases of the past century. The understanding and treatment of heart failure has evolved significantly over the years. As we move further into the era of device therapy, attention has turned to the idea of sympathetic nervous system modulation through renal denervation to treat heart failure. In this review, we summarize the background research, denervation technique, and current studies on renal denervation for the treatment of heart failure. We also compare and contrast the work on carotid barostimulation.
Collapse
Affiliation(s)
- Michael W Fong
- Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 320, Los Angeles, CA, 90033, USA,
| | | | | | | |
Collapse
|
45
|
Sheng X, Chen M, Huang B, Liu J, Zhou L, Bao M, Li S. Cardioprotective effects of low-level carotid baroreceptor stimulation against myocardial ischemia-reperfusion injury in canine model. J Interv Card Electrophysiol 2016; 45:131-40. [DOI: 10.1007/s10840-015-0094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022]
|
46
|
Kawada T, Sugimachi M. Open-loop static and dynamic characteristics of the arterial baroreflex system in rabbits and rats. J Physiol Sci 2016; 66:15-41. [PMID: 26541155 PMCID: PMC4742515 DOI: 10.1007/s12576-015-0412-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
The arterial baroreflex system is the most important negative feedback system for stabilizing arterial pressure (AP). This system serves as a key link between the autonomic nervous system and the cardiovascular system, and is thus essential for understanding the pathophysiology of cardiovascular diseases and accompanying autonomic abnormalities. This article focuses on an open-loop systems analysis using a baroreceptor isolation preparation to identify the characteristics of two principal subsystems of the arterial baroreflex system, namely, the neural arc from pressure input to efferent sympathetic nerve activity (SNA) and the peripheral arc from SNA to AP. Studies on the static and dynamic characteristics of the two arcs under normal physiological conditions and also under various interventions including diseased conditions are to be reviewed. Quantitative understanding of the arterial baroreflex function under diseased conditions would help develop new treatment strategies such as electrical activation of the carotid sinus baroreflex for drug-resistant hypertension.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
47
|
Giannoni A, Mirizzi G, Aimo A, Emdin M, Passino C. Peripheral reflex feedbacks in chronic heart failure: Is it time for a direct treatment? World J Cardiol 2015; 7:824-828. [PMID: 26730288 PMCID: PMC4691809 DOI: 10.4330/wjc.v7.i12.824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Despite repeated attempts to develop a unifying hypothesis that explains the clinical syndrome of heart failure (HF), no single conceptual paradigm for HF has withstood the test of time. The last model that has been developed, the neurohormonal model, has the great virtue of highlighting the role of the heart as an endocrine organ, as well as to shed some light on the key role on HF progression of neurohormones and peripheral organs and tissues beyond the heart itself. However, while survival in clinical trials based on neurohormonal antagonist drugs has improved, HF currently remains a lethal condition. At the borders of the neurohormonal model of HF, a partially unexplored path trough the maze of HF pathophysiology is represented by the feedback systems. There are several evidences, from both animal studies and humans reports, that the deregulation of baro-, ergo- and chemo-reflexes in HF patients elicits autonomic imbalance associated with parasympathetic withdrawal and increased adrenergic drive to the heart, thus fundamentally contributing to the evolution of the disease. Hence, on top of guideline-recommended medical therapy, mainly based on neurohormonal antagonisms, all visceral feedbacks have been recently considered in HF patients as additional potential therapeutic targets.
Collapse
|
48
|
Chobanyan-Jürgens K, Jordan J. Electrical carotid sinus stimulation: chances and challenges in the management of treatment resistant arterial hypertension. Curr Hypertens Rep 2015. [PMID: 26208917 DOI: 10.1007/s11906-015-0587-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment resistant arterial hypertension is associated with excess cardiovascular morbidity and mortality. Electrical carotid sinus stimulators engaging baroreflex afferent activity have been developed for such patients. Indeed, baroreflex mechanisms contribute to long-term blood pressure control by governing efferent sympathetic and parasympathetic activity. The first-generation carotid sinus stimulator applying bilateral bipolar stimulation reduced blood pressure in a controlled clinical trial but nevertheless failed to meet the primary efficacy endpoint. The second-generation device utilizes smaller unilateral unipolar electrodes, thus decreasing invasiveness of the implantation while saving battery. An uncontrolled clinical study suggested improvement in blood pressure with the second-generation device. We hope that these findings as well as preliminary observations suggesting cardiovascular and renal organ protection with electrical carotid sinus stimulation will be confirmed in properly controlled clinical trials. Meanwhile, we should find ways to better identify patients who are most likely to benefit from electrical carotid sinus stimulation.
Collapse
Affiliation(s)
- Kristine Chobanyan-Jürgens
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany,
| | | |
Collapse
|
49
|
Halbach M, Fritz T, Madershahian N, Pfister R, Reuter H. [Baroreflex activation therapy. A novel interventional approach to treat heart failure with reduced ejection fraction]. Herz 2015; 40:959-65. [PMID: 26525523 DOI: 10.1007/s00059-015-4361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sympathovagal imbalance plays an important role in the progression of heart failure with reduced ejection fraction. Baroreflex activation therapy (BAT), i. e. electrical stimulation of baroreceptors located at the carotid sinus, can reduce sympathetic and enhance parasympathetic tone. Large animal studies on BAT demonstrated improvements in cardiac function, arrhythmogenic risk and a survival benefit compared to untreated controls. The recently published Neo Randomized Heart Failure Study, the first multicenter, randomized and controlled trial of optimal medical and device therapy alone or plus BAT in patients with a left ventricular ejection fraction ≤ 35 %, demonstrated a reasonable safety profile of BAT in this severely ill patient population and no relevant interactions with other devices. The study found significant improvements in the New York Heart Association (NYHA) class of heart failure, quality of life as well as 6 min walking distance and data pointed to a reduction in hospitalization rates. Moreover, N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were significantly reduced. This review gives an overview on BAT for the treatment of heart failure with reduced ejection fraction, from the rationale and animal experiments to the most recent clinical data and future perspectives.
Collapse
Affiliation(s)
- M Halbach
- Klinik III für Innere Medizin, Herzzentrum, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| | - T Fritz
- Klinik III für Innere Medizin, Herzzentrum, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - N Madershahian
- Klinik für Herz- und Thoraxchirurgie, Herzzentrum, Uniklinik Köln, Köln, Deutschland
| | - R Pfister
- Klinik III für Innere Medizin, Herzzentrum, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - H Reuter
- Klinik III für Innere Medizin, Herzzentrum, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
50
|
Novel Interventional Therapies to Modulate the Autonomic Tone in Heart Failure. JACC-HEART FAILURE 2015; 3:786-802. [DOI: 10.1016/j.jchf.2015.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 01/09/2023]
|