1
|
Wu KJ, Chen Q, Leung CH, Sun N, Gao F, Chen Z. Recent discoveries of the role of histone modifications and related inhibitors in pathological cardiac hypertrophy. Drug Discov Today 2024; 29:103878. [PMID: 38211819 DOI: 10.1016/j.drudis.2024.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Pathological cardiac hypertrophy is a common response of the heart to various pathological stimuli. In recent years, various histone modifications, including acetylation, methylation, phosphorylation and ubiquitination, have been identified to have crucial roles in regulating chromatin remodeling and cardiac hypertrophy. Novel drugs targeting these epigenetic changes have emerged as potential treatments for pathological cardiac hypertrophy. In this review, we provide a comprehensive summary of the roles of histone modifications in regulating the development of pathological cardiac hypertrophy, and discuss potential therapeutic targets that could be utilized for its treatment.
Collapse
Affiliation(s)
- Ke-Jia Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Qi Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa 999078, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa 999078, Macau.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China.
| | - Fei Gao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Chaoyang District, Beijing 100029, PR China.
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
2
|
Leigh RS, Välimäki MJ, Kaynak BL, Ruskoaho HJ. TAF1 bromodomain inhibition as a candidate epigenetic driver of congenital heart disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166689. [PMID: 36958711 DOI: 10.1016/j.bbadis.2023.166689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
Heart formation requires transcriptional regulators that underlie congenital anomalies and the fetal gene program activated during heart failure. Attributing the effects of congenital heart disease (CHD) missense variants to disruption of specific protein domains allows for a mechanistic understanding of CHDs and improved diagnostics. A combined chemical and genetic approach was employed to identify novel CHD drivers, consisting of chemical screening during pluripotent stem cell (PSC) differentiation, gene expression analyses of native tissues and primary cell culture models, and the in vitro study of damaging missense variants from CHD patients. An epigenetic inhibitor of the TATA-Box Binding Protein Associated Factor 1 (TAF1) bromodomain was uncovered in an unbiased chemical screen for activators of atrial and ventricular fetal myosins in differentiating PSCs, leading to the development of a high affinity inhibitor (5.1 nM) of the TAF1 bromodomain, a component of the TFIID complex. TAF1 bromodomain inhibitors were tested for their effects on stem cell viability and cardiomyocyte differentiation, implicating a role for TAF1 in cardiogenesis. Damaging TAF1 missense variants from CHD patients were studied by mutational analysis of the TAF1 bromodomain, demonstrating a repressive role of TAF1 that can be abrogated by the introduction of damaging bromodomain variants or chemical TAF1 bromodomain inhibition. These results indicate that targeting the TAF1/TFIID complex with chemical compounds modulates cardiac transcription and identify an epigenetically-driven CHD mechanism due to damaging variants within the TAF1 bromodomain.
Collapse
Affiliation(s)
- Robert S Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bogac L Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Heikki J Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Wang A, Li Z, Sun Z, Liu Y, Zhang D, Ma X. Potential Mechanisms Between HF and COPD: New Insights From Bioinformatics. Curr Probl Cardiol 2023; 48:101539. [PMID: 36528207 DOI: 10.1016/j.cpcardiol.2022.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) and chronic obstructive pulmonary disease (COPD) are closely related in clinical practice. This study aimed to investigate the co-genetic characteristics and potential molecular mechanisms of HF and COPD. HF and COPD datasets were downloaded from gene expression omnibus database. After identifying common differentially expressed genes (DEGs), the functional analysis highlighted the critical role of extracellular matrix and ribosomal signaling pathways in both diseases. In addition, GeneMANIA's results suggested that the 2 diseases were related to immune infiltration, and CIBERSORT suggested the role of macrophages. We also discovered 4 TFs and 1408 miRNAs linked to both diseases, and salbutamol may positively affect them.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Zhuo Sun
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Yicheng Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
4
|
Chew NWS, Loong SSE, Foo R. Progress in molecular biology and translational science: Epigenetics in cardiovascular health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:105-134. [PMID: 37019589 DOI: 10.1016/bs.pmbts.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conrad Waddington's epigenetics landscape has provided a metaphorical framework for how cells progress from undifferentiated states to one of several discrete, distinct, differentiated cell fates. The understanding of epigenetics has evolved over time, with DNA methylation being the most studied epigenetic modification, followed by histone modifications and non-coding RNA. Cardiovascular diseases (CVD) are leading contributors to death worldwide, with the prevalence of CVDs increasing across the last couple of decades. Significant amount of resources being poured into researching key mechanisms and underpinnings of the various CVDs. These molecular studies looked at the genetics, epigenetics as well as the transcriptomics of various cardiovascular conditions, aiming to provide mechanistic insights. It has paved the way for therapeutics to be developed and in recent years, epi-drugs for the treatment of CVDs. This chapter aims to cover the various roles of epigenetics in the context of cardiovascular health and disease. The following will be examined in detail: the developments in basic experimental techniques used to study epigenetics, the role of epigenetics in various CVDs (hypertension, atrial fibrillation, atherosclerosis, and heart failure), and current advances in epi-therapeutics, providing a holistic view of the current concerted efforts in advancing the field of epigenetics in CVDs.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore.
| | - Shaun S E Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines 2022; 10:biomedicines10040866. [PMID: 35453616 PMCID: PMC9029641 DOI: 10.3390/biomedicines10040866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
A controversial understanding of the state of the DNA methylation machinery exists in ischaemic cardiomyopathy (ICM). Moreover, its relationship to other epigenetic alterations is incomplete. Therefore, we carried out an in-depth study of the DNA methylation process in human cardiac tissue. We showed a dysregulation of the DNA methylation machinery accordingly with the genome-wide hypomethylation that we observed: specifically, an overexpression of main genes involved in the elimination of methyl groups (TET1, SMUG1), and underexpression of molecules implicated in the maintenance of methylation (MBD2, UHRF1). By contrast, we found DNMT3B upregulation, a key molecule in the addition of methyl residues in DNA, and an underexpression of miR-133a-3p, an inhibitor of DNMT3B transcription. However, we found many relevant alterations that would counteract the upregulation observed, such as the overexpression of TRAF6, responsible for Dnmt3b degradation. Furthermore, we showed that molecules regulating Dnmts activity were altered; specifically, SAM/SAH ratio reduction. All these results are in concordance with the Dnmts normal function that we show. Our analysis revealed genome-wide hypomethylation along with dysregulation in the mechanisms of addition, elimination and maintenance of methyl groups in the DNA of ICM. We describe relevant alterations in the DNMT3B system, which promote a normal Dnmt3b function despite its upregulation.
Collapse
|
6
|
Vakrou S, Liu Y, Zhu L, Greenland GV, Simsek B, Hebl VB, Guan Y, Woldemichael K, Talbot CC, Aon MA, Fukunaga R, Abraham MR. Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy. Sci Rep 2021; 11:13163. [PMID: 34162896 PMCID: PMC8222321 DOI: 10.1038/s41598-021-89451-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity. We investigated the molecular basis of the cardiac phenotype in two mouse models at established disease stage (mouse-HCM), and human myectomy tissue (human-HCM). We analyzed the transcriptome in 2 mouse models with non-obstructive HCM (R403Q-MyHC, R92W-TnT)/littermate-control hearts at 24 weeks of age, and in myectomy tissue of patients with obstructive HCM/control hearts (GSE36961, GSE36946). Additionally, we examined myocyte redox, cardiac mitochondrial DNA copy number (mtDNA-CN), mt-respiration, mt-ROS generation/scavenging and mt-Ca2+ handling in mice. We identified distinct allele-specific gene expression in mouse-HCM, and marked differences between mouse-HCM and human-HCM. Only two genes (CASQ1, GPT1) were similarly dysregulated in both mutant mice and human-HCM. No signaling pathway or transcription factor was predicted to be similarly dysregulated (by Ingenuity Pathway Analysis) in both mutant mice and human-HCM. Losartan was a predicted therapy only in TnT-mutant mice. KEGG pathway analysis revealed enrichment for several metabolic pathways, but only pyruvate metabolism was enriched in both mutant mice and human-HCM. Both mutant mouse myocytes demonstrated evidence of an oxidized redox environment. Mitochondrial complex I RCR was lower in both mutant mice compared to controls. MyHC-mutant mice had similar mtDNA-CN and mt-Ca2+ handling, but TnT-mutant mice exhibited lower mtDNA-CN and impaired mt-Ca2+ handling, compared to littermate-controls. Molecular profiling reveals differences in gene expression, transcriptional regulation, intracellular signaling and mt-number/function in 2 mouse models at established disease stage. Further studies are needed to confirm differences in gene expression between mouse and human-HCM, and to examine whether cardiac phenotype, genotype and/or species differences underlie the divergence in molecular profiles.
Collapse
Affiliation(s)
- Styliani Vakrou
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bahadir Simsek
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, USA
| | - Yufan Guan
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirubel Woldemichael
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover C Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA.
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Ijaz T, Burke MA. BET Protein-Mediated Transcriptional Regulation in Heart Failure. Int J Mol Sci 2021; 22:6059. [PMID: 34199719 PMCID: PMC8199980 DOI: 10.3390/ijms22116059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance of the bromodomain and extraterminal (BET) family of epigenetic reader proteins in regulating gene transcription in multiple mouse models of cardiomyopathy. BETs bind to acetylated histone tails and transcription factors to integrate disparate stress signaling networks into a defined gene expression program. Under myocardial stress, BRD4, a BET family member, is recruited to superenhancers and promoter regions of inflammatory and profibrotic genes to promote transcription elongation. Whole-transcriptome analysis of BET-dependent gene networks suggests a major role of nuclear-factor kappa b and transforming growth factor-beta in the development of cardiac fibrosis and systolic dysfunction. Recent investigations also suggest a prominent role of BRD4 in maintaining cardiomyocyte mitochondrial respiration under basal conditions. In this review, we summarize the data from preclinical heart failure studies that explore the role of BET-regulated transcriptional mechanisms and delve into landmark studies that define BET bromodomain-independent processes involved in cardiac homeostasis.
Collapse
Affiliation(s)
| | - Michael A. Burke
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
8
|
Matsushita K. Heart Failure and Adipose Mesenchymal Stem Cells. Trends Mol Med 2020; 26:369-379. [PMID: 32277931 DOI: 10.1016/j.molmed.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising cell type for the treatment of heart failure (HF). In particular, MSCs in adipose tissue are being evaluated as an effective therapeutic tool. However, adipose MSCs are a major source of adipocyte generation and linked to obesity, which is an independent risk factor for HF. MSCs express all of the components of the renin-angiotensin system (RAS), which plays a pivotal role in the pathophysiology of HF. The local RAS also regulates MSC adipogenesis, indicating a connection between MSC-adipogenesis-obesity and HF. This review examines evidence of the complex relationship between HF and adipose MSCs and discusses how to explore this association for favorable therapeutic outcomes for HF.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Chen S, Ma Q, Xue Y, Zhang J, Yang G, Wang T, Ma A, Bai L. Comprehensive Analysis and Co-Expression Network of mRNAs and lncRNAs in Pressure Overload-Induced Heart Failure. Front Genet 2019; 10:1271. [PMID: 31921308 PMCID: PMC6920101 DOI: 10.3389/fgene.2019.01271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Aim: Heart failure (HF) is the end stage of various cardiovascular diseases. However, the precise regulation of gene expression profiles and functional mechanisms of long non-coding RNAs (lncRNAs) in HF remain to be elucidated. The present study aimed to identify the differentially expressed profiles and interaction of messenger RNAs (mRNAs) and lncRNAs in pressure overload-induced HF. Methods: Male Sprague-Dawley rats were randomly divided into the HF group and the sham-operated group. HF was induced by the transverse aortic constriction (TAC) surgery. The cardiac expression profiles of mRNAs and lncRNAs in HF were investigated using the microarray. Bioinformatics analyses and co-expression network construction were performed from the RNA sequencing data. Results: The expression profiles of mRNAs and lncRNAs showed significant differences between HF and controls. A total of 147 mRNAs and 162 lncRNAs were identified to be differentially expressed with a fold change of >2 in HF. The relative expression levels of several selected mRNAs and lncRNAs were validated by quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that diverse pathways were involved in the molecular mechanisms of cardiac hypertrophy and HF including immune response, smooth muscle contraction, ion transmembrane transport. The mRNA-lncRNA and transcription factors (TFs)-lncRNA co-expression networks were constructed and several genes and TFs were identified as key regulators in the pathogenesis of HF. Further functional prediction showed that the lncRNA NONRATT013999 was predicted to cis-regulate mRNA CDH11, and NONRATT027756 was predicted to trans-regulate HCN4. Conclusion: This study revealed specific expression regulation and potential functions of mRNAs and lncRNAs in pressure overload-induced HF. These results will provide new insights into the underlying mechanisms and potential therapeutic targets for HF.
Collapse
Affiliation(s)
- Shuping Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanbo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingwen Zhang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guodong Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Aiqun Ma, ; Ling Bai,
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Aiqun Ma, ; Ling Bai,
| |
Collapse
|
10
|
Benincasa G, Mansueto G, Napoli C. Fluid-based assays and precision medicine of cardiovascular diseases: the ‘hope’ for Pandora’s box? J Clin Pathol 2019; 72:785-799. [DOI: 10.1136/jclinpath-2019-206178] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022]
Abstract
Progresses in liquid-based assays may provide novel useful non-invasive indicators of cardiovascular (CV) diseases. By analysing circulating cells or their products in blood, saliva and urine samples, we can investigate molecular changes present at specific time points in each patient allowing sequential monitoring of disease evolution. For example, an increased number of circulating endothelial cells may be a diagnostic biomarker for diabetic nephropathy and heart failure with preserved ejection fraction. The assessment of circulating cell-free DNA (cfDNA) levels may be useful to predict severity of acute myocardial infarction, as well as diagnose heart graft rejection. Remarkably, circulating epigenetic biomarkers, including DNA methylation, histone modifications and non-coding RNAs are key pathogenic determinants of CV diseases representing putative useful biomarkers and drug targets. For example, the unmethylated FAM101A gene may specifically trace cfDNA derived from cardiomyocyte death providing a powerful diagnostic biomarker of apoptosis during ischaemia. Moreover, changes in plasma levels of circulating miR-92 may predict acute coronary syndrome onset in patients with diabetes. Now, network medicine provides a framework to analyse a huge amount of big data by describing a CV disease as a result of a chain of molecular perturbations rather than a single defect (reductionism). We outline advantages and challenges of liquid biopsy with respect to traditional tissue biopsy and summarise the main completed and ongoing clinical trials in CV diseases. Furthermore, we discuss the importance of combining fluid-based assays, big data and network medicine to improve precision medicine and personalised therapy in this field.
Collapse
|
11
|
Wang W, Zhang Y, Wang R, Shrestha Y, Xu Y, Peng L, Zhang J, Li J, Zhang L. Risk Factors And Epigenetic Markers Of Left Ventricular Diastolic Dysfunction With Preserved Ejection Fraction In A Community-Based Elderly Chinese Population. Clin Interv Aging 2019; 14:1719-1728. [PMID: 31631991 PMCID: PMC6782027 DOI: 10.2147/cia.s219748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Left ventricular diastolic dysfunction with preserved ejection fraction (LVDD-PEF) is an early-stage manifestation but poorly understood in the process of heart failure. This study was designed to investigate risk factors and epigenetic markers for predicting LVDD-PEF. Patients and methods A community-based study in 1568 residents over 65 years was conducted in Shanghai, People's Republic of China, from June 2014 to August 2015. Echocardiography was performed to diagnose LVDD-PEF. DNA methylation by whole-genome bisulfite sequencing was used to determine those potential epigenetic markers contributing to LVDD-PEF. Results A total of 177 participants (11.3%) were diagnosed with LVDD-PEF, and higher prevalence in females than in males (15.0% vs 6.5%, P<0.001). Multivariate logistic regression analysis indicated that female sex (OR 2.46, 95% CI 1.47-4.13), body mass index (BMI) (OR 1.09, 95% CI 1.04-1.14), pulse pressure (PP) (OR 1.03, 95% CI 1.01-1.05) and carotid intima-media thickness (CIMT) (OR 4.20, 95% CI 1.40-12.55) showed a significant association with LVDD-PEF. Overall, 638 CpG sites were differentially methylated in LVDD-PEF group compared to non-LVDD-PEF group (P<0.001); 242 sites were significantly hypermethylated (covering 238 genes) and 396 sites were significantly hypomethylated (covering 265 genes). Conclusion Our findings found female, BMI, PP, and CIMT were independent predictors for LVDD-PEF in the community-dwelling elderly population. Regulation of DNA methylation might play a crucial role for LVDD-PEF.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Runzi Wang
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yeshaswi Shrestha
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Luying Peng
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Jie Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jue Li
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Lijuan Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education, Tongji University School of Medicine, Shanghai 200092, People's Republic of China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
12
|
Padmanabhan A, Haldar SM. Drugging transcription in heart failure. J Physiol 2019; 598:3005-3014. [PMID: 30927446 DOI: 10.1113/jp276745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Advances in our understanding of the basic biology and biochemistry of chromatin structure and function at genome scales has led to tremendous growth in the fields of epigenomics and transcriptional biology. While it has long been appreciated that transcriptional pathways are dysregulated in failing hearts, only recently has the idea of disrupting altered transcription by targeting chromatin-associated proteins been explored. Here, we provide a brief overview of efforts to drug transcription in the context of heart failure, focusing on the bromo- and extra-terminal domain (BET) family of chromatin co-activator proteins.
Collapse
Affiliation(s)
- Arun Padmanabhan
- Division of Cardiology, Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA.,Gladstone Institutes, San Francisco, CA, USA
| | - Saptarsi M Haldar
- Division of Cardiology, Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA.,Gladstone Institutes, San Francisco, CA, USA.,Cardiometabolic Disorders, Amgen, South San Francisco, CA, USA
| |
Collapse
|
13
|
Epigenetic therapies in heart failure. J Mol Cell Cardiol 2019; 130:197-204. [PMID: 30991033 DOI: 10.1016/j.yjmcc.2019.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a dominant cause of morbidity and mortality in the developed world, with available pharmacotherapies limited by high rates of residual mortality and a failure to directly target the changes in cell state that drive adverse cardiac remodeling. Pathologic cardiac remodeling is driven by stress-activated cardiac signaling cascades that converge on defined components of the chromatin regulatory apparatus in the nucleus, triggering broad shifts in transcription and cell state. Thus, studies focusing on how cytosolic signaling pathways couple to the nuclear gene control machinery has been an area of therapeutic interest in HF. In this review, we discuss current concepts pertaining to the role of chromatin regulators in HF pathogenesis, with a focus on specific proteins and RNA-containing macromolecular complexes that have shown promise as druggable targets in the experimental setting.
Collapse
|
14
|
Glezeva N, Moran B, Collier P, Moravec CS, Phelan D, Donnellan E, Russell-Hallinan A, O’Connor DP, Gallagher WM, Gallagher J, McDonald K, Ledwidge M, Baugh J, Das S, Watson CJ. Targeted DNA Methylation Profiling of Human Cardiac Tissue Reveals Novel Epigenetic Traits and Gene Deregulation Across Different Heart Failure Patient Subtypes. Circ Heart Fail 2019; 12:e005765. [DOI: 10.1161/circheartfailure.118.005765] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadezhda Glezeva
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
- Heart Failure Unit, St Vincent’s University Hospital Healthcare Group, Elm Park, Dublin, Ireland (N.G., J.G., K.M., M.L.)
- The Heartbeat Trust, Dun Laoghaire, Dublin, Ireland (N.G., K.M., M.L., C.J.W.)
| | - Bruce Moran
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
| | - Patrick Collier
- Department of Cardiovascular Medicine, Cleveland Clinic, OH (P.C., D.P., E.D.)
| | - Christine S. Moravec
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (C.S.M.)
| | - Dermot Phelan
- Department of Cardiovascular Medicine, Cleveland Clinic, OH (P.C., D.P., E.D.)
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic, OH (P.C., D.P., E.D.)
| | - Adam Russell-Hallinan
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
| | - Darran P. O’Connor
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (D.P.O., S.D.)
| | - William M. Gallagher
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
| | - Joe Gallagher
- Heart Failure Unit, St Vincent’s University Hospital Healthcare Group, Elm Park, Dublin, Ireland (N.G., J.G., K.M., M.L.)
| | - Kenneth McDonald
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
- Heart Failure Unit, St Vincent’s University Hospital Healthcare Group, Elm Park, Dublin, Ireland (N.G., J.G., K.M., M.L.)
- The Heartbeat Trust, Dun Laoghaire, Dublin, Ireland (N.G., K.M., M.L., C.J.W.)
| | - Mark Ledwidge
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
- Heart Failure Unit, St Vincent’s University Hospital Healthcare Group, Elm Park, Dublin, Ireland (N.G., J.G., K.M., M.L.)
- The Heartbeat Trust, Dun Laoghaire, Dublin, Ireland (N.G., K.M., M.L., C.J.W.)
| | - John Baugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
| | - Sudipto Das
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (D.P.O., S.D.)
| | - Chris J. Watson
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.G., B.M., A.R.-H., D.P.O., W.M.G., K.M., M.L., J.B., S.D., C.J.W.)
- The Heartbeat Trust, Dun Laoghaire, Dublin, Ireland (N.G., K.M., M.L., C.J.W.)
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Northern Ireland (C.J.W.)
| |
Collapse
|
15
|
Biró O, Hajas O, Nagy-Baló E, Soltész B, Csanádi Z, Nagy B. Relationship between cardiovascular diseases and circulating cell-free nucleic acids in human plasma. Biomark Med 2018; 12:891-905. [DOI: 10.2217/bmm-2017-0386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the main cause of human morbidity and mortality worldwide. Early diagnosis could improve the efficiency of treatments. New biomarkers are needed for the identification of high-risk populations in order to make accurate diagnosis and therapy monitoring. Circulating cell-free nucleic acids (cf-NAs) offer a promising new noninvasive tool. These have a role in the regulation of normal physiological functions and in the development of pathological alterations. There is extended research on the clinical application and utilization of cell-free genomic DNA, mtDNA, mRNA, miRNA and long noncoding RNA in CVDs. These molecules could serve as components of new generation therapeutics. Our review focuses on the role of cf-NAs in the pathogenesis of CVDs and we are discussing also possible diagnostic applications and therapeutic implications.
Collapse
Affiliation(s)
- Orsolya Biró
- Department of Obstetrics & Gynecology, Semmelweis University, Budapest, Hungary
| | - Orsolya Hajas
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Nagy-Baló
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Csanádi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Obstetrics & Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Ectopic expression of S28A-mutated Histone H3 modulates longevity, stress resistance and cardiac function in Drosophila. Sci Rep 2018; 8:2940. [PMID: 29440697 PMCID: PMC5811592 DOI: 10.1038/s41598-018-21372-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Histone H3 serine 28 (H3S28) phosphorylation and de-repression of polycomb repressive complex (PRC)-mediated gene regulation is linked to stress conditions in mitotic and post-mitotic cells. To better understand the role of H3S28 phosphorylation in vivo, we studied a Drosophila strain with ectopic expression of constitutively-activated H3S28A, which prevents PRC2 binding at H3S28, thus mimicking H3S28 phosphorylation. H3S28A mutants showed prolonged life span and improved resistance against starvation and paraquat-induced oxidative stress. Morphological and functional analysis of heart tubes revealed smaller luminal areas and thicker walls accompanied by moderately improved cardiac function after acute stress induction. Whole-exome deep gene-sequencing from isolated heart tubes revealed phenotype-corresponding changes in longevity-promoting and myotropic genes. We also found changes in genes controlling mitochondrial biogenesis and respiration. Analysis of mitochondrial respiration from whole flies revealed improved efficacy of ATP production with reduced electron transport-chain activity. Finally, we analyzed posttranslational modification of H3S28 in an experimental heart failure model and observed increased H3S28 phosphorylation levels in HF hearts. Our data establish a critical role of H3S28 phosphorylation in vivo for life span, stress resistance, cardiac and mitochondrial function in Drosophila. These findings may pave the way for H3S28 phosphorylation as a putative target to treat stress-related disorders such as heart failure.
Collapse
|
17
|
Smith JG. Molecular Epidemiology of Heart Failure: Translational Challenges and Opportunities. JACC Basic Transl Sci 2017; 2:757-769. [PMID: 30062185 PMCID: PMC6058947 DOI: 10.1016/j.jacbts.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is the end-stage of all heart disease and arguably constitutes the greatest unmet therapeutic need in cardiovascular medicine today. Classic epidemiological studies have established clinical risk factors for HF, but the cause remains poorly understood in many cases. Biochemical analyses of small case-control series and animal models have described a plethora of molecular characteristics of HF, but a single unifying pathogenic theory is lacking. Heart failure appears to result not only from cardiac overload or injury but also from a complex interplay among genetic, neurohormonal, metabolic, inflammatory, and other biochemical factors acting on the heart. Recent development of robust, high-throughput tools in molecular biology provides opportunity for deep molecular characterization of population-representative cohorts and HF cases (molecular epidemiology), including genome sequencing, profiling of myocardial gene expression and chromatin modifications, plasma composition of proteins and metabolites, and microbiomes. The integration of such detailed information holds promise for improving understanding of HF pathophysiology in humans, identification of therapeutic targets, and definition of disease subgroups beyond the current classification based on ejection fraction which may benefit from improved individual tailoring of therapy. Challenges include: 1) the need for large cohorts with deep, uniform phenotyping; 2) access to the relevant tissues, ideally with repeated sampling to capture dynamic processes; and 3) analytical issues related to integration and analysis of complex datasets. International research consortia have formed to address these challenges and combine datasets, and cohorts with up to 1 million participants are being collected. This paper describes the molecular epidemiology of HF and provides an overview of methods and tissue types and examples of published and ongoing efforts to systematically evaluate molecular determinants of HF in human populations.
Collapse
Affiliation(s)
- J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden.,Department of Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
18
|
Duan Q, McMahon S, Anand P, Shah H, Thomas S, Salunga HT, Huang Y, Zhang R, Sahadevan A, Lemieux ME, Brown JD, Srivastava D, Bradner JE, McKinsey TA, Haldar SM. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci Transl Med 2017; 9:eaah5084. [PMID: 28515341 PMCID: PMC5544253 DOI: 10.1126/scitranslmed.aah5084] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/18/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
Despite current standard of care, the average 5-year mortality after an initial diagnosis of heart failure (HF) is about 40%, reflecting an urgent need for new therapeutic approaches. Previous studies demonstrated that the epigenetic reader protein bromodomain-containing protein 4 (BRD4), an emerging therapeutic target in cancer, functions as a critical coactivator of pathologic gene transactivation during cardiomyocyte hypertrophy. However, the therapeutic relevance of these findings to human disease remained unknown. We demonstrate that treatment with the BET bromodomain inhibitor JQ1 has therapeutic effects during severe, preestablished HF from prolonged pressure overload, as well as after a massive anterior myocardial infarction in mice. Furthermore, JQ1 potently blocks agonist-induced hypertrophy in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Integrated transcriptomic analyses across animal models and human iPSC-CMs reveal that BET inhibition preferentially blocks transactivation of a common pathologic gene regulatory program that is robustly enriched for NFκB and TGF-β signaling networks, typified by innate inflammatory and profibrotic myocardial genes. As predicted by these specific transcriptional mechanisms, we found that JQ1 does not suppress physiological cardiac hypertrophy in a mouse swimming model. These findings establish that pharmacologically targeting innate inflammatory and profibrotic myocardial signaling networks at the level of chromatin is effective in animal models and human cardiomyocytes, providing the critical rationale for further development of BET inhibitors and other epigenomic medicines for HF.
Collapse
Affiliation(s)
- Qiming Duan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Sarah McMahon
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Priti Anand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Hirsh Shah
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sean Thomas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Hazel T Salunga
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Rongli Zhang
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aarathi Sahadevan
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | | | - Jonathan D Brown
- Division of Cardiovascular Medicine, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Division of Cardiology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94158, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, Consortium for Fibrosis Research & Translation, University of Colorado, Anschutz Medical Campus, Denver, CO 80204, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
- Division of Cardiology, Department of Medicine, and Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Berezin A. Epigenetics in heart failure phenotypes. BBA CLINICAL 2016; 6:31-37. [PMID: 27335803 PMCID: PMC4909708 DOI: 10.1016/j.bbacli.2016.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022]
Abstract
Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This article provides an overview, highlighting recent findings, of a major mechanism of gene regulation and its relevance to the pathophysiology of heart failure. RECENT FINDINGS The syndrome of heart failure is a complex and highly prevalent condition, one in which the heart undergoes substantial structural remodeling. Triggered by a wide range of disease-related cues, heart failure pathophysiology is governed by both genetic and epigenetic events. Epigenetic mechanisms, such as chromatin/DNA modifications and noncoding RNAs, have emerged as molecular transducers of environmental stimuli to control gene expression. Here, we emphasize metabolic milieu, aging, and hemodynamic stress as they impact the epigenetic landscape of the myocardium. SUMMARY Recent studies in multiple fields, including cancer, stem cells, development, and cardiovascular biology, have uncovered biochemical ties linking epigenetic machinery and cellular energetics and mitochondrial function. Elucidation of these connections will afford molecular insights into long-established epidemiological observations. With time, exploitation of the epigenetic machinery therapeutically may emerge with clinical relevance.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi Morales
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
|
22
|
Preissl S, Schwaderer M, Raulf A, Hesse M, Grüning BA, Köbele C, Backofen R, Fleischmann BK, Hein L, Gilsbach R. Deciphering the Epigenetic Code of Cardiac Myocyte Transcription. Circ Res 2015; 117:413-23. [PMID: 26105955 DOI: 10.1161/circresaha.115.306337] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Epigenetic mechanisms are crucial for cell identity and transcriptional control. The heart consists of different cell types, including cardiac myocytes, endothelial cells, fibroblasts, and others. Therefore, cell type-specific analysis is needed to gain mechanistic insight into the regulation of gene expression in cardiac myocytes. Although cytosolic mRNA represents steady-state levels, nuclear mRNA more closely reflects transcriptional activity. To unravel epigenetic mechanisms of transcriptional control, cell type-specific analysis of nuclear mRNA and epigenetic modifications is crucial. OBJECTIVE The aim was to purify cardiac myocyte nuclei from hearts of different species by magnetic- or fluorescent-assisted sorting and to determine the nuclear and cellular RNA expression profiles and epigenetic marks in a cardiac myocyte-specific manner. METHODS AND RESULTS Frozen cardiac tissue samples were used to isolate cardiac myocyte nuclei. High sorting purity was confirmed for cardiac myocyte nuclei isolated from mice, rats, and humans. Deep sequencing of nuclear RNA revealed a major fraction of nascent, unspliced RNA in contrast to results obtained from purified cardiac myocytes. Cardiac myocyte nuclear and cellular RNA expression profiles showed differences, especially for metabolic genes. Genome-wide maps of the transcriptional elongation mark H3K36me3 were generated by chromatin-immunoprecipitation. Transcriptome and epigenetic data confirmed the high degree of cardiac myocyte-specificity of our protocol. An integrative analysis of nuclear mRNA and histone mark occurrence indicated a major impact of the chromatin state on transcriptional activity in cardiac myocytes. CONCLUSIONS This study establishes cardiac myocyte-specific sorting of nuclei as a universal method to investigate epigenetic and transcriptional processes in cardiac myocytes of different origins. These data sets provide novel insight into cardiac myocyte transcription.
Collapse
Affiliation(s)
- Sebastian Preissl
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Martin Schwaderer
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Alexandra Raulf
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Michael Hesse
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Björn A Grüning
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Claudia Köbele
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Rolf Backofen
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Bernd K Fleischmann
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Lutz Hein
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.).
| | - Ralf Gilsbach
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.).
| |
Collapse
|