1
|
Chaher N, Lacerda S, Digilio G, Padovan S, Gao L, Lavin B, Stefania R, Velasco C, Cruz G, Prieto C, Botnar RM, Phinikaridou A. Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis. NPJ IMAGING 2024; 2:33. [PMID: 39301014 PMCID: PMC11408249 DOI: 10.1038/s44303-024-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Heart failure (HF) affects 64 million people globally with enormous societal and healthcare costs. Myocardial fibrosis, characterised by changes in collagen content drives HF. Despite evidence that collagen type III (COL3) content changes during myocardial fibrosis, in vivo imaging of COL3 has not been achieved. Here, we discovered the first imaging probe that binds to COL3 with high affinity and specificity, by screening candidate peptide-based probes. Characterisation of the probe showed favourable magnetic and biodistribution properties. The probe's potential for in vivo molecular cardiac magnetic resonance imaging was evaluated in a murine model of myocardial infarction. Using the new probe, we were able to map and quantify, previously undetectable, spatiotemporal changes in COL3 after myocardial infarction and monitor response to treatment. This innovative probe provides a promising tool to non-invasively study the unexplored roles of COL3 in cardiac fibrosis and other cardiovascular conditions marked by changes in COL3.
Collapse
Affiliation(s)
- Nadia Chaher
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans rue Charles Sadron, 45071 Orléans, France
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, Torino, Italy
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Rachele Stefania
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Radiology, University of Michigan, Ann Arbor, MI USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
| |
Collapse
|
2
|
Moreau C, Lukačević T, Pallier A, Sobilo J, Aci-Sèche S, Garnier N, Même S, Tóth É, Lacerda S. Peptide-Conjugated MRI Probe Targeted to Netrin-1, a Novel Metastatic Breast Cancer Biomarker. Bioconjug Chem 2024; 35:265-275. [PMID: 38340041 DOI: 10.1021/acs.bioconjchem.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Despite significant progress in cancer imaging and treatment over the years, early diagnosis and metastasis detection remain a challenge. Molecular magnetic resonance imaging (MRI), with its high resolution, can be well adapted to fulfill this need, requiring the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast cancer and implicated in tumor progression and the appearance of metastasis. This study focuses on the design and preclinical evaluation of a novel Netrin-1-specific peptide-based MRI probe, GdDOTA-KKTHDAVR (Gd-K), to visualize metastatic breast cancer. The targeting peptide sequence was identified based on the X-ray structure of the complex between Netrin-1 and its transmembrane receptor DCC. Molecular docking simulations support the probe design. In vitro studies evidenced submicromolar affinity of Gd-K for Netrin-1 (KD = 0.29 μM) and good MRI efficacy (proton relaxivity, r1 = 4.75 mM-1 s-1 at 9.4 T, 37 °C). In vivo MRI studies in a murine model of triple-negative metastatic breast cancer revealed successful tumor visualization at earlier stages of tumor development (smaller tumor volume). Excellent signal enhancement, 120% at 2 min and 70% up to 35 min post injection, was achieved (0.2 mmol/kg injected dose), representing a reasonable imaging time window and a superior contrast enhancement in the tumor as compared to Dotarem injection.
Collapse
Affiliation(s)
- Clémentine Moreau
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Tea Lukačević
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Julien Sobilo
- TAAM-In vivo Imaging Centre, MO2VING, CNRS UAR44, F-45071 Orléans 2, France
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique, UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067 Orléans Cedex 2, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
3
|
Hume RD, Kanagalingam S, Deshmukh T, Chen S, Mithieux SM, Rashid FN, Roohani I, Lu J, Doan T, Graham D, Clayton ZE, Slaughter E, Kizana E, Stempien-Otero AS, Brown P, Thomas L, Weiss AS, Chong JJ. Tropoelastin Improves Post-Infarct Cardiac Function. Circ Res 2023; 132:72-86. [PMID: 36453283 PMCID: PMC9829044 DOI: 10.1161/circresaha.122.321123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.
Collapse
Affiliation(s)
- Robert D. Hume
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Shaan Kanagalingam
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Tejas Deshmukh
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Siqi Chen
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Suzanne M. Mithieux
- Charles Perkins Centre, University of Sydney, NSW, Australia (S.M.M., A.S.W.).,School of Life and Environmental Sciences, University of Sydney, NSW, Australia (S.M.M., A.S.W.)
| | - Fairooj N. Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Iman Roohani
- School of Biomedical Engineering, University of Sydney, NSW, Australia (I.R.).,School of Chemistry, University of New South Wales, Australia (I.R.)
| | - Juntang Lu
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Tram Doan
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.)
| | - Dinny Graham
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.).,Westmead Breast Cancer Institute, NSW, Australia (D.G.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | - Zoe E. Clayton
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - April S. Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA (A.S.S.-O.)
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | | | - James J.H. Chong
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| |
Collapse
|
4
|
Capuana F, Phinikaridou A, Stefania R, Padovan S, Lavin B, Lacerda S, Almouazen E, Chevalier Y, Heinrich-Balard L, Botnar RM, Aime S, Digilio G. Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin. J Med Chem 2021; 64:15250-15261. [PMID: 34661390 PMCID: PMC8558862 DOI: 10.1021/acs.jmedchem.1c01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 μM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Federico Capuana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, Torino 10126, Italy
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans Cedex 2 45071, France
| | - Eyad Almouazen
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Yves Chevalier
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Laurence Heinrich-Balard
- INSA Lyon, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna, Santiago 4860, Chile
| | | | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale ″Amedeo Avogadro″, Viale T. Michel 11, Alessandria 15121, Italy
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is critical for all aspects of vascular pathobiology. In vascular disease the balance of its structural components is shifted. In atherosclerotic plaques there is in fact a dynamic battle between stabilizing and proinflammatory responses. This review explores the most recent strides that have been made to detail the active role of the ECM - and its main binding partners - in driving atherosclerotic plaque development and destabilization. RECENT FINDINGS Proteoglycans-glycosaminoglycans (PGs-GAGs) synthesis and remodelling, as well as elastin synthesis, cross-linking, degradation and its elastokines potentially affect disease progression, providing multiple steps for potential therapeutic intervention and diagnostic targeted imaging. Of note, GAGs biosynthetic enzymes modulate the phenotype of vascular resident and infiltrating cells. In addition, while plaque collagen structure exerts very palpable effects on its immediate surroundings, a new role for collagen is also emerging on a more systemic level as a biomarker for cardiovascular disease as well as a target for selective drug-delivery. SUMMARY The importance of studying the ECM in atherosclerosis is more and more acknowledged and various systems are being developed to visualize, target and mimic it.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Sweden
| |
Collapse
|
6
|
Zhao S, Cao J, Li J, Yang X, Cao P, Lan J, Lu G. Association between serum elastin-derived peptides and abdominal aortic calcification in peritoneal dialysis patients: a cross-sectional study. Ren Fail 2021; 43:860-868. [PMID: 33993833 PMCID: PMC8143601 DOI: 10.1080/0886022x.2021.1918163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Peritoneal dialysis (PD) patients experience accelerated arterial aging, which is characterized by elastin degradation. Elastin-derived peptides (EDPs) are direct products of elastin fragmentation. This study tried to explore the association between serum EDPs and abdominal aortic calcification (AAC) in PD patients. Methods Serum levels of EDPs were analyzed in 126 eligible PD patients and 30 controls. PD patients were grouped according to the annularity of AAC evaluated by an abdominal computed tomography (CT) scan. Serum EDPs were analyzed in relation to the presence of AAC or severe AAC in PD patients by logistic regression analysis. Results Serum EDPs in PD patients were significantly higher than age-matched controls. In 126 PD patients, higher EDPs was associated with greater risk of present AAC (OR = 1.056, 95%CI 1.010–1.103) and severe AAC (OR = 1.062, 95%CI 1.004–1.123). A combination of EDPs substantially improved the accuracy of diagnostic performance for AAC and severe AAC. Conclusions EDPs can predict the presence and extent of AAC in PD patients, indicating its possible role to recognize PD patients at risk for AAC and severe AAC.
Collapse
Affiliation(s)
- Shizhu Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyuan Cao
- Department of Nephrology, Taizhou People's hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaochun Yang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peiyang Cao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Lan
- Department of Nephology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Willemink MJ, Varga-Szemes A, Schoepf UJ, Codari M, Nieman K, Fleischmann D, Mastrodicasa D. Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence. Eur Radiol Exp 2021; 5:12. [PMID: 33763754 PMCID: PMC7991013 DOI: 10.1186/s41747-021-00207-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
After an ischemic event, disruptive changes in the healthy myocardium may gradually develop and may ultimately turn into fibrotic scar. While these structural changes have been described by conventional imaging modalities mostly on a macroscopic scale-i.e., late gadolinium enhancement at magnetic resonance imaging (MRI)-in recent years, novel imaging methods have shown the potential to unveil an even more detailed picture of the postischemic myocardial phenomena. These new methods may bring advances in the understanding of ischemic heart disease with potential major changes in the current clinical practice. In this review article, we provide an overview of the emerging methods for the non-invasive characterization of ischemic heart disease, including coronary ultrafast Doppler angiography, photon-counting computed tomography (CT), micro-CT (for preclinical studies), low-field and ultrahigh-field MRI, and 11C-methionine positron emission tomography. In addition, we discuss new opportunities brought by artificial intelligence, while addressing promising future scenarios and the challenges for the application of artificial intelligence in the field of cardiac imaging.
Collapse
Affiliation(s)
- Martin J Willemink
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94035, USA
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Marina Codari
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94035, USA
| | - Koen Nieman
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94035, USA
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94035, USA.
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Ozsvar J, Yang C, Cain SA, Baldock C, Tarakanova A, Weiss AS. Tropoelastin and Elastin Assembly. Front Bioeng Biotechnol 2021; 9:643110. [PMID: 33718344 PMCID: PMC7947355 DOI: 10.3389/fbioe.2021.643110] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Elastic fibers are an important component of the extracellular matrix, providing stretch, resilience, and cell interactivity to a broad range of elastic tissues. Elastin makes up the majority of elastic fibers and is formed by the hierarchical assembly of its monomer, tropoelastin. Our understanding of key aspects of the assembly process have been unclear due to the intrinsic properties of elastin and tropoelastin that render them difficult to study. This review focuses on recent developments that have shaped our current knowledge of elastin assembly through understanding the relationship between tropoelastin’s structure and function.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Chengeng Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Lavin B, Lacerda S, Andia ME, Lorrio S, Bakewell R, Smith A, Rashid I, Botnar RM, Phinikaridou A. Tropoelastin: an in vivo imaging marker of dysfunctional matrix turnover during abdominal aortic dilation. Cardiovasc Res 2020; 116:995-1005. [PMID: 31282949 PMCID: PMC7104357 DOI: 10.1093/cvr/cvz178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aims Dysfunctional matrix turnover is present at sites of abdominal aortic aneurysm (AAA) and leads to the accumulation of monomeric tropoelastin rather than cross-linked elastin. We used a gadolinium-based tropoelastin-specific magnetic resonance contrast agent (Gd-TESMA) to test whether quantifying regional tropoelastin turnover correlates with aortic expansion in a murine model. The binding of Gd-TESMA to excised human AAA was also assessed. Methods and results We utilized the angiotensin II (Ang II)-infused apolipoprotein E gene knockout (ApoE-/-) murine model of aortic dilation and performed in vivo imaging of tropoelastin by administering Gd-TESMA followed by late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) and T1 mapping at 3 T, with subsequent ex vivo validation. In a cross-sectional study (n = 66; control = 11, infused = 55) we found that Gd-TESMA enhanced MRI was elevated and confined to dilated aortic segments (control: LGE=0.13 ± 0.04 mm2, control R1= 1.1 ± 0.05 s-1 vs. dilated LGE=1.0 ± 0.4 mm2, dilated R1 =2.4 ± 0.9 s-1) and was greater in segments with medium (8.0 ± 3.8 mm3) and large (10.4 ± 4.1 mm3) compared to small (3.6 ± 2.1 mm3) vessel volume. Furthermore, a proof-of-principle longitudinal study (n = 19) using Gd-TESMA enhanced MRI demonstrated a greater proportion of tropoelastin: elastin expression in dilating compared to non-dilating aortas, which correlated with the rate of aortic expansion. Treatment with pravastatin and aspirin (n = 10) did not reduce tropoelastin turnover (0.87 ± 0.3 mm2 vs. 1.0 ± 0.44 mm2) or aortic dilation (4.86 ± 2.44 mm3 vs. 4.0 ± 3.6 mm3). Importantly, Gd-TESMA-enhanced MRI identified accumulation of tropoelastin in excised human aneurysmal tissue (n = 4), which was confirmed histologically. Conclusion Tropoelastin MRI identifies dysfunctional matrix remodelling that is specifically expressed in regions of aortic aneurysm or dissection and correlates with the development and rate of aortic expansion. Thus, it may provide an additive imaging marker to the serial assessment of luminal diameter for surveillance of patients at risk of or with established aortopathy.
Collapse
Affiliation(s)
- Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Sara Lacerda
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK.,Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Marcelo E Andia
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvia Lorrio
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Robert Bakewell
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Alberto Smith
- Cardiovascular Division, Academic Department of Vascular Surgery, King's College London, London, UK
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK.,Wellcome Trust and EPSRC Medical Engineering Center, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| |
Collapse
|
11
|
Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 2020; 55:252-273. [PMID: 32530323 DOI: 10.1080/10409238.2020.1768208] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elastin is an important protein of the extracellular matrix of higher vertebrates, which confers elasticity and resilience to various tissues and organs including lungs, skin, large blood vessels and ligaments. Owing to its unique structure, extensive cross-linking and durability, it does not undergo significant turnover in healthy tissues and has a half-life of more than 70 years. Elastin is not only a structural protein, influencing the architecture and biomechanical properties of the extracellular matrix, but also plays a vital role in various physiological processes. Bioactive elastin peptides termed elastokines - in particular those of the GXXPG motif - occur as a result of proteolytic degradation of elastin and its non-cross-linked precursor tropoelastin and display several biological activities. For instance, they promote angiogenesis or stimulate cell adhesion, chemotaxis, proliferation, protease activation and apoptosis. Elastin-degrading enzymes such as matrix metalloproteinases, serine proteases and cysteine proteases slowly damage elastin over the lifetime of an organism. The destruction of elastin and the biological processes triggered by elastokines favor the development and progression of various pathological conditions including emphysema, chronic obstructive pulmonary disease, atherosclerosis, metabolic syndrome and cancer. This review gives an overview on types of human elastases and their action on human elastin, including the formation, structure and biological activities of elastokines and their role in common biological processes and severe pathological conditions.
Collapse
Affiliation(s)
- Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1622. [PMID: 32126587 DOI: 10.1002/wnan.1622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) consists of proteins and carbohydrates that supports different biological structures and processes such as tissue development, elasticity, and preservation of organ structure. Diseases involving inflammation, fibrosis, tumor invasion, and injury are all attributed to the transition of the ECM from homeostasis to remodeling, which can significantly change the biochemical and biomechanical features of ECM components. While contrast agents have played an indispensable role in facilitating clinical diagnosis of diseases using magnetic resonance imaging (MRI), there is a strong need to develop novel biomarker-targeted imaging probes for in vivo visualization of biological processes and pathological alterations at a cellular and molecular level, for both early diagnosis and monitoring drug treatment. Herein, we will first review the pathological accumulation and characterization of ECM proteins recognized as important molecular features of diseases. Developments in MRI probes targeting ECM proteins such as collagen, fibronectin, and elastin via conjugation of existing contrast agents to targeting moieties and their applications to various diseases, are also reviewed. We have also reviewed our progress in the development of collagen-targeted protein MRI contrast agent with significant improvement in relaxivity and metal binding specificity, and their applications in early detection of fibrosis and metastatic cancer. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
13
|
Mass Spectrometry Imaging of atherosclerosis-affine Gadofluorine following Magnetic Resonance Imaging. Sci Rep 2020; 10:79. [PMID: 31919465 PMCID: PMC6952459 DOI: 10.1038/s41598-019-57075-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging of atherosclerosis by Magnetic Resonance Imaging (MRI) has been impaired by a lack of validation of the specific substrate responsible for the molecular imaging signal. We therefore aimed to investigate the additive value of mass spectrometry imaging (MSI) of atherosclerosis-affine Gadofluorine P for molecular MRI of atherosclerotic plaques. Atherosclerotic Ldlr−/− mice were investigated by high-field MRI (7 T) at different time points following injection of atherosclerosis-affine Gadofluorine P as well as at different stages of atherosclerosis formation (4, 8, 16 and 20 weeks of HFD). At each imaging time point mice were immediately sacrificed after imaging and aortas were excised for mass spectrometry imaging: Matrix Assisted Laser Desorption Ionization (MALDI) Imaging and Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS) imaging. Mass spectrometry imaging allowed to visualize the localization and measure the concentration of the MR imaging probe Gadofluorine P in plaque tissue ex vivo with high spatial resolution and thus adds novel and more target specific information to molecular MR imaging of atherosclerosis.
Collapse
|
14
|
Becher T, Riascos-Bernal DF, Kramer DJ, Almonte VM, Chi J, Tong T, Oliveira-Paula GH, Koleilat I, Chen W, Cohen P, Sibinga NES. Three-Dimensional Imaging Provides Detailed Atherosclerotic Plaque Morphology and Reveals Angiogenesis After Carotid Artery Ligation. Circ Res 2020; 126:619-632. [PMID: 31914850 DOI: 10.1161/circresaha.119.315804] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. OBJECTIVE We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. METHODS AND RESULTS Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. CONCLUSIONS We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.
Collapse
Affiliation(s)
- Tobias Becher
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (T.B.).,First Department of Medicine (Division of Cardiology), University Medical Center Mannheim, Germany (T.B.)
| | - Dario F Riascos-Bernal
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| | - Daniel J Kramer
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY
| | - Vanessa M Almonte
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| | - Jingy Chi
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY
| | - Tao Tong
- Bio-Imaging Resource Center (T.T.), The Rockefeller University, NY
| | - Gustavo H Oliveira-Paula
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| | - Issam Koleilat
- Department of Cardiothoracic and Vascular Surgery (Division of Vascular Surgery), Montefiore Medical Center, Bronx, NY (I.K.)
| | - Wei Chen
- Department of Medicine (Nephrology Division) (W.C.), Albert Einstein College of Medicine, Bronx, NY.,Department of Medicine, University of Rochester School of Medicine and Dentistry, NY (W.C.)
| | - Paul Cohen
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY
| | - Nicholas E S Sibinga
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
15
|
Allahverdian S, Ortega C, Francis GA. Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handb Exp Pharmacol 2020; 270:335-358. [PMID: 33340050 DOI: 10.1007/164_2020_364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In humans, smooth muscle cells (SMCs) are the main cell type in the artery medial layer, in pre-atherosclerotic diffuse thickening of the intima, and in all stages of atherosclerotic lesion development. SMCs secrete the proteoglycans responsible for the initial binding and retention of atherogenic lipoproteins in the artery intima, with this retention driving foam cell formation and subsequent stages of atherosclerosis. In this chapter we review current knowledge of the extracellular matrix generated by SMCs in medial and intimal arterial layers, their relationship to atherosclerotic lesion development and stabilization, how these findings correlate with mouse models of atherosclerosis, and potential therapies aimed at targeting the SMC matrix-lipoprotein interaction for atherosclerosis prevention.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Carleena Ortega
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G. Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 2019; 84:41-56. [PMID: 31493460 DOI: 10.1016/j.matbio.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
In the arteries of vertebrates, evolution has given rise to resilient macromolecular structures, elastin and elastic fibers, capable of sustaining an elevated blood pressure and smoothening the discontinuous blood flow and pressure generated by the heart. Elastic fibers are produced only during development and childhood, before being progressively degraded by mechanical stress and enzymatic activities during adulthood and aging. During this period, arterial elastic fiber calcification and loading of lipids also occur, all of these events conducting to arteriosclerosis. This leads to a progressive dysfunction of the large elastic arteries inducing elevated blood pressure as well as altered hemodynamics and organ perfusion, which induce more global malfunctions of the body during normal aging. Additionally, some arterial conditions occur more frequently with advancing age, such as atherosclerosis or aneurysms, which are called age-related diseases or pathological aging. The physiological or pathological degradation of elastic fibers and function of elastic arteries seemed to be rather inevitable over time. However, during the recent years, different molecules - including several ATP-dependent potassium channel openers, such as minoxidil - have been shown to re-induce elastin production and elastic fiber assembly, leading to improvements in the arterial structure and function or in organ perfusion. This review summarizes the changes in the arterial elastic fibers and structure from development until aging, and presents some of the potential pharmacotherapies leading to elastic fiber neosynthesis and arterial function improvement.
Collapse
Affiliation(s)
- Wassim Fhayli
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Quentin Boëté
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Olfa Harki
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | | | - Marie-Paule Jacob
- INSERM, U1148, and Hopital Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris, France
| | - Gilles Faury
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France.
| |
Collapse
|
17
|
Lavin Plaza B, Theodoulou I, Rashid I, Hajhosseiny R, Phinikaridou A, Botnar RM. Molecular Imaging in Ischemic Heart Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:31. [PMID: 31281564 PMCID: PMC6557873 DOI: 10.1007/s12410-019-9500-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review The purpose of this paper is to review current and new modalities to image key biological processes in ischemic heart disease and after myocardial infarction non-invasively. Recent Findings New imaging targets have been developed to detect and quantify myocardial damage after ischemia. Although positron emission tomography (PET) has been leading the development of new probes in the past, continuous improvements of magnetic resonance imaging (MRI) together with the development of new novel MRI contrast agents opens new research avenues including the combination of both PET and MRI to obtain anatomic, functional, and molecular information simultaneously, which is not possible from a single imaging session. Summary This review summarizes the state of art of non-invasive molecular imaging of the myocardium during ischemia and after myocardial infarction using PET and MRI. We also describe the different contrast agents that have been developed to image the different phases of cardiac healing and the biological processes associated with each of those phases. Importantly, here we focus on imaging of inflammation as it is the key biological process that orchestrates clearance of dead cells, tissue remodeling, cardiac repair, and future outcome. We also focus on clinical translation of some of the novel contrast agents that have been tested in patients and discuss the need for larger, multi-center patient studies to fully validate the applicability of new imaging probes.
Collapse
Affiliation(s)
- Begoña Lavin Plaza
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Iakovos Theodoulou
- 2Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Imran Rashid
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Reza Hajhosseiny
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Alkystis Phinikaridou
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Rene M Botnar
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK.,3Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Abstract
Molecular magnetic resonance imaging (MRI) provides information non-invasively at cellular and molecular levels, for both early diagnosis and monitoring therapeutic follow-up. This imaging technique requires the development of a new class of contrast agents, which signal changes (typically becomes enhanced) when in presence of the cellular or molecular process to be evaluated. Even if molecular MRI has had a prominent role in the advances in medicine over the past two decades, the large majority of the developed probes to date are still in preclinical level, or eventually in phase I or II clinical trials. The development of novel imaging probes is an emergent active research domain. This review focuses on gadolinium-based specific-targeted contrast agents, providing rational design considerations and examples of the strategies recently reported in the literature.
Collapse
|
19
|
Affiliation(s)
- Raphaël Duivenvoorden
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.D., W.J.M.M.).,Division of Nephrology, Department of Internal Medicine, Amsterdam Cardiovascular Sciences (R.D.)
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.D., W.J.M.M.).,Department of Medical Biochemistry (W.J.M.M.), Amsterdam University Medical Centers, Academic Medical Center, The Netherlands.,Laboratory of Chemical Biology Cluster, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands (W.J.M.M.)
| |
Collapse
|