1
|
Kaza AK, Hitchcock R, Mondal A, Tuttle S, Cottle B, Sachse FB, OPTIMA Trial Investigators. Systematic Mapping of Conduction Tissue Regions During Congenital Heart Surgery. Ann Thorac Surg 2022; 114:1500-1504. [PMID: 35700803 PMCID: PMC9903201 DOI: 10.1016/j.athoracsur.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 02/09/2023]
Abstract
PURPOSE Damage to the cardiac conduction system is a major risk of congenital cardiac surgery. Localization of the conduction system is commonly based on anatomic landmarks, which are variable in congenital heart diseases. We introduce a novel technique for identification of conduction tissue regions based on real-time fiberoptic confocal microscopy. DESCRIPTION We developed a fiberoptic confocal microscopy-based technique to document conduction tissue regions and deployed it in pediatric patients undergoing repair of common congenital heart defects. The technique applies clockface schematics for intraoperative documentation of the location of conduction tissue regions. EVALUATION We created clockface schematics for 11 patients with ventricular septal defects, 6 with tetralogy of Fallot, and 10 with atrioventricular canal defects. The approach revealed substantial variability in the location of the conduction system in hearts with congenital defects. The clockface schematics were used to create plans for subsequent surgical repair. CONCLUSIONS The clockface schematic provides a reliable fiducial system to document and communicate variability of conduction tissue regions in the heart and applies this information for decision-making during congenital cardiac surgery.
Collapse
Affiliation(s)
- Aditya K Kaza
- Department of Cardiac Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert Hitchcock
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Abhijit Mondal
- Department of Cardiac Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stephanie Tuttle
- Department of Cardiac Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian Cottle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Frank B Sachse
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
2
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
3
|
Knighton NJ, Cottle BK, Tiwari S, Mondal A, Kaza AK, Sachse FB, Hitchcock RW. Toward cardiac tissue characterization using machine learning and light-scattering spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200330RR. [PMID: 34729970 PMCID: PMC8562351 DOI: 10.1117/1.jbo.26.11.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The non-destructive characterization of cardiac tissue composition provides essential information for both planning and evaluating the effectiveness of surgical interventions such as ablative procedures. Although several methods of tissue characterization, such as optical coherence tomography and fiber-optic confocal microscopy, show promise, many barriers exist that reduce effectiveness or prevent adoption, such as time delays in analysis, prohibitive costs, and limited scope of application. Developing a rapid, low-cost non-destructive means of characterizing cardiac tissue could improve planning, implementation, and evaluation of cardiac surgical procedures. AIM To determine whether a new light-scattering spectroscopy (LSS) system that analyzes spectra via neural networks is capable of predicting the nuclear densities (NDs) of ventricular tissues. APPROACH We developed an LSS system with a fiber-optics probe and applied it for measurements on cardiac tissues from an ovine model. We quantified the ND in the cardiac tissues using fluorescent labeling, confocal microscopy, and image processing. Spectra acquired from the same cardiac tissues were analyzed with spectral clustering and convolutional neural networks (CNNs) to assess the feasibility of characterizing the ND of tissue via LSS. RESULTS Spectral clustering revealed distinct groups of spectra correlated to ranges of ND. CNNs classified three groups of spectra with low, medium, or high ND with an accuracy of 95.00 ± 11.77 % (mean and standard deviation). Our analyses revealed the sensitivity of the classification accuracy to wavelength range and subsampling of spectra. CONCLUSIONS LSS and machine learning are capable of assessing ND in cardiac tissues. We suggest that the approach is useful for the diagnosis of cardiac diseases associated with changes of ND, such as hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Nathan J. Knighton
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Brian K. Cottle
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Sarthak Tiwari
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Abhijit Mondal
- Boston Children’s Hospital, Harvard Medical School, Department of Cardiac Surgery, Boston, United States
| | - Aditya K. Kaza
- Boston Children’s Hospital, Harvard Medical School, Department of Cardiac Surgery, Boston, United States
| | - Frank B. Sachse
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
- University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, United States
| | - Robert W. Hitchcock
- University of Utah, Department of Biomedical Engineering, Salt Lake City, United States
| |
Collapse
|
4
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Kaza AK, Mondal A, Piekarski B, Sachse FB, Hitchcock R. Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: first in human trial. Eur J Cardiothorac Surg 2020; 58:261-268. [PMID: 32083653 DOI: 10.1093/ejcts/ezaa040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility and safety of fibre-optic confocal microscopy (FCM) using fluorescein sodium dye for the intraoperative location of conduction tissue regions during paediatric heart surgery. METHODS The pilot study included 6 patients undergoing elective surgery for the closure of isolated secundum atrial septal defect aged 30 days to 21 years. FCM imaging was integrated within the normal intraoperative protocol for atrial septal defect repair. Fluorescein sodium dye was applied on the arrested heart. FCM images were acquired at the atrioventricular node region, sinus node region and right ventricle (RV). Total imaging time was limited to 3 min. Any adverse events related to the study were recorded and analysed. Subjects received standard postoperative care. Trained reviewers (n = 9) classified, de-identified and randomized FCM images (n = 60) recorded from the patients as presenting striated, reticulated or indistinguishable microstructures. The reliability of reviewer agreement was assessed using Fleiss' kappa. RESULTS The FCM imaging instruments were integrated effectively into the cardiac surgery operating room. All adverse events found in the study were deemed expected and not related to FCM imaging. Reticulated myocardial microstructures were found during FCM imaging at atrioventricular node and sinus node regions, while striated microstructures were observed in RV. Reliability of agreement of reviewers classifying the FCM images was high (Fleiss' kappa: 0.822). CONCLUSIONS FCM using fluorescein sodium dye was found to be safe for use during paediatric heart surgery. The study demonstrates the potential for FCM to be effective in identifying conduction tissue regions during congenital heart surgery. CLINICAL TRIAL REGISTRATION NUMBER NCT03189134.
Collapse
Affiliation(s)
- Aditya K Kaza
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhijit Mondal
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Breanna Piekarski
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank B Sachse
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Robert Hitchcock
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Toward detection of conduction tissue during cardiac surgery: Light at the end of the tunnel? Heart Rhythm 2020; 17:2200-2207. [PMID: 32659372 DOI: 10.1016/j.hrthm.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
Postoperative conduction block requiring lifetime pacemaker placement continues to be a considerable source of morbidity for patients undergoing repair of congenital heart defects. Damage to the cardiac conduction system (CCS) during surgical procedures is thought to be a major cause of conduction block. Intraoperative identification and avoidance of the CCS is thus a key strategy to improve surgical outcomes. A number of approaches have been developed to avoid conduction tissue damage and mitigate morbidity. Here we review the historical and contemporary approaches for identification of conduction tissue during cardiac surgery. The established approach for intraoperative identification is based on anatomic landmarks established in extensive histologic studies of normal and diseased heart. We focus on landmarks to identify the sinus and atrioventricular nodes during cardiac surgery. We also review technologies explored for intraoperative tissue identification, including electrical impedance measurements and electrocardiography. We describe new optical approaches, in particular, and optical spectroscopy and fiberoptic confocal microscopy (FCM) for identification of CCS regions and working myocardium during surgery. As a template for translation of future technology developments, we describe research and regulatory pathways to translate FCM for cardiac surgery. We suggest that along with more robust approaches to surgeon training, including awareness of fundamental anatomic studies, optical approaches such as FCM show promise in aiding surgeons with repairs of heart defects. In particular, for complex defects, these approaches can complement landmark-based identification of conduction tissue and thus help to avoid injury to the CCS due to surgical procedures.
Collapse
|
7
|
Johnson JK, Cottle BK, Mondal A, Hitchcock R, Kaza AK, Sachse FB. Localization of the sinoatrial and atrioventricular nodal region in neonatal and juvenile ovine hearts. PLoS One 2020; 15:e0232618. [PMID: 32379798 PMCID: PMC7205220 DOI: 10.1371/journal.pone.0232618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/17/2020] [Indexed: 11/18/2022] Open
Abstract
Localization of the components of the cardiac conduction system (CCS) is essential for many therapeutic procedures in cardiac surgery and interventional cardiology. While histological studies provided fundamental insights into CCS localization, this information is incomplete and difficult to translate to aid in intraprocedural localization. To advance our understanding of CCS localization, we set out to establish a framework for quantifying nodal region morphology. Using this framework, we quantitatively analyzed the sinoatrial node (SAN) and atrioventricular node (AVN) in ovine with postmenstrual age ranging from 4.4 to 58.3 months. In particular, we studied the SAN and AVN in relation to the epicardial and endocardial surfaces, respectively. Using anatomical landmarks, we excised the nodes and adjacent tissues, sectioned those at a thickness of 4 μm at 100 μm intervals, and applied Masson's trichrome stain to the sections. These sections were then imaged, segmented to identify nodal tissue, and analyzed to quantify nodal depth and superficial tissue composition. The minimal SAN depth ranged between 20 and 926 μm. AVN minimal depth ranged between 59 and 1192 μm in the AVN extension region, 49 and 980 μm for the compact node, and 148 and 888 μm for the transition to His Bundle region. Using a logarithmic regression model, we found that minimal depth increased logarithmically with age for the AVN (R2 = 0.818, P = 0.002). Also, the myocardial overlay of the AVN was heterogeneous within different regions and decreased with increasing age. Age associated alterations of SAN minimal depth were insignificant. Our study presents examples of characteristic tissue patterns superficial to the AVN and within the SAN. We suggest that the presented framework provides quantitative information for CCS localization. Our studies indicate that procedural methods and localization approaches in regions near the AVN should account for the age of patients in cardiac surgery and interventional cardiology.
Collapse
Affiliation(s)
- Jordan K. Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
| | - Brian K. Cottle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
| | - Abhijit Mondal
- Cardiac Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Hitchcock
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Aditya K. Kaza
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Cardiac Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank B. Sachse
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Perperidis A, Dhaliwal K, McLaughlin S, Vercauteren T. Image computing for fibre-bundle endomicroscopy: A review. Med Image Anal 2020; 62:101620. [PMID: 32279053 PMCID: PMC7611433 DOI: 10.1016/j.media.2019.101620] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Endomicroscopy is an emerging imaging modality, that facilitates the acquisition of in vivo, in situ optical biopsies, assisting diagnostic and potentially therapeutic interventions. While there is a diverse and constantly expanding range of commercial and experimental optical biopsy platforms available, fibre-bundle endomicroscopy is currently the most widely used platform and is approved for clinical use in a range of clinical indications. Miniaturised, flexible fibre-bundles, guided through the working channel of endoscopes, needles and catheters, enable high-resolution imaging across a variety of organ systems. Yet, the nature of image acquisition though a fibre-bundle gives rise to several inherent characteristics and limitations necessitating novel and effective image pre- and post-processing algorithms, ranging from image formation, enhancement and mosaicing to pathology detection and quantification. This paper introduces the underlying technology and most prevalent clinical applications of fibre-bundle endomicroscopy, and provides a comprehensive, up-to-date, review of relevant image reconstruction, analysis and understanding/inference methodologies. Furthermore, current limitations as well as future challenges and opportunities in fibre-bundle endomicroscopy computing are identified and discussed.
Collapse
Affiliation(s)
- Antonios Perperidis
- Institute of Sensors, Signals and Systems (ISSS), Heriot Watt University, EH14 4AS, UK; EPSRC IRC "Hub" in Optical Molecular Sensing & Imaging, MRC Centre for Inflammation Research, Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK.
| | - Kevin Dhaliwal
- EPSRC IRC "Hub" in Optical Molecular Sensing & Imaging, MRC Centre for Inflammation Research, Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK.
| | - Stephen McLaughlin
- Institute of Sensors, Signals and Systems (ISSS), Heriot Watt University, EH14 4AS, UK.
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King's College London, WC2R 2LS, UK.
| |
Collapse
|
9
|
Mondal A, Lackey J, Saeed M, Wu FY, Johnson JK, Huang C, Sachse FB, Hitchcock R, Kaza AK. An Imaging Protocol to Discriminate Specialized Conduction Tissue During Congenital Heart Surgery. Semin Thorac Cardiovasc Surg 2019; 31:537-546. [PMID: 30738149 DOI: 10.1053/j.semtcvs.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
We performed preclinical validation of intraoperative fiber-optic confocal microscopy (FCM) and assessed its safety and efficacy in an ovine model of the pediatric heart. Intraoperative imaging was performed using an FCM system (Cellvizio, Mauna Kea Technology, Paris, France) with specialized imaging miniprobe (GastroFlex UHD, Mauna Kea Technologies). Before imaging, we applied an extracellular fluorophore, sodium fluorescein, to fluorescently label extracellular space. We imaged arrested hearts of ovine (1-6 months) under cardiopulmonary bypass. Image sequences (1-10 seconds duration) were acquired from regions of the sinoatrial and atrioventricular node, as well as subepicardial and subendocardial working myocardium from atria and ventricle. The surgical process was evaluated for integration of the imaging protocol during the operative procedure. In addition, fluorescein cardiotoxicity studies (n = 3 animals) were conducted by comparing electrocardiogram (PR and QRS intervals) and ejection fraction at baseline and after topical application of fluorescein at 1:10, 1:100, and 1:1000 dilutions on a beating ovine heart. Our studies suggest that intraoperative FCM can be used to identify regions associated with specialized conducting tissue in ovine hearts in situ. The imaging protocol was integrated with conventional open heart surgical procedures with minimal changes to the operative process. Application of fluorescein in varying concentrations did not affect the normalized PR interval, QRS interval, and ejection fraction. These preclinical validation studies demonstrated both safety and efficacy of the proposed intraoperative imaging approach. The studies constitute an important step toward first-in-human clinical trials.
Collapse
Affiliation(s)
- Abhijit Mondal
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - John Lackey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Mossab Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Fei-Yi Wu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Jordan K Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Chao Huang
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Comprehensive Arrhythmia and Research Management (CARMA) Center, University of Utah, Salt Lake City, Utah
| | - Frank B Sachse
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Robert Hitchcock
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Aditya K Kaza
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Huang C, Wasmund S, Hitchcock R, Marrouche NF, Sachse FB. Catheterized Fiber-Optics Confocal Microscopy of the Beating Heart In Situ. Circ Cardiovasc Imaging 2018; 10:CIRCIMAGING.117.006881. [PMID: 28956775 DOI: 10.1161/circimaging.117.006881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chao Huang
- From the Comprehensive Arrhythmia and Research Management (CARMA) Center and Division of Cardiovascular Medicine (C.H., S.W., N.F.M., F.B.S.), Nora Eccles Harrison Cardiovascular Research and Training Institute (C.H., F.B.S.), and Department of Bioengineering, University of Utah, Salt Lake City (R.H., F.B.S.).
| | - Stephen Wasmund
- From the Comprehensive Arrhythmia and Research Management (CARMA) Center and Division of Cardiovascular Medicine (C.H., S.W., N.F.M., F.B.S.), Nora Eccles Harrison Cardiovascular Research and Training Institute (C.H., F.B.S.), and Department of Bioengineering, University of Utah, Salt Lake City (R.H., F.B.S.)
| | - Robert Hitchcock
- From the Comprehensive Arrhythmia and Research Management (CARMA) Center and Division of Cardiovascular Medicine (C.H., S.W., N.F.M., F.B.S.), Nora Eccles Harrison Cardiovascular Research and Training Institute (C.H., F.B.S.), and Department of Bioengineering, University of Utah, Salt Lake City (R.H., F.B.S.)
| | - Nassir F Marrouche
- From the Comprehensive Arrhythmia and Research Management (CARMA) Center and Division of Cardiovascular Medicine (C.H., S.W., N.F.M., F.B.S.), Nora Eccles Harrison Cardiovascular Research and Training Institute (C.H., F.B.S.), and Department of Bioengineering, University of Utah, Salt Lake City (R.H., F.B.S.).
| | - Frank B Sachse
- From the Comprehensive Arrhythmia and Research Management (CARMA) Center and Division of Cardiovascular Medicine (C.H., S.W., N.F.M., F.B.S.), Nora Eccles Harrison Cardiovascular Research and Training Institute (C.H., F.B.S.), and Department of Bioengineering, University of Utah, Salt Lake City (R.H., F.B.S.).
| |
Collapse
|
11
|
Seidel T, Sankarankutty AC, Sachse FB. Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:302-314. [PMID: 28709857 DOI: 10.1016/j.pbiomolbio.2017.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/03/2023]
Abstract
The transverse tubular system (t-system) of ventricular cardiomyocytes is essential for efficient excitation-contraction coupling. In cardiac diseases, such as heart failure, remodeling of the t-system contributes to reduced cardiac contractility. However, mechanisms of t-system remodeling are incompletely understood. Prior studies suggested an association with altered cardiac biomechanics and gene expression in disease. Since fibrosis may alter tissue biomechanics, we investigated the local microscopic association of t-system remodeling with fibrosis in a rabbit model of myocardial infarction (MI). Biopsies were taken from the MI border zone of 6 infarcted hearts and from 6 control hearts. Using confocal microscopy and automated image analysis, we quantified t-system integrity (ITT) and the local fraction of extracellular matrix (fECM). In control, fECM was 18 ± 0.3%. ITT was high and homogeneous (0.07 ± 0.006), and did not correlate with fECM (R2 = 0.05 ± 0.02). The MI border zone exhibited increased fECM within 3 mm from the infarct scar (30 ± 3.5%, p < 0.01 vs control), indicating fibrosis. Myocytes in the MI border zone exhibited significant t-system remodeling, with dilated, sheet-like components, resulting in low ITT (0.03 ± 0.008, p < 0.001 vs control). While both fECM and t-system remodeling decreased with infarct distance, ITT correlated better with decreasing fECM (R2 = 0.44) than with infarct distance (R2 = 0.24, p < 0.05). Our results show that t-system remodeling in the rabbit MI border zone resembles a phenotype previously described in human heart failure. T-system remodeling correlated with the amount of local fibrosis, which is known to stiffen cardiac tissue, but was not found in regions without fibrosis. Thus, locally altered tissue mechanics may contribute to t-system remodeling.
Collapse
Affiliation(s)
- T Seidel
- Institute for Cellular and Molecular Physiology, University of Erlangen-Nuremberg, Erlangen, Germany; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA.
| | - A C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Bioengineering, University of Utah, Salt Lake City, USA
| | - F B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Bioengineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|
12
|
Mosca RS. Cardiopulmonary bypass, cardioplegia, confocal inspection…? J Thorac Cardiovasc Surg 2016; 152:203-4. [PMID: 27343916 DOI: 10.1016/j.jtcvs.2016.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Ralph S Mosca
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY.
| |
Collapse
|
13
|
Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy. PLoS One 2016; 11:e0147667. [PMID: 26808149 PMCID: PMC4725960 DOI: 10.1371/journal.pone.0147667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2±0.3% and 98.0±0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2±0.3% and 94.0±2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.
Collapse
|
14
|
Seidel T, Edelmann JC, Sachse FB. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Ann Biomed Eng 2015; 44:1436-1448. [PMID: 26399990 DOI: 10.1007/s10439-015-1465-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/18/2015] [Indexed: 01/20/2023]
Abstract
Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale.
Collapse
Affiliation(s)
- T Seidel
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
| | - J-C Edelmann
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany
| | - F B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
15
|
Huang C, Kaza AK, Hitchcock RW, Sachse FB. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart. Front Physiol 2014; 5:367. [PMID: 25309455 PMCID: PMC4174735 DOI: 10.3389/fphys.2014.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/07/2014] [Indexed: 11/15/2022] Open
Abstract
Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5–9 lines, which is comparable to 4–8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.
Collapse
Affiliation(s)
- Chao Huang
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| | - Aditya K Kaza
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School Boston, MA, USA
| | - Robert W Hitchcock
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| | - Frank B Sachse
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA ; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
16
|
Brown R, Dissanayake KN, Skehel PA, Ribchester RR. Endomicroscopy and electromyography of neuromuscular junctions in situ. Ann Clin Transl Neurol 2014; 1:867-83. [PMID: 25540801 PMCID: PMC4265058 DOI: 10.1002/acn3.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
Objective Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. Methods We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: WldS mice, which coexpress the Wallerian-degeneration Slow (WldS) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). Results We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. Interpretation Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics.
Collapse
Affiliation(s)
- Rosalind Brown
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Kosala N Dissanayake
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Paul A Skehel
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Richard R Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|