1
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Liu T, Zhou M, Liang F. An Electromechanical Model-Based Study on the Dosage Effects of Ranolazine in Treating Failing HCM Cardiomyocyte. Cell Mol Bioeng 2025; 18:137-162. [PMID: 40290110 PMCID: PMC12018674 DOI: 10.1007/s12195-025-00842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/16/2025] [Indexed: 04/30/2025] Open
Abstract
Background and Objective Hypertrophic cardiomyopathy (HCM) is associated with a significant risk of progression to heart failure (HF). Extensive experimental and clinical research has highlighted the therapeutic benefits of ranolazine in alleviating electrophysiological abnormalities and arrhythmias in the context of HCM and HF. Despite these findings, there is a shortage of studies examining the electromechanical responses of failing HCM cardiomyocytes to ranolazine and the impact of ranolazine dosage on outcomes across varying degrees of HF. This study aims to systematically address these issues. Methods A computational modeling approach was utilized to quantify alterations in electromechanical variables within failing HCM cardiomyocytes subsequent to ranolazine treatment. The model parameters were calibrated against extant literature data to delineate the spectrum of HF severities and the changes in ion channels following the administration of various doses of ranolazine. Results The inhibition of the augmented late Na+ current in failing HCM cardiomyocyte with an adequate amount of ranolazine was found to be effective in alleviating electrophysiological abnormalities (e.g., prolongation of action potential (AP), Ca2+ overload in diastole), which contributed to improving the diastolic function of the cardiomyocyte, albeit with a modest negative effect on the systolic function. A threshold drug dose was identified for achieving a significant normalization of the overall electromechanical profile. The threshold drug dose for effective therapy was observed to be contingent upon the severity of HF and the status of certain key ion channels. Furthermore, it was determined that an increase of the drug dose beyond the threshold did not yield substantial additional improvements in the principal electromechanical variables. Conclusions The study demonstrated the presence of a threshold dose of ranolazine for effective treatment of failing HCM cardiomyocyte, and further established that this threshold is influenced by the severity of HF and the functional status of key ion channels. These findings may serve as theoretical evidence for comprehending the mechanisms underlying ranolazine's therapeutic efficacy in treating failing HCM hearts. Moreover, the study underscores the potential clinical value of personalized dosing strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-025-00842-5.
Collapse
Affiliation(s)
- Taiwei Liu
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute for Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, Moscow, 19991 Russia
| |
Collapse
|
3
|
Sclafani M, Falasconi G, Tini G, Musumeci B, Penela D, Saglietto A, Arcari L, Bucciarelli-Ducci C, Barbato E, Berruezo A, Francia P. Substrates of Sudden Cardiac Death in Hypertrophic Cardiomyopathy. J Clin Med 2025; 14:1331. [PMID: 40004861 PMCID: PMC11857077 DOI: 10.3390/jcm14041331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden cardiac death (SCD), the most devastating complication of hypertrophic cardiomyopathy (HCM), is primarily triggered by ventricular tachycardia or fibrillation. Despite advances in knowledge, the mechanisms driving ventricular arrhythmia in HCM remain incompletely understood, stemming from an interplay of multiple pro-arrhythmic factors. Myocyte disarray and myocardial fibrosis form a structural substrate favorable to re-entrant arrhythmias by altering myocardial electrophysiological properties, while cellular abnormalities predominate in patients without evident structural remodeling. Traditional SCD risk prediction models rely on clinical risk factors and regression-based risk estimation, often overlooking specific arrhythmic substrates. Emerging techniques now allow for the direct assessment of these substrates, providing deeper insights into the arrhythmogenic mechanisms and paving the way for more personalized SCD risk stratification. This review explores the contribution of cellular, structural, and electrophysiological substrates to arrhythmic risk in HCM, emphasizing their distinct roles. Furthermore, it highlights the potential of substrate-based approaches to refining SCD prevention strategies and improving outcomes for patients with HCM.
Collapse
Affiliation(s)
- Matteo Sclafani
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6PY, UK; (M.S.); (C.B.-D.)
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Giulio Falasconi
- Arrhythmia Department, Teknon Heart Institute, Teknon Medical Center, 08022 Barcelona, Spain; (G.F.); (D.P.); (A.B.)
| | - Giacomo Tini
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Beatrice Musumeci
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Diego Penela
- Arrhythmia Department, Teknon Heart Institute, Teknon Medical Center, 08022 Barcelona, Spain; (G.F.); (D.P.); (A.B.)
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, “Citta Della Salute e Della Scienza” Hospital, 10126 Turin, Italy
| | - Luca Arcari
- Cardiology Unit, Madre Giuseppina Vannini Hospital, 00177 Rome, Italy;
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, 00161 Rome, Italy
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6PY, UK; (M.S.); (C.B.-D.)
| | - Emanuele Barbato
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Antonio Berruezo
- Arrhythmia Department, Teknon Heart Institute, Teknon Medical Center, 08022 Barcelona, Spain; (G.F.); (D.P.); (A.B.)
| | - Pietro Francia
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| |
Collapse
|
4
|
Vouloagkas I, Agbariah A, Zegkos T, Gossios TD, Tziomalos G, Parcharidou D, Didagelos M, Kamperidis V, Ziakas A, Efthimiadis GK. The many faces of SCN5A pathogenic variants: from channelopathy to cardiomyopathy. Heart Fail Rev 2025; 30:247-256. [PMID: 39465469 DOI: 10.1007/s10741-024-10459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The SCN5A gene encodes the alpha subunit of the cardiac sodium channel, which plays a fundamental role in the generation and propagation of the action potential in the heart muscle. During the past years our knowledge concerning the function of the cardiac sodium channel and the diseases caused by mutations of the SCN5A gene has grown. Although initially SCN5A pathogenic variants were mainly associated with channelopathies, increasing recent evidence suggests an association with structural heart disease in the form of heart muscle disease. The pathways leading to a cardiomyopathic phenotype remain unclear and require further elucidation. The aim of the present review is to provide a concise summary regarding the mechanisms through which SCN5A pathogenic variants result in heart disease, focusing in cardiomyopathy, highlighting along the way the complex role of the SCN5A gene at the intersection of cardiac excitability and contraction networks.
Collapse
Affiliation(s)
- Ioannis Vouloagkas
- Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Andrea Agbariah
- Department of Cardiology, Università Degli Studi Di Verona, Verona, Italy
| | - Thomas Zegkos
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Thomas D Gossios
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece.
| | - Georgios Tziomalos
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Despoina Parcharidou
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Matthaios Didagelos
- 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Vasileios Kamperidis
- 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Antonios Ziakas
- 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgios K Efthimiadis
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
5
|
Marchal GA, Rivaud MR, Wolswinkel R, Basso C, van Veen TAB, Bezzina CR, Remme CA. Genetic background determines the severity of age-dependent cardiac structural abnormalities and arrhythmia susceptibility in Scn5a-1798insD mice. Europace 2024; 26:euae153. [PMID: 38875491 PMCID: PMC11203918 DOI: 10.1093/europace/euae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024] Open
Abstract
AIMS Patients with mutations in SCN5A encoding NaV1.5 often display variable severity of electrical and structural alterations, but the underlying mechanisms are not fully elucidated. We here investigate the combined modulatory effect of genetic background and age on disease severity in the Scn5a1798insD/+ mouse model. METHODS AND RESULTS In vivo electrocardiogram and echocardiograms, ex vivo electrical and optical mapping, and histological analyses were performed in adult (2-7 months) and aged (8-28 months) wild-type (WT) and Scn5a1798insD/+ (mutant, MUT) mice from the FVB/N and 129P2 inbred strains. Atrio-ventricular (AV) conduction, ventricular conduction, and ventricular repolarization are modulated by strain, genotype, and age. An aging effect was present in MUT mice, with aged MUT mice of both strains showing prolonged QRS interval and right ventricular (RV) conduction slowing. 129P2-MUT mice were severely affected, with adult and aged 129P2-MUT mice displaying AV and ventricular conduction slowing, prolonged repolarization, and spontaneous arrhythmias. In addition, the 129P2 strain appeared particularly susceptible to age-dependent electrical, functional, and structural alterations including RV conduction slowing, reduced left ventricular (LV) ejection fraction, RV dilatation, and myocardial fibrosis as compared to FVB/N mice. Overall, aged 129P2-MUT mice displayed the most severe conduction defects, RV dilatation, and myocardial fibrosis, in addition to the highest frequency of spontaneous arrhythmia and inducible arrhythmias. CONCLUSION Genetic background and age both modulate disease severity in Scn5a1798insD/+ mice and hence may explain, at least in part, the variable disease expressivity observed in patients with SCN5A mutations. Age- and genetic background-dependent development of cardiac structural alterations furthermore impacts arrhythmia risk. Our findings therefore emphasize the importance of continued assessment of cardiac structure and function in patients carrying SCN5A mutations.
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC location University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
- OptoCARD Lab, Institute of Clinical Physiology (IFC-CNR), Florence, Italy
| | - Mathilde R Rivaud
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC location University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Rianne Wolswinkel
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC location University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Toon A B van Veen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC location University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC location University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
6
|
Khalilimeybodi A, Saucerman JJ, Rangamani P. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy. Comput Biol Med 2024; 175:108499. [PMID: 38677172 PMCID: PMC11175993 DOI: 10.1016/j.compbiomed.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.
Collapse
Affiliation(s)
- A Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America.
| |
Collapse
|
7
|
Coleman JA, Doste R, Beltrami M, Argirò A, Coppini R, Olivotto I, Raman B, Bueno-Orovio A. Effects of ranolazine on the arrhythmic substrate in hypertrophic cardiomyopathy. Front Pharmacol 2024; 15:1379236. [PMID: 38659580 PMCID: PMC11039821 DOI: 10.3389/fphar.2024.1379236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of lethal arrhythmias in the young. Although the arrhythmic substrate has been hypothesised to be amenable to late Na+ block with ranolazine, the specific mechanisms are not fully understood. Therefore, this study aimed to investigate the substrate mechanisms of safety and antiarrhythmic efficacy of ranolazine in HCM. Methods: Computational models of human tissue and ventricles were used to simulate the electrophysiological behaviour of diseased HCM myocardium for variable degrees of repolarisation impairment, validated against in vitro and clinical recordings. S1-S2 pacing protocols were used to quantify arrhythmic risk in scenarios of (i) untreated HCM-remodelled myocardium and (ii) myocardium treated with 3µM, 6µM and 10µM ranolazine, for variable repolarisation heterogeneity sizes and pacing rates. ECGs were derived from biventricular simulations to identify ECG biomarkers linked to antiarrhythmic effects. Results: 10µM ranolazine given to models manifesting ventricular tachycardia (VT) at baseline led to a 40% reduction in number of VT episodes on pooled analysis of >40,000 re-entry inducibility simulations. Antiarrhythmic efficacy and safety were dependent on the degree of repolarisation impairment, with optimal benefit in models with maximum JTc interval <370 ms. Ranolazine increased risk of VT only in models with severe-extreme repolarisation impairment. Conclusion: Ranolazine efficacy and safety may be critically dependent upon the degree of repolarisation impairment in HCM. For moderate repolarisation impairment, reductions in refractoriness heterogeneity by ranolazine may prevent conduction blocks and re-entry. With severe-extreme disease substrates, reductions of the refractory period can increase re-entry sustainability.
Collapse
Affiliation(s)
- James A. Coleman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Matteo Beltrami
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Alessia Argirò
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
- Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Seo K, Yamamoto Y, Kirillova A, Kawana M, Yadav S, Huang Y, Wang Q, Lane KV, Pruitt BL, Perez MV, Bernstein D, Wu JC, Wheeler MT, Parikh VN, Ashley EA. Improved Cardiac Performance and Decreased Arrhythmia in Hypertrophic Cardiomyopathy With Non-β-Blocking R-Enantiomer Carvedilol. Circulation 2023; 148:1691-1704. [PMID: 37850394 DOI: 10.1161/circulationaha.123.065017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Hypercontractility and arrhythmia are key pathophysiologic features of hypertrophic cardiomyopathy (HCM), the most common inherited heart disease. β-Adrenergic receptor antagonists (β-blockers) are the first-line therapy for HCM. However, β-blockers commonly selected for this disease are often poorly tolerated in patients, where heart-rate reduction and noncardiac effects can lead to reduced cardiac output and fatigue. Mavacamten, myosin ATPase inhibitor recently approved by the US Food and Drug Administration, has demonstrated the ability to ameliorate hypercontractility without lowering heart rate, but its benefits are so far limited to patients with left ventricular (LV) outflow tract obstruction, and its effect on arrhythmia is unknown. METHODS We screened 21 β-blockers for their impact on myocyte contractility and evaluated the antiarrhythmic properties of the most promising drug in a ventricular myocyte arrhythmia model. We then examined its in vivo effect on LV function by hemodynamic pressure-volume loop analysis. The efficacy of the drug was tested in vitro and in vivo compared with current therapeutic options (metoprolol, verapamil, and mavacamten) for HCM in an established mouse model of HCM (Myh6R403Q/+ and induced pluripotent stem cell (iPSC)-derived cardiomyocytes from patients with HCM (MYH7R403Q/+). RESULTS We identified that carvedilol, a β-blocker not commonly used in HCM, suppresses contractile function and arrhythmia by inhibiting RyR2 (ryanodine receptor type 2). Unlike metoprolol (a β1-blocker), carvedilol markedly reduced LV contractility through RyR2 inhibition, while maintaining stroke volume through α1-adrenergic receptor inhibition in vivo. Clinically available carvedilol is a racemic mixture, and the R-enantiomer, devoid of β-blocking effect, retains the ability to inhibit both α1-receptor and RyR2, thereby suppressing contractile function and arrhythmias without lowering heart rate and cardiac output. In Myh6R403Q/+ mice, R-carvedilol normalized hyperdynamic contraction, suppressed arrhythmia, and increased cardiac output better than metoprolol, verapamil, and mavacamten. The ability of R-carvedilol to suppress contractile function was well retained in MYH7R403Q/+ iPSC-derived cardiomyocytes. CONCLUSIONS R-enantiomer carvedilol attenuates hyperdynamic contraction, suppresses arrhythmia, and at the same time, improves cardiac output without lowering heart rate by dual blockade of α1-adrenergic receptor and RyR2 in mouse and human models of HCM. This combination of therapeutic effects is unique among current therapeutic options for HCM and may particularly benefit patients without LV outflow tract obstruction.
Collapse
Affiliation(s)
- Kinya Seo
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Yuta Yamamoto
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Anna Kirillova
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Masataka Kawana
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Sunil Yadav
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Yong Huang
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Qianru Wang
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Kerry V Lane
- Departments of Mechanical Engineering (K.V.L., B.L.P.), University of California, Santa Barbara, CA
| | - Beth L Pruitt
- Departments of Mechanical Engineering (K.V.L., B.L.P.), University of California, Santa Barbara, CA
- BioMolecular Science and Engineering (B.L.P.), University of California, Santa Barbara, CA
| | - Marco V Perez
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | | | - Joseph C Wu
- Cardiovascular Research Institute (J.C.W.), Stanford University School of Medicine, CA
| | - Matthew T Wheeler
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Victoria N Parikh
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Euan A Ashley
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
- Genetics (E.A.A.), Stanford University School of Medicine, CA
| |
Collapse
|
9
|
Lillo R, Graziani F, Franceschi F, Iannaccone G, Massetti M, Olivotto I, Crea F, Liuzzo G. Inflammation across the spectrum of hypertrophic cardiac phenotypes. Heart Fail Rev 2023; 28:1065-1075. [PMID: 37115472 PMCID: PMC10403403 DOI: 10.1007/s10741-023-10307-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
The hypertrophic cardiomyopathy phenotype encompasses a heterogeneous spectrum of genetic and acquired diseases characterized by the presence of left ventricular hypertrophy in the absence of abnormal cardiac loading conditions. This "umbrella diagnosis" includes the "classic" hypertrophic cardiomyopathy (HCM), due to sarcomere protein gene mutations, and its phenocopies caused by intra- or extracellular deposits, such as Fabry disease (FD) and cardiac amyloidosis (CA). All these conditions share a wide phenotypic variability which results from the combination of genetic and environmental factors and whose pathogenic mediators are poorly understood so far. Accumulating evidence suggests that inflammation plays a critical role in a broad spectrum of cardiovascular conditions, including cardiomyopathies. Indeed, inflammation can trigger molecular pathways which contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation, and microvascular dysfunction. Growing evidence suggests that systemic inflammation is a possible key pathophysiologic process potentially involved in the pathogenesis of cardiac disease progression, influencing the severity of the phenotype and clinical outcome, including heart failure. In this review, we summarize current knowledge regarding the prevalence, clinical significance, and potential therapeutic implications of inflammation in HCM and two of its most important phenocopies, FD and CA.
Collapse
Affiliation(s)
- Rosa Lillo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesca Graziani
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy.
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Iacopo Olivotto
- Cardiology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
10
|
Ni M, Li Y, Wei J, Song Z, Wang H, Yao J, Chen YX, Belke D, Estillore JP, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Feng W, Chen J, Roston TM, Sanatani S, Lehman A, Chen SRW. Increased Ca 2+ Transient Underlies RyR2-Related Left Ventricular Noncompaction. Circ Res 2023; 133:177-192. [PMID: 37325910 DOI: 10.1161/circresaha.123.322504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND A loss-of-function cardiac ryanodine receptor (RyR2) mutation, I4855M+/-, has recently been linked to a new cardiac disorder termed RyR2 Ca2+ release deficiency syndrome (CRDS) as well as left ventricular noncompaction (LVNC). The mechanism by which RyR2 loss-of-function causes CRDS has been extensively studied, but the mechanism underlying RyR2 loss-of-function-associated LVNC is unknown. Here, we determined the impact of a CRDS-LVNC-associated RyR2-I4855M+/- loss-of-function mutation on cardiac structure and function. METHODS We generated a mouse model expressing the CRDS-LVNC-associated RyR2-I4855M+/- mutation. Histological analysis, echocardiography, ECG recording, and intact heart Ca2+ imaging were performed to characterize the structural and functional consequences of the RyR2-I4855M+/- mutation. RESULTS As in humans, RyR2-I4855M+/- mice displayed LVNC characterized by cardiac hypertrabeculation and noncompaction. RyR2-I4855M+/- mice were highly susceptible to electrical stimulation-induced ventricular arrhythmias but protected from stress-induced ventricular arrhythmias. Unexpectedly, the RyR2-I4855M+/- mutation increased the peak Ca2+ transient but did not alter the L-type Ca2+ current, suggesting an increase in Ca2+-induced Ca2+ release gain. The RyR2-I4855M+/- mutation abolished sarcoplasmic reticulum store overload-induced Ca2+ release or Ca2+ leak, elevated sarcoplasmic reticulum Ca2+ load, prolonged Ca2+ transient decay, and elevated end-diastolic Ca2+ level upon rapid pacing. Immunoblotting revealed increased level of phosphorylated CaMKII (Ca2+-calmodulin dependent protein kinases II) but unchanged levels of CaMKII, calcineurin, and other Ca2+ handling proteins in the RyR2-I4855M+/- mutant compared with wild type. CONCLUSIONS The RyR2-I4855M+/- mutant mice represent the first RyR2-associated LVNC animal model that recapitulates the CRDS-LVNC overlapping phenotype in humans. The RyR2-I4855M+/- mutation increases the peak Ca2+ transient by increasing the Ca2+-induced Ca2+ release gain and the end-diastolic Ca2+ level by prolonging Ca2+ transient decay. Our data suggest that the increased peak-systolic and end-diastolic Ca2+ levels may underlie RyR2-associated LVNC.
Collapse
Affiliation(s)
- Mingke Ni
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Yanhui Li
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
- School of Medicine, Northwest University, Xi 'an, China (J.W.)
| | - Zhenpeng Song
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Hui Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Yong-Xiang Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain (R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, IIB Sant Pau and CIBERCV, Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
| | - Wei Feng
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla (W.F., J.C.)
| | - Ju Chen
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla (W.F., J.C.)
| | - Thomas M Roston
- Division of Pediatric Cardiology, Department of Pediatrics (T.M.R., S.S.), University of British Columbia, Vancouver, Canada
| | - Shubhayan Sanatani
- Division of Pediatric Cardiology, Department of Pediatrics (T.M.R., S.S.), University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics (A.L.), University of British Columbia, Vancouver, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (M.N., Y.L., J.W., Z.S., H.W., J.Y., Y.-X.C., D.B., J.P.E., R.W., S.R.W.C.)
| |
Collapse
|
11
|
Sucharov CC, Neltner B, Pietra AE, Karimpour-Fard A, Patel J, Ho CY, Miyamoto SD. Circulating MicroRNAs Identify Early Phenotypic Changes in Sarcomeric Hypertrophic Cardiomyopathy. Circ Heart Fail 2023; 16:e010291. [PMID: 36880380 PMCID: PMC10293059 DOI: 10.1161/circheartfailure.122.010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. Pathogenic germline variation in genes encoding the sarcomere is the predominant cause of disease. However diagnostic features, including unexplained left ventricular hypertrophy, typically do not develop until late adolescence or after. The early stages of disease pathogenesis and the mechanisms underlying the transition to a clinically overt phenotype are not well understood. In this study, we investigated if circulating microRNAs (miRNAs) could stratify disease stage in sarcomeric HCM. METHODS We performed arrays for 381 miRNAs using serum from HCM sarcomere variant carriers with and without a diagnosis of HCM and healthy controls. To identify differentially expressed circulating miRNAs between groups, multiple approaches were used including random forest, Wilcoxon rank sum test, and logistic regression. The abundance of all miRNAs was normalized to miRNA-320. RESULTS Of 57 sarcomere variant carriers, 25 had clinical HCM and 32 had subclinical HCM with normal left ventricular wall thickness (21 with early phenotypic manifestations and 11 with no discernible phenotypic manifestations). Circulating miRNA profile differentiated healthy controls from sarcomere variant carriers with subclinical and clinical disease. Additionally, circulating miRNAs differentiated clinical HCM from subclinical HCM without early phenotypic changes; and subclinical HCM with and without early phenotypic changes. Circulating miRNA profiles did not differentiate clinical HCM from subclinical HCM with early phenotypic changes, suggesting biologic similarity between these groups. CONCLUSIONS Circulating miRNAs may augment the clinical stratification of HCM and improve understanding of the transition from health to disease in sarcomere gene variant carriers.
Collapse
Affiliation(s)
- Carmen C. Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bonnie Neltner
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley E. Pietra
- Department of Pediatrics, Division of Cardiology, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO
| | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO
| | - Joshen Patel
- Department of Medicine, Division of Cardiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Carolyn Y. Ho
- Department of Medicine, Division of Cardiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Shelley D. Miyamoto
- Department of Pediatrics, Division of Cardiology, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO
| |
Collapse
|
12
|
Langa P, Marszalek RJ, Warren CM, Chowdhury SK, Halas M, Batra A, Rafael-Clyke K, Bacon A, Goldspink PH, Solaro RJ, Wolska BM. Altered coronary artery function, arteriogenesis and endothelial YAP signaling in postnatal hypertrophic cardiomyopathy. Front Physiol 2023; 14:1136852. [PMID: 37064918 PMCID: PMC10102353 DOI: 10.3389/fphys.2023.1136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation. Methods: We studied postnatal days 7-28 (P7-P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry. Results: At P7, skinned myofiber bundles exhibited an increased Ca2+-sensitivity (pCa50 TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/β myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7-P14, the increased Ca2+- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca2+ homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28. Conclusion: We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard J. Marszalek
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamim K. Chowdhury
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Monika Halas
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Koreena Rafael-Clyke
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Angelie Bacon
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M. Wolska
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|
14
|
Pioner JM, Vitale G, Steczina S, Langione M, Margara F, Santini L, Giardini F, Lazzeri E, Piroddi N, Scellini B, Palandri C, Schuldt M, Spinelli V, Girolami F, Mazzarotto F, van der Velden J, Cerbai E, Tesi C, Olivotto I, Bueno-Orovio A, Sacconi L, Coppini R, Ferrantini C, Regnier M, Poggesi C. Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human MYBPC3 HCM. Circ Res 2023; 132:628-644. [PMID: 36744470 PMCID: PMC9977265 DOI: 10.1161/circresaha.122.321956] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND The pathogenesis of MYBPC3-associated hypertrophic cardiomyopathy (HCM) is still unresolved. In our HCM patient cohort, a large and well-characterized population carrying the MYBPC3:c772G>A variant (p.Glu258Lys, E258K) provides the unique opportunity to study the basic mechanisms of MYBPC3-HCM with a comprehensive translational approach. METHODS We collected clinical and genetic data from 93 HCM patients carrying the MYBPC3:c772G>A variant. Functional perturbations were investigated using different biophysical techniques in left ventricular samples from 4 patients who underwent myectomy for refractory outflow obstruction, compared with samples from non-failing non-hypertrophic surgical patients and healthy donors. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and engineered heart tissues (EHTs) were also investigated. RESULTS Haplotype analysis revealed MYBPC3:c772G>A as a founder mutation in Tuscany. In ventricular myocardium, the mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-EHTs revealed prolonged action potentials, slower Ca2+ transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations. CONCLUSIONS HCM-related MYBPC3:c772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- Department of Biology (J.M.P.), University of Florence, Italy
| | - Giulia Vitale
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Marianna Langione
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Francesca Margara
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Lorenzo Santini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesco Giardini
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Erica Lazzeri
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Nicoletta Piroddi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Beatrice Scellini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Chiara Palandri
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Maike Schuldt
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Valentina Spinelli
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesca Girolami
- Pediatric Cardiology (F. Girolami), IRCCS Meyer Children’s Hospital, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Italy (F. Mazzarotto)
- National Heart and Lung Institute, Imperial College London, London, United Kingdom (F. Mazzarotto)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Elisabetta Cerbai
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Chiara Tesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Iacopo Olivotto
- Cardiogenetics Unit (I.O.), IRCCS Meyer Children’s Hospital, Florence, Italy
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (I.O.)
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC), National Research Council, Florence, Italy (L. Sacconi)
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg (L. Sacconi)
| | - Raffaele Coppini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Cecilia Ferrantini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Corrado Poggesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| |
Collapse
|
15
|
El Hadi H, Freund A, Desch S, Thiele H, Majunke N. Hypertrophic, Dilated, and Arrhythmogenic Cardiomyopathy: Where Are We? Biomedicines 2023; 11:biomedicines11020524. [PMID: 36831060 PMCID: PMC9953324 DOI: 10.3390/biomedicines11020524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of structural, mechanical, and electrical heart muscle disorders which often correlate with life-threatening arrhythmias and progressive heart failure accounting for significant cardiovascular morbidity and mortality. Currently, cardiomyopathies still represent a leading reason for heart transplantation worldwide. The last years have brought remarkable advances in the field of cardiomyopathies especially in terms of understanding the molecular basis as well as the diagnostic evaluation and management. Although most cardiomyopathy treatments had long focused on symptom management, much of the current research efforts aim to identify and act on the disease-driving mechanisms. Regarding risk assessment and primary prevention of sudden cardiac death, additional data are still pending in order to pave the way for a more refined and early patient selection for defibrillator implantation. This review summarizes the current knowledge of hypertrophic, dilated and arrhythmogenic cardiomyopathy with a particular emphasis on their pathophysiology, clinical features, and diagnostic approach. Furthermore, the relevant ongoing studies investigating novel management approaches and main gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Hamza El Hadi
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| | | | | | | | - Nicolas Majunke
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| |
Collapse
|
16
|
Bayonas-Ruiz A, Muñoz-Franco FM, Sabater-Molina M, Oliva-Sandoval MJ, Gimeno JR, Bonacasa B. Current therapies for hypertrophic cardiomyopathy: a systematic review and meta-analysis of the literature. ESC Heart Fail 2023; 10:8-23. [PMID: 36181355 PMCID: PMC9871697 DOI: 10.1002/ehf2.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS The aim of this study was to synthesize the evidence on the effect of the current therapies over the pathophysiological and clinical characteristics of patients with hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS A systematic review and meta-analysis of 41 studies identified from 1383 retrieved from PubMed, Web of Science, and Cochrane was conducted. Therapies were grouped in pharmacological, invasive and physical exercise. Pharmacological agents had no effect on functional capacity measured by VO2max (1.11 mL/kg/min; 95% CI: -0.04, 2.25, P < 0.05). Invasive septal reduction therapies increased VO2max (+3.2 mL/kg/min; 95% CI: 1.78, 4.60, P < 0.05). Structured physical exercise programmes did not report contraindications and evidenced the highest increases on functional capacity (VO2max + 4.33 mL/kg/min; 95% CI: 0.20, 8.45, P < 0.05). Patients with left ventricular outflow tract (LVOT) obstruction at rest improved their VO2max to a greater extent compared with those without resting LVOT obstruction (2.82 mL/kg/min; 95% CI: 1.97, 3.67 vs. 1.18; 95% CI: 0.62, 1.74, P < 0.05). Peak LVOT gradient was reduced with the three treatment options with the highest reduction observed for invasive therapies. Left ventricular ejection fraction was reduced in pharmacological and invasive procedures. No effect was observed after physical exercise. Symptomatic status improved with the three options and to a greater extent with invasive procedures. CONCLUSIONS Invasive septal reduction therapies increase VO2max, improve symptomatic status, and reduce resting and peak LVOT gradient, thus might be considered in obstructive patients. Physical exercise emerges as a coadjuvant therapy, which is safe and associated with benefits on functional capacity. Pharmacological agents improve reported NYHA class, but not functional capacity.
Collapse
Affiliation(s)
- Adrián Bayonas-Ruiz
- Research Group of Physical Exercise and Human Performance, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | | | - María Sabater-Molina
- Cardiogenetic Laboratory, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, The Netherlands
| | - María José Oliva-Sandoval
- Inherited Cardiac Disease Unit (CSUR), Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, The Netherlands
| | - Juan R Gimeno
- Inherited Cardiac Disease Unit (CSUR), Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, The Netherlands
- Departament of Internal Medicine (Cardiology), Universidad de Murcia, Murcia, Spain
| | - Bárbara Bonacasa
- Research Group of Physical Exercise and Human Performance, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Doste R, Coppini R, Bueno-Orovio A. Remodelling of potassium currents underlies arrhythmic action potential prolongation under beta-adrenergic stimulation in hypertrophic cardiomyopathy. J Mol Cell Cardiol 2022; 172:120-131. [PMID: 36058298 DOI: 10.1016/j.yjmcc.2022.08.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) patients often present an enhanced arrhythmogenicity that can lead to lethal arrhythmias, especially during exercise. Recent studies have indicated an abnormal response of HCM cardiomyocytes to β-adrenergic receptor stimulation (β-ARS), with prolongation of their action potential rather than shortening. The mechanisms underlying this aberrant response to sympathetic stimulation and its possible proarrhythmic role remain unknown. The aims of this study are to investigate the key ionic mechanisms underlying the HCM abnormal response to β-ARS and the resultant repolarisation abnormalities using human-based experimental and computational methodologies. We integrated and calibrated the latest models of human ventricular electrophysiology and β-ARS using experimental measurements of human adult cardiomyocytes from control and HCM patients. Our major findings include: (1) the developed in silico models of β-ARS capture the behaviour observed in the experimental data, including the aberrant response of HCM cardiomyocytes to β-ARS; (2) the reduced increase of potassium currents under β-ARS was identified as the main mechanism of action potential prolongation in HCM, rather than a more sustained inward calcium current; (3) action potential duration differences between healthy and HCM cardiomyocytes were increased upon β-ARS, while endocardial to epicardial differences in HCM cardiomyocytes were reduced; (4) models presenting repolarisation abnormalities were characterised by downregulation of the rapid delayed rectifier potassium current and the sodium‑potassium pump, while inward currents were upregulated. In conclusion, our results identify causal relationships between the HCM phenotype and its arrhythmogenic response to β-ARS through the downregulation of potassium currents.
Collapse
Affiliation(s)
- Ruben Doste
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | | | - Alfonso Bueno-Orovio
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022; 31:1027-1052. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex cardiac disease with highly variable phenotypic expression and clinical course most often caused by sarcomeric gene mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and diastolic dysfunction. For almost 60 years, HCM has remained an orphan disease and still lacks a disease-specific treatment. AREAS COVERED This review summarizes recent preclinical and clinical trials with repurposed drugs and new emerging pharmacological and gene-based therapies for the treatment of HCM. EXPERT OPINION The off-label drugs routinely used alleviate symptoms but do not target the core pathophysiology of HCM or prevent or revert the phenotype. Recent advances in the genetics and pathophysiology of HCM led to the development of cardiac myosin adenosine triphosphatase inhibitors specifically directed to counteract the hypercontractility associated with HCM-causing mutations. Mavacamten, the first drug specifically developed for HCM successfully tested in a phase 3 trial, represents the major advance for the treatment of HCM. This opens new horizons for the development of novel drugs targeting HCM molecular substrates which hopefully modify the natural history of the disease. The role of current drugs in development and genetic-based approaches for the treatment of HCM are also discussed.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - María Tamargo
- Department of Cardiology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
20
|
Shen H, Dong SY, Ren MS, Wang R. Ventricular arrhythmia and sudden cardiac death in hypertrophic cardiomyopathy: From bench to bedside. Front Cardiovasc Med 2022; 9:949294. [PMID: 36061538 PMCID: PMC9433716 DOI: 10.3389/fcvm.2022.949294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with hypertrophic cardiomyopathy (HCM) mostly experience minimal symptoms throughout their lifetime, and some individuals have an increased risk of ventricular arrhythmias and sudden cardiac death (SCD). How to identify patients with a higher risk of ventricular arrythmias and SCD is the priority in HCM research. The American College of Cardiology/American Heart Association (ACC/AHA) and the European Society of Cardiology (ESC) both recommend the use of risk algorithms to identify patients at high risk of ventricular arrhythmias, to be selected for implantation of implantable cardioverters/defibrillators (ICDs) for primary prevention of SCD, although major discrepancies exist. The present SCD risk scoring systems cannot accurately identify early-stage HCM patients with modest structural remodeling and mild disease manifestations. Unfortunately, SCD events could occur in young asymptomatic HCM patients and even as initial symptoms, prompting the determination of new risk factors for SCD. This review summarizes the studies based on patients' surgical specimens, transgenic animals, and patient-derived induced pluripotent stem cells (hiPSCs) to explore the possible molecular mechanism of ventricular arrhythmia and SCD. Ion channel remodeling, Ca2+ homeostasis abnormalities, and increased myofilament Ca2+ sensitivity may contribute to changes in action potential duration (APD), reentry circuit formation, and trigger activities, such as early aferdepolarization (EAD) or delayed afterdepolarization (DAD), leading to ventricular arrhythmia in HCM. Besides the ICD implantation, novel drugs represented by the late sodium current channel inhibitor and myosin inhibitor also shed light on the prevention of HCM-related arrhythmias. The ideal prevention strategy of SCD in early-stage HCM patients needs to be combined with gene screening, hiPSC-CM testing, machine learning, and advanced ECG studies, thus achieving individualized SCD prevention.
Collapse
Affiliation(s)
- Hua Shen
- Division of Adult Cardiac Surgery, Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Yong Dong
- Department of Cardiovascular Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ming-Shi Ren
- Division of Adult Cardiac Surgery, Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Rong Wang
- Division of Adult Cardiac Surgery, Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiovascular Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
21
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
22
|
Abstract
Hypertrophic cardiomyopathy (HCM), the most common inherited heart disease, is still orphan of a specific drug treatment. The erroneous consideration of HCM as a rare disease has hampered the design and conduct of large, randomized trials in the last 50 years, and most of the indications in the current guidelines are derived from small non-randomized studies, case series, or simply from the consensus of experts. Guideline-directed therapy of HCM includes non-selective drugs such as disopyramide, non-dihydropyridine calcium channel blockers, or β-adrenergic receptor blockers, mainly used in patients with symptomatic obstruction of the outflow tract. Following promising preclinical studies, several drugs acting on potential HCM-specific targets were tested in patients. Despite the huge efforts, none of these studies was able to change clinical practice for HCM patients, because tested drugs were proven to be scarcely effective or hardly tolerated in patients. However, novel compounds have been developed in recent years specifically for HCM, addressing myocardial hypercontractility and altered energetics in a direct manner, through allosteric inhibition of myosin. In this paper, we will critically review the use of different classes of drugs in HCM patients, starting from "old" established agents up to novel selective drugs that have been recently trialed in patients.
Collapse
|
23
|
Pioner JM, Vitale G, Gentile F, Scellini B, Piroddi N, Cerbai E, Olivotto I, Tardiff J, Coppini R, Tesi C, Poggesi C, Ferrantini C. Genotype-Driven Pathogenesis of Atrial Fibrillation in Hypertrophic Cardiomyopathy: The Case of Different TNNT2 Mutations. Front Physiol 2022; 13:864547. [PMID: 35514357 PMCID: PMC9062294 DOI: 10.3389/fphys.2022.864547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Atrial dilation and atrial fibrillation (AF) are common in Hypertrophic CardioMyopathy (HCM) patients and associated with a worsening of prognosis. The pathogenesis of atrial myopathy in HCM remains poorly investigated and no specific association with genotype has been identified. By re-analysis of our cohort of thin-filament HCM patients (Coppini et al. 2014) AF was identified in 10% of patients with sporadic mutations in the cardiac Troponin T gene (TNNT2), while AF occurrence was much higher (25-75%) in patients carrying specific "hot-spot" TNNT2 mutations. To determine the molecular basis of arrhythmia occurrence, two HCM mouse models expressing human TNNT2 variants (a "hot-spot" one, R92Q, and a "sporadic" one, E163R) were selected according to the different pathophysiological pathways previously demonstrated in ventricular tissue. Echocardiography studies showed a significant left atrial dilation in both models, but more pronounced in the R92Q. In E163R atrial trabeculae, in line with what previously observed in ventricular preparations, the energy cost of tension generation was markedly increased. However, no changes of twitch amplitude and kinetics were observed, and there was no atrial arrhythmic propensity. R92Q atrial trabeculae, instead, displayed normal ATP consumption but markedly increased myofilament calcium sensitivity, as previously observed in ventricular preparations. This was associated with reduced inotropic reserve and slower kinetics of twitch contractions and, importantly, with an increased occurrence of spontaneous beats and triggered contractions that represent an intrinsic arrhythmogenic mechanism promoting AF. The association of specific TNNT2 mutations with AF occurrence depends on the mutation-driven pathomechanism (i.e., increased atrial myofilament calcium sensitivity rather than increased myofilament tension cost) and may influence the individual response to treatment.
Collapse
Affiliation(s)
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jil Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
25
|
Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms. Basic Res Cardiol 2022; 117:25. [PMID: 35488105 PMCID: PMC9054908 DOI: 10.1007/s00395-022-00933-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.
Collapse
|
26
|
Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front Cardiovasc Med 2021; 8:722340. [PMID: 34760939 PMCID: PMC8572854 DOI: 10.3389/fcvm.2021.722340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a very common inherited cardiovascular disease (CAD) and the incidence is about 1/500 of the common population. It is caused by more than 1,400 mutations in 11 or more genes encoding the proteins of the cardiac sarcomere. HCM presents a heterogeneous clinical profile and complex pathophysiology and HCM is the most important cause of sudden cardiac death (SCD) in young people. HCM also contributes to functional disability from heart failure and stroke (caused by atrial fibrillation). Current treatments for HCM (medication, myectomy, and alcohol septal ablation) are geared toward slowing down the disease progression and symptom relief and implanted cardiac defibrillator (ICD) to prevent SCD. HCM is, however, entering a period of tight translational research that holds promise for the major advances in disease-specific therapy. Main insights into the genetic landscape of HCM have improved our understanding of molecular pathogenesis and pointed the potential targets for the development of therapeutic agents. We reviewed the critical discoveries about the treatments, mechanism of HCM, and their implications for future research.
Collapse
Affiliation(s)
- Zeyi Cheng
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Fang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglei Huang
- School of Medicine, Lanzhou University, Lanzhou, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mahboob Alam
- Division of Cardiovascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ion Channel Impairment and Myofilament Ca 2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10102789. [PMID: 34685769 PMCID: PMC8534456 DOI: 10.3390/cells10102789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Life-threatening ventricular arrhythmias are the main clinical burden in patients with hypertrophic cardiomyopathy (HCM), and frequently occur in young patients with mild structural disease. While massive hypertrophy, fibrosis and microvascular ischemia are the main mechanisms underlying sustained reentry-based ventricular arrhythmias in advanced HCM, cardiomyocyte-based functional arrhythmogenic mechanisms are likely prevalent at earlier stages of the disease. In this review, we will describe studies conducted in human surgical samples from HCM patients, transgenic animal models and human cultured cell lines derived from induced pluripotent stem cells. Current pieces of evidence concur to attribute the increased risk of ventricular arrhythmias in early HCM to different cellular mechanisms. The increase of late sodium current and L-type calcium current is an early observation in HCM, which follows post-translation channel modifications and increases the occurrence of early and delayed afterdepolarizations. Increased myofilament Ca2+ sensitivity, commonly observed in HCM, may promote afterdepolarizations and reentry arrhythmias with direct mechanisms. Decrease of K+-currents due to transcriptional regulation occurs in the advanced disease and contributes to reducing the repolarization-reserve and increasing the early afterdepolarizations (EADs). The presented evidence supports the idea that patients with early-stage HCM should be considered and managed as subjects with an acquired channelopathy rather than with a structural cardiac disease.
Collapse
|
28
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Stătescu C, Enachi Ș, Ureche C, Țăpoi L, Anghel L, Șalaru D, Pleșoianu C, Bostan M, Marcu D, Ovanez Balasanian M, Sascău RA. Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options. Int J Mol Sci 2021; 22:ijms22137218. [PMID: 34281272 PMCID: PMC8268685 DOI: 10.3390/ijms22137218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic cardiac disease with a highly variable phenotypic expression, ranging from asymptomatic to drug refractory heart failure (HF) presentation. Pharmacological therapy is the first line of treatment, but options are currently limited to nonspecific medication like betablockers or calcium channel inhibitors, with frequent suboptimal results. While being the gold standard practice for the management of drug refractory HCM patients, septal reduction therapy (SRT) remains an invasive procedure with associated surgical risks and it requires the expertise of the operating centre, thus limiting its accessibility. It is therefore with high interest that researchers look for pharmacological alternatives that could provide higher rates of success. With new data gathering these past years as well as the development of a new drug class showing promising results, this review provides an up-to-date focused synthesis of existing medical treatment options and future directions for HCM pharmacological treatment.
Collapse
Affiliation(s)
- Cristian Stătescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ștefana Enachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Correspondence: ; Tel.: +40-749-630-641
| | - Carina Ureche
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Țăpoi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
| | - Larisa Anghel
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Șalaru
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Carmen Pleșoianu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mădălina Bostan
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragoș Marcu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mircea Ovanez Balasanian
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Andy Sascău
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
30
|
Vakrou S, Liu Y, Zhu L, Greenland GV, Simsek B, Hebl VB, Guan Y, Woldemichael K, Talbot CC, Aon MA, Fukunaga R, Abraham MR. Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy. Sci Rep 2021; 11:13163. [PMID: 34162896 PMCID: PMC8222321 DOI: 10.1038/s41598-021-89451-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity. We investigated the molecular basis of the cardiac phenotype in two mouse models at established disease stage (mouse-HCM), and human myectomy tissue (human-HCM). We analyzed the transcriptome in 2 mouse models with non-obstructive HCM (R403Q-MyHC, R92W-TnT)/littermate-control hearts at 24 weeks of age, and in myectomy tissue of patients with obstructive HCM/control hearts (GSE36961, GSE36946). Additionally, we examined myocyte redox, cardiac mitochondrial DNA copy number (mtDNA-CN), mt-respiration, mt-ROS generation/scavenging and mt-Ca2+ handling in mice. We identified distinct allele-specific gene expression in mouse-HCM, and marked differences between mouse-HCM and human-HCM. Only two genes (CASQ1, GPT1) were similarly dysregulated in both mutant mice and human-HCM. No signaling pathway or transcription factor was predicted to be similarly dysregulated (by Ingenuity Pathway Analysis) in both mutant mice and human-HCM. Losartan was a predicted therapy only in TnT-mutant mice. KEGG pathway analysis revealed enrichment for several metabolic pathways, but only pyruvate metabolism was enriched in both mutant mice and human-HCM. Both mutant mouse myocytes demonstrated evidence of an oxidized redox environment. Mitochondrial complex I RCR was lower in both mutant mice compared to controls. MyHC-mutant mice had similar mtDNA-CN and mt-Ca2+ handling, but TnT-mutant mice exhibited lower mtDNA-CN and impaired mt-Ca2+ handling, compared to littermate-controls. Molecular profiling reveals differences in gene expression, transcriptional regulation, intracellular signaling and mt-number/function in 2 mouse models at established disease stage. Further studies are needed to confirm differences in gene expression between mouse and human-HCM, and to examine whether cardiac phenotype, genotype and/or species differences underlie the divergence in molecular profiles.
Collapse
Affiliation(s)
- Styliani Vakrou
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bahadir Simsek
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, USA
| | - Yufan Guan
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirubel Woldemichael
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover C Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA.
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
31
|
Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021; 153:211992. [PMID: 33856419 PMCID: PMC8054178 DOI: 10.1085/jgp.202012787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Jeanne M Nerbonne
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, López-Fernández T, Galderisi M, Mercuro G. Antioxidant Approach as a Cardioprotective Strategy in Chemotherapy-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:572-588. [PMID: 32151144 DOI: 10.1089/ars.2020.8055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chemotherapy-induced cardiotoxicity (CTX) has been associated with redox signaling imbalance. In fact, redox reactions are crucial for normal heart physiology, whereas excessive oxidative stress can cause cardiomyocyte structural damage. Recent Advances: An antioxidant approach as a cardioprotective strategy in this setting has shown encouraging results in preventing anticancer drug-induced CTX. Critical Issues: In fact, traditional heart failure drugs as well as many other compounds and nonpharmacological strategies, with a partial effect in reducing oxidative stress, have been shown to counterbalance chemotherapy-induced CTX in this setting to some extent. Future Directions: Given the various pathways of toxicity involved in different chemotherapeutic schemes, interactions with redox balance need to be fine-tuned and a personalized cardioprotective approach seems to be required.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital, IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
miR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKε. Acta Histochem 2021; 123:151653. [PMID: 33246224 DOI: 10.1016/j.acthis.2020.151653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Cardiac hypertrophy is an adaptive response to physiological and pathological stimuli, the latter of which frequently progresses to valvulopathy, heart failure and sudden death. Recent reports revealed that pyroptosis is involved in regulating multiple cardiovascular diseases progression, including cardiac hypertrophy. However, the underlying mechanisms remain poorly understood. This study aims to extensively investigate the regulation of miR-133a-3p on pyroptosis in angiotensin II (Ang II)-induced cardiac hypertrophyin vitro. METHODS The in vitro model of cardiac hypertrophy was induced by Ang II, which was validated by qPCR combined with measurement of cell surface area by immunofluorescence assay. CCK-8 assay and Hochest33342/PI staining was performed to assess pyroptosis. Dual luciferase reporter system was used to verify the direct interaction between miR-133a-3p and IKKε. The effects of miR-133a-3p/IKKε on pyroptosis activation and cardiac hypertrophy markers (Caspase-1, NLRP3, IL-1β, IL-18, GSDMD, ASC, ANP, BNP and β-MHC) were evaluated by western blot, ELISA and qPCR. RESULTS Ang II treatment could induce cardiomyocyte hypertrophy and pyroptosis. The expression of miR-133a-3p was repressed in Ang II-treated HCM cells, and its overexpression could attenuate both pyroptosis and cardiac hypertrophyin vitro. Additionally, IKKε expression was significantly up-regulated in Ang II-induced HCM cells. Dual luciferase reporter system and qPCR validated that miR-133a-3p directly targeted the 3'-UTR of IKKε and suppressed its expression. Moreover, IKKε overexpression impaired the protective function of miR-133a-3p in cardiomyocyte hypertrophy. CONCLUSION Collectively, miR-133a-3p attenuates Ang II induced cardiomyocyte hypertrophy via inhibition of pyroptosis by targeting IKKε. Therefore, miR-133a-3p up-regulation may be a promising strategy for cardiac hypertrophy treatment.
Collapse
|
34
|
Ma C, Chen T, Ti Y, Yang Y, Qi Y, Zhang C, Liu L, Bu P. Ranolazine alleviates contrast-associated acute kidney injury through modulation of calcium independent oxidative stress and apoptosis. Life Sci 2020; 267:118920. [PMID: 33352171 DOI: 10.1016/j.lfs.2020.118920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
This study investigates the role of ranolazine in contrast-associated acute kidney injury (CA-AKI) and potential mechanisms. For in vivo studies, mouse models of CA-AKI and control mice were treated with ranolazine or vehicle. Blood urea nitrogen (BUN) and serum creatinine were detected by spectrophotometry. Anti-T-cell immunoglobulin and mucin domain 1 (TIM 1) and anti-lipocalin 2 antibody (LCN2) were detected by immunofluorescence. Hemodynamic parameters were detected via invasive blood pressure measurement and renal artery color doppler ultrasound, capillary density was measured by CD31 immunofluorescence, vascular permeability assay was performed by Evans blue dye. The expressions of oxidative stress and apoptotic markers were measured and analyzed by immunofluorescence and western blotting. For in vitro studies, intracellular calcium concentration of HUVECs was measured with Fluo 3-AM under confocal microscopy. Results show that compared with control mice, serum BUN, creatinine, TIM 1 and LCN2 levels were elevated in CA-AKI mice, but this effect was alleviated by ranolazine-pretreatment. Safe doses of ranolazine (less than 64 mg/kg) had no significant effect on overall blood pressure, but substantially improved renal perfusion, reduced contrast-induced microcirculation disturbance, improved renal capillary density and attenuated renal vascular permeability in ranolazine-pretreated CA-AKI mice. Mechanistically, ranolazine markedly down-regulated oxidative stress and apoptosis markers compared to CA-AKI mice. Intracellularly, ranolazine attenuated calcium overload in HUVECs. These results indicate that ranolazine alleviates CA-AKI through modulation of calcium independent oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chang Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tongshuai Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingxin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
35
|
T-tubule remodeling in human hypertrophic cardiomyopathy. J Muscle Res Cell Motil 2020; 42:305-322. [PMID: 33222034 PMCID: PMC8332592 DOI: 10.1007/s10974-020-09591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The highly organized transverse T-tubule membrane system represents the ultrastructural substrate for excitation–contraction coupling in ventricular myocytes. While the architecture and function of T-tubules have been well described in animal models, there is limited morpho-functional data on T-tubules in human myocardium. Hypertrophic cardiomyopathy (HCM) is a primary disease of the heart muscle, characterized by different clinical presentations at the various stages of its progression. Most HCM patients, indeed, show a compensated hypertrophic disease (“non-failing hypertrophic phase”), with preserved left ventricular function, and only a small subset of individuals evolves into heart failure (“end stage HCM”). In terms of T-tubule remodeling, the “end-stage” disease does not differ from other forms of heart failure. In this review we aim to recapitulate the main structural features of T-tubules during the “non-failing hypertrophic stage” of human HCM by revisiting data obtained from human myectomy samples. Moreover, by comparing pathological changes observed in myectomy samples with those introduced by acute (experimentally induced) detubulation, we discuss the role of T-tubular disruption as a part of the complex excitation–contraction coupling remodeling process that occurs during disease progression. Lastly, we highlight how T-tubule morpho-functional changes may be related to patient genotype and we discuss the possibility of a primitive remodeling of the T-tubule system in rare HCM forms associated with genes coding for proteins implicated in T-tubule structural integrity, formation and maintenance.
Collapse
|
36
|
Chen X, Ren L, Liu X, Sun X, Dong C, Jiang Y, Qin Y, Qu H, Jiao J, Wang S, Bai Y, Yang B. Ranolazine protects against diabetic cardiomyopathy by activating the NOTCH1/NRG1 pathway. Life Sci 2020; 261:118306. [DOI: 10.1016/j.lfs.2020.118306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
|
37
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
38
|
Affiliation(s)
- B O van Driel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - J van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacol Res 2020; 157:104781. [PMID: 32360273 DOI: 10.1016/j.phrs.2020.104781] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023]
Abstract
The results of trials with sodium-glucose cotransporter 2 (SGLT2) inhibitors raised the possibility that this class of drugs provides cardiovascular benefits independently from their anti-diabetic effects, although the mechanisms are unknown. Therefore, we tested the effects of SGLT2 inhibitor dapagliflozin on the progression of experimental heart disease in a non-diabetic model of heart failure with preserved ejection fraction. Dahl salt-sensitive rats were fed a high-salt diet to induce hypertension and diastolic dysfunction and were then treated with dapagliflozin for six weeks. Dapagliflozin ameliorated diastolic function as documented by echo-Doppler and heart catheterization, while blood pressure remained markedly elevated. Chronic in vivo treatment with dapagliflozin reduced diastolic Ca2+ and Na+ overload and increased Ca2+ transient amplitude in ventricular cardiomyocytes, although no direct action of dapagliflozin on isolated cardiomyocytes was observed. Dapagliflozin reversed endothelial activation and endothelial nitric oxide synthase deficit, with reduced cardiac inflammation and consequent attenuation of pro-fibrotic signaling. The potential involvement of coronary endothelium was supported by the endothelial upregulation of Na+/H+ exchanger 1in vivo and direct effects on dapagliflozin on the activity of this exchanger in endothelial cells in vitro. In conclusions, several mechanisms may cumulatively play a significant role in the dapagliflozin-associated cardioprotection. Dapagliflozin ameliorates diastolic function and exerts a positive effect on the myocardium, possibly targeting coronary endothelium. The lower degree of endothelial dysfunction, inflammation and fibrosis translate into improved myocardial performance.
Collapse
|
40
|
Chowdhury SAK, Warren CM, Simon JN, Ryba DM, Batra A, Varga P, Kranias EG, Tardiff JC, Solaro RJ, Wolska BM. Modifications of Sarcoplasmic Reticulum Function Prevent Progression of Sarcomere-Linked Hypertrophic Cardiomyopathy Despite a Persistent Increase in Myofilament Calcium Response. Front Physiol 2020; 11:107. [PMID: 32210830 PMCID: PMC7075858 DOI: 10.3389/fphys.2020.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a “disease of the sarcomere.” Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.
Collapse
Affiliation(s)
- Shamim A K Chowdhury
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jillian N Simon
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter Varga
- Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Jil C Tardiff
- Department of Medicine, Division of Cardiology, The University of Arizona, Tucson, AZ, United States
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
41
|
Abstract
Changes of intracellular Ca2+ concentration regulate many aspects of cardiac myocyte function. About 99% of the cytoplasmic calcium in cardiac myocytes is bound to buffers, and their properties will therefore have a major influence on Ca2+ signaling. This article considers the fundamental properties and identities of the buffers and how to measure them. It reviews the effects of buffering on the systolic Ca2+ transient and how this may change physiologically, and in heart failure and both atrial and ventricular arrhythmias, as well. It is concluded that the consequences of this strong buffering may be more significant than currently appreciated, and a fuller understanding is needed for proper understanding of cardiac calcium cycling and contractility.
Collapse
Affiliation(s)
- Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK (G.L.S.)
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, UK (D.A.E.)
| |
Collapse
|
42
|
Sparrow AJ, Sievert K, Patel S, Chang YF, Broyles CN, Brook FA, Watkins H, Geeves MA, Redwood CS, Robinson P, Daniels MJ. Measurement of Myofilament-Localized Calcium Dynamics in Adult Cardiomyocytes and the Effect of Hypertrophic Cardiomyopathy Mutations. Circ Res 2020; 124:1228-1239. [PMID: 30732532 PMCID: PMC6485313 DOI: 10.1161/circresaha.118.314600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. Objective: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. Methods and Results: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. Conclusions: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.
Collapse
Affiliation(s)
- Alexander J Sparrow
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Kolja Sievert
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Suketu Patel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Yu-Fen Chang
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Connor N Broyles
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Frances A Brook
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Hugh Watkins
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.)
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, United Kingdom (M.A.G.)
| | - Charles S Redwood
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Paul Robinson
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Matthew J Daniels
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Regenerative Medicine (M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.).,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan (M.J.D.)
| |
Collapse
|
43
|
Dybkova N, Ahmad S, Pabel S, Tirilomis P, Hartmann N, Fischer TH, Bengel P, Tirilomis T, Ljubojevic S, Renner A, Gummert J, Ellenberger D, Wagner S, Frey N, Maier LS, Streckfuss-Bömeke K, Hasenfuss G, Sossalla S. Differential regulation of sodium channels as a novel proarrhythmic mechanism in the human failing heart. Cardiovasc Res 2019; 114:1728-1737. [PMID: 29931291 DOI: 10.1093/cvr/cvy152] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Aims In heart failure (HF), enhanced persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. However, the underlying regulatory mechanisms remain unclear. Our aim was to potentially investigate the regulation and electrophysiological contribution of neuronal sodium channel NaV1.8 in failing human heart and eventually to reveal a novel anti-arrhythmic therapy. Methods and results By western blot, we found that NaV1.8 protein expression is significantly up-regulated, while of the predominant cardiac isoform NaV1.5 is inversely reduced in human HF. Furthermore, to investigate the relation of NaV1.8 regulation with the cellular proarrhythmic events, we performed comprehensive electrophysiology recordings and explore the effect of NaV1.8 on INaL, action potential duration (APD), Ca2+ spark frequency, and arrhythmia induction in human failing cardiomyocytes. NaV1.8 inhibition with the specific blockers A-803467 and PF-01247324 decreased INaL, abbreviated APD and reduced cellular-spontaneous Ca2+-release and proarrhythmic events in human failing cardiomyocytes. Consistently, in mouse cardiomyocytes stressed with isoproterenol, pharmacologic inhibition and genetically knockout of NaV1.8 (SCN10A-/-), were associated with reduced INaL and abbreviated APD. Conclusion We provide first evidence of differential regulation of NaV1.8 and NaV1.5 in the failing human myocardium and their contribution to arrhythmogenesis due to generation of INaL. We propose inhibition of NaV1.8 thus constitutes a promising novel approach for selective anti-arrhythmic therapy in HF.
Collapse
Affiliation(s)
- Nataliya Dybkova
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Shakil Ahmad
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.,Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Steffen Pabel
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.,Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Petros Tirilomis
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Nico Hartmann
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Thomas H Fischer
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Philipp Bengel
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Theodoros Tirilomis
- Department of Thoracic, Cardiac and Vascular Surgery, Georg-August University Goettingen, Germany
| | | | - André Renner
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jan Gummert
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - David Ellenberger
- Department of Medical Statistics, University Medical Center Goettingen, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, Molecular Cardiology and Angiology, University Medical Center, Campus Kiel, Schleswig-Holstein, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Samuel Sossalla
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.,Department of Internal Medicine II, University Medical Center Regensburg, Germany
| |
Collapse
|
44
|
Coppini R, Ferrantini C, Pioner JM, Santini L, Wang ZJ, Palandri C, Scardigli M, Vitale G, Sacconi L, Stefàno P, Flink L, Riedy K, Pavone FS, Cerbai E, Poggesi C, Mugelli A, Bueno-Orovio A, Olivotto I, Sherrid MV. Electrophysiological and Contractile Effects of Disopyramide in Patients With Obstructive Hypertrophic Cardiomyopathy: A Translational Study. JACC Basic Transl Sci 2019; 4:795-813. [PMID: 31998849 PMCID: PMC6978554 DOI: 10.1016/j.jacbts.2019.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
Abstract
In patients with HCM and symptomatic LVOT-obstruction, first treatment with disopyramide leads to a marked reduction of LVOT gradients, with a slight decrease of resting ejection fraction and a modest increase of corrected QT interval, highlighting high efficacy and safety. In single cardiomyocytes and intact trabeculae from surgical samples of patients with obstructive HCM, in vitro treatment with 5 μmol/l disopyramide lowered force and Ca2+ transients while reducing action potential duration and the rate of arrhythmic afterdepolarizations. These effects are mediated by the combined inhibition of peak and late Na+ currents, L-type Ca2+ current, delayed-rectifier K+ current, and ryanodine receptors. In addition to the negative inotropic effect of disopyramide, in vitro results suggest additional antiarrhythmic actions.
Disopyramide is effective and safe in patients with obstructive hypertrophic cardiomyopathy. However, its cellular and molecular mechanisms of action are unknown. We tested disopyramide in cardiomyocytes from the septum of surgical myectomy patients: disopyramide inhibits multiple ion channels, leading to lower Ca transients and force, and shortens action potentials, thus reducing cellular arrhythmias. The electrophysiological profile of disopyramide explains the efficient reduction of outflow gradients but also the limited prolongation of the QT interval and the absence of arrhythmic side effects observed in 39 disopyramide-treated patients. In conclusion, our results support the idea that disopyramide is safe for outpatient use in obstructive patients.
Collapse
Key Words
- AP, action potential
- DAD, delayed afterdepolarization
- EAD, early afterdepolarization
- ECG, electrocardiography
- HCM, hypertrophic cardiomyopathy
- ICa-L, L-type Ca current
- IK, delayed-rectifier K current
- INaL, late Na current
- LVOT, left ventricular outflow tract
- NCX, Na+/Ca2+ exchanger
- QT interval
- RyR, ryanodine receptor
- SR, sarcoplasmic reticulum
- action potentials
- arrhythmias
- diastolic dysfunction
- hERG, human ether-à-go-go-related gene
- hypertrophic cardiomyopathy
- pCa, Ca activation level
- safety
Collapse
Affiliation(s)
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Santini
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Zhinuo J Wang
- Department of Computer Sciences, University of Oxford, Oxford, United Kingdom
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Marina Scardigli
- European Laboratory for Nonlinear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy and National Institute of Optics, National Research Council, Florence, Italy
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy and National Institute of Optics, National Research Council, Florence, Italy
| | - Pierluigi Stefàno
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Laura Flink
- Division of Cardiology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Katherine Riedy
- Hypertrophic Cardiomyopathy Program, New York University Langone Health, New York, New York
| | - Francesco Saverio Pavone
- European Laboratory for Nonlinear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy and National Institute of Optics, National Research Council, Florence, Italy
| | | | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Mark V Sherrid
- Hypertrophic Cardiomyopathy Program, New York University Langone Health, New York, New York
| |
Collapse
|
45
|
Lin YH, Yap J, Ramachandra CJ, Hausenloy DJ. New insights provided by myofibril mechanics in inherited cardiomyopathies. CONDITIONING MEDICINE 2019; 2:213-224. [PMID: 32133438 PMCID: PMC7055865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiomyopathies represent a heterogeneous group of cardiac disorders that perturb cardiac contraction and/or relaxation, and can result in arrhythmias, heart failure, and sudden cardiac death. Based on morphological and functional differences, cardiomyopathies have been classified into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). It has been well documented that mutations in genes encoding sarcomeric proteins are associated with the onset of inherited cardiomyopathies. However, correlating patient genotype to the clinical phenotype has been challenging because of the complex genetic backgrounds, environmental influences, and lifestyles of individuals. Thus, "scaling down" the focus to the basic contractile unit of heart muscle using isolated single myofibril function techniques is of great importance and may be used to understand the molecular basis of disease-causing sarcomeric mutations. Single myofibril bundles harvested from diseased human or experimental animal hearts, as well as cultured adult cardiomyocytes or human cardiomyocytes derived from induced pluripotent stem cells, can be used, thereby providing an ideal multi-level, cross-species platform to dissect sarcomeric function in cardiomyopathies. Here, we will review the myofibril function technique, and discuss alterations in myofibril mechanics, which are known to occur in sarcomeric genetic mutations linked to inherited HCM, DCM, and RCM, and describe the therapeutic potential for future target identification.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Chrishan J.A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals
- Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| |
Collapse
|
46
|
Gudkova AY, Streltsova AA, Kostareva AA. [Hypertrophic cardiomyopathy: modern aspects of pharmacologic treatment]. TERAPEVT ARKH 2019; 91:129-136. [PMID: 32598824 DOI: 10.26442/00403660.2019.09.000137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
This article discusses recent advances in understanding genetic basis and classification of hypertrophic cardiomyopathy. Here, we review pharmacologic treatment strategies and new developments in disease - specific management of HCM.
Collapse
Affiliation(s)
- A Y Gudkova
- Pavlov Medical University.,Almazov Federal Medical Research Centre
| | | | - A A Kostareva
- Pavlov Medical University.,Almazov Federal Medical Research Centre
| |
Collapse
|
47
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
48
|
Christa M, Weng AM, Geier B, Wörmann C, Scheffler A, Lehmann L, Oberberger J, Kraus BJ, Hahner S, Störk S, Klink T, Bauer WR, Hammer F, Köstler H. Increased myocardial sodium signal intensity in Conn's syndrome detected by 23Na magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2019; 20:263-270. [PMID: 30307545 PMCID: PMC6383057 DOI: 10.1093/ehjci/jey134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 11/12/2022] Open
Abstract
AIMS Sodium intake has been linked to left ventricular hypertrophy independently of blood pressure, but the underlying mechanisms remain unclear. Primary hyperaldosteronism (PHA), a condition characterized by tissue sodium overload due to aldosterone excess, causes accelerated left ventricular hypertrophy compared to blood pressure matched patients with essential hypertension. We therefore hypothesized that the myocardium constitutes a novel site capable of sodium storage explaining the missing link between sodium and left ventricular hypertrophy. METHODS AND RESULTS Using 23Na magnetic resonance imaging, we investigated relative sodium signal intensities (rSSI) in the heart, calf muscle, and skin in 8 PHA patients (6 male, median age 55 years) and 12 normotensive healthy controls (HC) (8 male, median age 61 years). PHA patients had a higher mean systolic 24 h ambulatory blood pressure [152 (140; 163) vs. 125 (122; 130) mmHg, P < 0.001] and higher left ventricular mass index [71.0 (63.5; 106.8) vs. 55.0 (50.3; 66.8) g/m2, P = 0.037] than HC. Compared to HC, PHA patients exhibited significantly higher rSSI in the myocardium [0.31 (0.26; 0.34) vs. 0.24 (0.20; 0.27); P = 0.007], calf muscle [0.19 (0.16; 0.22) vs. 0.14 (0.13; 0.15); P = 0.001] and skin [0.28 (0.25; 0.33) vs. 0.19 (0.17; 0.26); P = 0.014], reflecting a difference of +27%, +38%, and +39%, respectively. Treatment of PHA resulted in significant reductions of the rSSI in the myocardium, calf muscle and skin by -13%, -27%, and -29%, respectively. CONCLUSION Myocardial tissue rSSI is increased in PHA patients and treatment of aldosterone excess effectively reduces rSSI, thus establishing the myocardium as a novel site of sodium storage in addition to skeletal muscle and skin.
Collapse
Affiliation(s)
- Martin Christa
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Bettina Geier
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Caroline Wörmann
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Anne Scheffler
- Institute of Pharmacy and Food Chemistry, Chair of Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Leane Lehmann
- Institute of Pharmacy and Food Chemistry, Chair of Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Johannes Oberberger
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Bettina J Kraus
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefanie Hahner
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Störk
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Klink
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Fabian Hammer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine, University Greifswald, Greifswald, Germany
| | - Herbert Köstler
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
49
|
Ghosh GC, Ghosh RK, Bandyopadhyay D, Chatterjee K, Aneja A. Ranolazine: Multifaceted Role beyond Coronary Artery Disease, a Recent Perspective. Heart Views 2019; 19:88-98. [PMID: 31007857 PMCID: PMC6448470 DOI: 10.4103/heartviews.heartviews_18_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ranolazine is a piperazine derivative approved as an antianginal. Primarily used as a second-line antianginal in stable coronary artery disease. Ranolazine blocks the late Na + current and prevents the rise of cytosolic calcium. It decreases myocardial wall tension and improves coronary blood flow. Ranolazine is effective in atrial fibrillation (AF) as an adjunct to electrical or pharmacological cardioversion. It can be used in combination with amiodarone or dronedarone. It has also been used in AF arising after coronary artery bypass grafting surgery. Role of ranolazine is also being evaluated in pulmonary arterial hypertension, diastolic dysfunction, and chemotherapy-induced cardiotoxicity. Ranolazine has some anti-glycemic effect and has shown a reduction of hemoglobin A1c in multiple trials. The antianginal effect of ranolazine has also been seen to be more in patients with diabetes compared to those without diabetes. Ranolazine is being evaluated in patients with the peripheral arterial disease with intermittent claudication and hypertrophic cardiomyopathy. Pilot studies have shown that ranolazine may be beneficial in neurological conditions with myotonia. The evidence-base on the use of ranolazine in various conditions is rapidly increasing with results of further trials eagerly awaited. Accumulating evidence may see ranolazine in routine clinical use for many conditions beyond its traditional role as an antianginal.
Collapse
Affiliation(s)
- Gopal Chandra Ghosh
- Department of Cardiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Raktim Kumar Ghosh
- MetroHealth Medical Center, Case Western Reserve University, Heart and Vascular Institute, Cleveland, OH, USA
| | | | - Krishnarpan Chatterjee
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ashish Aneja
- MetroHealth Medical Center, Case Western Reserve University, Heart and Vascular Institute, Cleveland, OH, USA
| |
Collapse
|
50
|
Olivotto I, Camici PG, Merlini PA, Rapezzi C, Patten M, Climent V, Sinagra G, Tomberli B, Marin F, Ehlermann P, Maier LS, Fornaro A, Jacobshagen C, Ganau A, Moretti L, Hernandez Madrid A, Coppini R, Reggiardo G, Poggesi C, Fattirolli F, Belardinelli L, Gensini G, Mugelli A. Efficacy of Ranolazine in Patients With Symptomatic Hypertrophic Cardiomyopathy: The RESTYLE-HCM Randomized, Double-Blind, Placebo-Controlled Study. Circ Heart Fail 2019; 11:e004124. [PMID: 29321131 DOI: 10.1161/circheartfailure.117.004124] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The late sodium current inhibitor ranolazine reverses the main electrophysiological and mechanical abnormalities of human hypertrophic cardiomyopathy (HCM) cardiomyocytes in vitro, suggesting potential clinical benefit. We aimed to assess the effect of ranolazine on functional capacity, symptomatic status, diastolic function, and arrhythmias in HCM. METHODS AND RESULTS In this multicenter, double-blind, phase 2 study, 80 adult patients with nonobstructive HCM (age 53±14 years, 34 women) were randomly assigned to placebo (n=40) or ranolazine 1000 mg bid (n=40) for 5 months. The primary end point was change in peak VO2 compared with baseline using cardiopulmonary exercise test. Echocardiographic lateral and septal E/E' ratio, prohormone brain natriuretic peptide levels, 24-hour Holter arrhythmic profile, and quality of life were assessed. Ranolazine was safe and well tolerated. Overall, there was no significant difference in VO2 peak change at 5 months in the ranolazine versus placebo group (delta 0.15±3.96 versus -0.02±4.25 mL/kg per minute; P=0.832). Ranolazine treatment was associated with a reduction in 24-hour burden of premature ventricular complexes compared with placebo (>50% reduction versus baseline in 61% versus 31%, respectively; P=0.042). However, changes in prohormone brain natriuretic peptide levels did not differ in the ranolazine compared with the placebo group (geometric mean median [interquartile range], -3 pg/mL [-107, 142 pg/mL] versus 78 pg/mL [-71, 242 pg/mL]; P=0.251). Furthermore, E/E' ratio and quality of life scores showed no significant difference. CONCLUSIONS In patients with nonobstructive HCM, ranolazine showed no overall effect on exercise performance, plasma prohormone brain natriuretic peptide levels, diastolic function, or quality of life. The drug showed an excellent safety profile and was associated with reduced premature ventricular complex burden. Late sodium current inhibition does not seem to improve functional capacity in HCM. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrialsregister.eu. Unique identifier: 2011-004507-20.
Collapse
Affiliation(s)
- Iacopo Olivotto
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Paolo G Camici
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Piera Angelica Merlini
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Claudio Rapezzi
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Monica Patten
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Vicent Climent
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Gianfranco Sinagra
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Benedetta Tomberli
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.).
| | - Francisco Marin
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Philipp Ehlermann
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Lars S Maier
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Alessandra Fornaro
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Claudius Jacobshagen
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Antonello Ganau
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Luciano Moretti
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Antonio Hernandez Madrid
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Raffaele Coppini
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Giorgio Reggiardo
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Corrado Poggesi
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Francesco Fattirolli
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Luiz Belardinelli
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Gianfranco Gensini
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| | - Alessandro Mugelli
- >From the Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O., B.T., A.F.); Vita Salute University and Scientific Institute San Raffaele, Milan, Italy (P.G.C.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda, Milan, Italy (P.A.M.); Ospedale S. Orsola Malpighi, Bologna, Italy (C.R.); Clinic of General and Interventional Cardiology, University Heart Center, Hamburg, Germany (M.P.); Cardiology Department, Hospital General Universitario de Alicante, ISABIAL - FISABIO, Alicante, Spain (V.C.); Cardiovascular Department, Ospedale di Cattinara, Trieste, Italy (G.S.); Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain (F.M.); University Hospital, Heidelberg, Germany (P.E.); University Hospital Regensburg, Germany (L.S.M.); Herz zentrum Georg-August-Universitaet, Göttingen, Germany (C.J.); Department of Clinical and Experimental Medicine, Cardiology, Sassari Hospital, Sassari, Italy (A.G.); Ospedale Mazzoni, Ascoli Piceno, Italy (L.M.); Hospital Ramòn y Cajal, Alcalá University, Madrid, Spain (A.H.M.); Department Neurofarba, University of Florence, Italy (R.C., A.M.); Medi Service, Genoa, Italy (G.R.); Department of Experimental and Clinical Medicine, University of Florence, Italy (C.P., F.F.); Gilead Sciences, Foster City, CA (L.B.); and CESMAV, Florence, Italy (G.G.)
| |
Collapse
|