1
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
2
|
Vascular Ca V1.2 channels in diabetes. CURRENT TOPICS IN MEMBRANES 2022; 90:65-93. [PMID: 36368875 DOI: 10.1016/bs.ctm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.
Collapse
|
3
|
Längst N, Adler J, Schweigert O, Kleusberg F, Cruz Santos M, Knauer A, Sausbier M, Zeller T, Ruth P, Lukowski R. Cyclic GMP-Dependent Regulation of Vascular Tone and Blood Pressure Involves Cysteine-Rich LIM-Only Protein 4 (CRP4). Int J Mol Sci 2021; 22:9925. [PMID: 34576086 PMCID: PMC8466836 DOI: 10.3390/ijms22189925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.
Collapse
Affiliation(s)
- Natalie Längst
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Olga Schweigert
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Felicia Kleusberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Amelie Knauer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Matthias Sausbier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Tanja Zeller
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| |
Collapse
|
4
|
Allen AM, B Sokolowski M. Expression of the foraging gene in adult Drosophila melanogaster. J Neurogenet 2021; 35:192-212. [PMID: 34382904 PMCID: PMC8846931 DOI: 10.1080/01677063.2021.1941946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The foraging gene in Drosophila melanogaster, which encodes a cGMP-dependent protein kinase, is a highly conserved, complex gene with multiple pleiotropic behavioral and physiological functions in both the larval and adult fly. Adult foraging expression is less well characterized than in the larva. We characterized foraging expression in the brain, gastric system, and reproductive systems using a T2A-Gal4 gene-trap allele. In the brain, foraging expression appears to be restricted to multiple sub-types of glia. This glial-specific cellular localization of foraging was supported by single-cell transcriptomic atlases of the adult brain. foraging is extensively expressed in most cell types in the gastric and reproductive systems. We then mapped multiple cis-regulatory elements responsible for parts of the observed expression patterns by a nested cloned promoter-Gal4 analysis. The mapped cis-regulatory elements were consistently modular when comparing the larval and adult expression patterns. These new data using the T2A-Gal4 gene-trap and cloned foraging promoter fusion GAL4's are discussed with respect to previous work using an anti-FOR antibody, which we show here to be non-specific. Future studies of foraging's function will consider roles for glial subtypes and peripheral tissues (gastric and reproductive systems) in foraging's pleiotropic behavioral and physiological effects.
Collapse
Affiliation(s)
- Aaron M Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Marla B Sokolowski
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
5
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
6
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
7
|
IRAG1 Deficient Mice Develop PKG1β Dependent Pulmonary Hypertension. Cells 2020; 9:cells9102280. [PMID: 33066124 PMCID: PMC7601978 DOI: 10.3390/cells9102280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023] Open
Abstract
PKGs are serine/threonine kinases. PKG1 has two isoforms-PKG1α and β. Inositol trisphosphate receptor (IP3R)-associated cGMP-kinase substrate 1 (IRAG1) is a substrate for PKG1β. IRAG1 is also known to further interact with IP3RI, which mediates intracellular Ca2+ release. However, the role of IRAG1 in PH is not known. Herein, WT and IRAG1 KO mice were kept under normoxic or hypoxic (10% O2) conditions for five weeks. Animals were evaluated for echocardiographic variables and went through right heart catheterization. Animals were further sacrificed to prepare lungs and right ventricular (RV) for immunostaining, western blotting, and pulmonary artery smooth muscle cell (PASMC) isolation. IRAG1 is expressed in PASMCs and downregulated under hypoxic conditions. Genetic deletion of IRAG1 leads to RV hypertrophy, increase in RV systolic pressure, and RV dysfunction in mice. Absence of IRAG1 in lung and RV have direct impacts on PKG1β expression. Attenuated PKG1β expression in IRAG1 KO mice further dysregulates other downstream candidates of PKG1β in RV. IRAG1 KO mice develop PH spontaneously. Our results indicate that PKG1β signaling via IRAG1 is essential for the homeostasis of PASMCs and RV. Disturbing this signaling complex by deleting IRAG1 can lead to RV dysfunction and development of PH in mice.
Collapse
|
8
|
Fusi F, Mugnai P, Trezza A, Spiga O, Sgaragli G. Fine tuning by protein kinases of Ca V1.2 channel current in rat tail artery myocytes. Biochem Pharmacol 2020; 182:114263. [PMID: 33035505 DOI: 10.1016/j.bcp.2020.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
Seventeen compounds, rather selective, direct or indirect inhibitors and activators of PKA, PKG, and PKC, were analysed for effects on vascular CaV1.2 channel current (ICa1.2) by using the patch-clamp technique in single rat tail artery myocytes. The aim was to investigate how PKs regulate ICa1.2 and disclose any unexpected modulation of CaV1.2 channel function by these agents. The cAMP analogues 8-Br-cAMP and 6-Bnz-cAMP partially reduced ICa1.2 in dialysed cells, while weakly increasing it under the perforated configuration. The β-adrenoceptor agonist isoproterenol and the adenylate cyclase activator forskolin concentration-dependently increased ICa1.2; this effect was reversed by PKA inhibitors H-89 and KT5720, but not by PKI 6-22. The cGMP analogue 8-Br-cGMP, similarly to the NO-donor SNP, moderately reduced ICa1.2, this effect being reversed to a slight stimulation under the perforated configuration. Among PKG inhibitors, Rp-8-Br-PET-cGMPS decreased current amplitude in a concentration-dependent manner while Rp-8-Br-cGMPS was ineffective. The non-specific phosphodiesterase inhibitor IBMX increased ICa1.2, while H-89, KT5720, and PKI 6-22 antagonized this effect. The PKC activator PMA, but not the diacylglycerol analogue OAG, stimulated ICa1.2 in a concentration-dependent manner; conversely, the PKCα inhibitor Gö6976 markedly reduced basal ICa1.2 and, similarly to the PKCδ (rottlerin) and PKCε translocation inhibitors antagonised PMA-induced current stimulation. The ensemble of findings indicates that the stimulation of cAMP/PKA, in spite of the paradoxical effect of both 8-Br-cAMP and 6-Bnz-cAMP, or PKC pathways enhanced, while that of cGMP/PKG weakly inhibited ICa1.2 in rat tail artery myocytes. Since Rp-8-Br-PET-cGMPS and Gö6976 appeared to block directly CaV1.2 channel, their docking to the channel protein was investigated. Both compounds appeared to bind the α1C subunit in a region involved in CaV1.2 channel inactivation, forming an interaction network comparable to that of CaV1.2 channel blockers. Therefore, caution should accompany the use of these agents as pharmacological tools to elucidate the mechanism of action of drugs on vascular preparations.
Collapse
Affiliation(s)
- F Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - A Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
9
|
Beyer T, Klose F, Kuret A, Hoffmann F, Lukowski R, Ueffing M, Boldt K. Tissue- and isoform-specific protein complex analysis with natively processed bait proteins. J Proteomics 2020; 231:103947. [PMID: 32853754 DOI: 10.1016/j.jprot.2020.103947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Protein-protein interaction analysis is an important tool to elucidate the function of proteins and protein complexes as well as their dynamic behavior. To date, the analysis of tissue- or even cell- or compartment-specific protein interactions is still relying on the availability of specific antibodies suited for immunoprecipitation. Here, we aimed at establishing a method that allows identification of protein interactions and complexes from intact tissues independent of specific, high affinity antibodies used for protein pull-down and isolation. Tagged bait proteins were expressed in human HEK293T cells and residual interactors removed by SDS. The resulting tag-fusion protein was then used as bait to pull proteins from tissue samples. Tissue-specific interactions were reproducibly identified from porcine retina as well as from retinal pigment epithelium using the ciliary protein lebercilin as bait. Further, murine heart-specific interactors of two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 (cGK1) were investigated. Here, specific interactions were associated with the cGK1α and β gene products, that differ only in their unique amino-terminal region comprising about 100 aa. As such, the new protocol provides a fast and reliable method for tissue-specific protein complex analysis which is independent of the availability or suitability of antibodies for immunoprecipitation. SIGNIFICANCE: Protein-protein interaction in the functional relevant tissue is still difficult due to the dependence on specific antibodies or bait production in bacteria or insect cells. Here, the tagged protein of interest is produced in a human cell line and bound proteins are gently removed using SDS. Because applying the suitable SDS concentration is a critical step, different SDS solutions were tested to demonstrate their influence on interactions and the clean-up process. The established protocol enabled a tissue-specific analysis of the ciliary proteins lebercilin and TMEM107 using pig eyes. In addition, two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 showed distinct protein interactions in mouse heart tissue. With the easy, fast and cheap protocol presented here, deep insights in tissue-specific and functional relevant protein complex formation is possible.
Collapse
Affiliation(s)
- Tina Beyer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Felix Hoffmann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany.
| | - Karsten Boldt
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany.
| |
Collapse
|
10
|
Shvedova M, Litvak MM, Roberts JD, Fukumura D, Suzuki T, Şencan İ, Li G, Reventun P, Buys ES, Kim HH, Sakadžić S, Ayata C, Huang PL, Feil R, Atochin DN. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. J Cereb Blood Flow Metab 2019; 39:2379-2391. [PMID: 31423931 PMCID: PMC6893979 DOI: 10.1177/0271678x19870583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maxim M Litvak
- Tomsk Polytechnic University, RASA Center, Tomsk, Russian Federation
| | - Jesse D Roberts
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dai Fukumura
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Tomoaki Suzuki
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ge Li
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Reventun
- Department of Biology Systems, School of Medicine, University of Alcalá, Madrid, Spain
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
11
|
Xu X, Yan Q, Liu X, Li P, Li X, Chen Y, Simoncini T, Liu J, Zhu D, Fu X. 17β-Estradiol nongenomically induces vascular endothelial H 2S release by promoting phosphorylation of cystathionine γ-lyase. J Biol Chem 2019; 294:15577-15592. [PMID: 31439665 DOI: 10.1074/jbc.ra119.008597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen exerts its cardiovascular protective role at least in part by regulating endothelial hydrogen sulfide (H2S) release, but the underlying mechanisms remain to be fully elucidated. Estrogen exerts genomic effects, i.e. those involving direct binding of the estrogen receptor (ER) to gene promoters in the nucleus, and nongenomic effects, mediated by interactions of the ER with other proteins. Here, using human umbilical vein endothelial cells (HUVECs), immunological detection, MS-based analyses, and cGMP and H2S assays, we show that 17β-estradiol (E2) rapidly enhances endothelial H2S release in a nongenomic manner. We found that E2 induces phosphorylation of cystathionine γ-lyase (CSE), the key enzyme in vascular endothelial H2S generation. Mechanistically, E2 enhanced the interaction of membrane ERα with the Gα subunit Gαi-2/3, which then transactivated particulate guanylate cyclase-A (pGC-A) to produce cGMP, thereby activating protein kinase G type I (PKG-I). We also found that PKG-Iβ, but not PKG-Iα, interacts with CSE, leading to its phosphorylation, and rapidly induces endothelial H2S release. Furthermore, we report that silencing of either CSE or pGC-A in mice attenuates E2-induced aorta vasodilation. These results provide detailed mechanistic insights into estrogen's nongenomic effects on vascular endothelial H2S release and advance our current understanding of the protective activities of estrogen in the cardiovascular system.
Collapse
Affiliation(s)
- Xingyan Xu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Yan
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoyun Liu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ping Li
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiwen Chen
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Junxiu Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China .,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China .,State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
12
|
Tolone A, Belhadj S, Rentsch A, Schwede F, Paquet-Durand F. The cGMP Pathway and Inherited Photoreceptor Degeneration: Targets, Compounds, and Biomarkers. Genes (Basel) 2019; 10:genes10060453. [PMID: 31207907 PMCID: PMC6627777 DOI: 10.3390/genes10060453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Photoreceptor physiology and pathophysiology is intricately linked to guanosine-3’,5’-cyclic monophosphate (cGMP)-signaling. Here, we discuss the importance of cGMP-signaling for the pathogenesis of hereditary retinal degeneration. Excessive accumulation of cGMP in photoreceptors is a common denominator in cell death caused by a variety of different gene mutations. The cGMP-dependent cell death pathway may be targeted for the treatment of inherited photoreceptor degeneration, using specifically designed and formulated inhibitory cGMP analogues. Moreover, cGMP-signaling and its down-stream targets may be exploited for the development of novel biomarkers that could facilitate monitoring of disease progression and reveal the response to treatment in future clinical trials. We then briefly present the importance of appropriate formulations for delivery to the retina, both for drug and biomarker applications. Finally, the review touches on important aspects of future clinical translation, highlighting the need for interdisciplinary cooperation of researchers from a diverse range of fields.
Collapse
Affiliation(s)
- Arianna Tolone
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| | - Soumaya Belhadj
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| | | | - Frank Schwede
- Biolog Life Science Institute, 28199 Bremen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Franko A, Kovarova M, Feil S, Feil R, Wagner R, Heni M, Königsrainer A, Ruoß M, Nüssler AK, Weigert C, Häring HU, Lutz SZ, Peter A. cGMP-dependent protein kinase I (cGKI) modulates human hepatic stellate cell activation. Metabolism 2018; 88:22-30. [PMID: 30195474 DOI: 10.1016/j.metabol.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrosis, however the role of HSCs is less understood in hepatic insulin resistance. Since in the liver cGMP-dependent protein kinase I (cGKI) was detected in HSC but not in hepatocytes, and cGKI-deficient mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice) displayed hepatic insulin resistance, we hypothesized that cGKI modulates HSC activation and insulin sensitivity. MATERIALS AND METHODS To study stellate cell activation in cGKI-SM mice, retinol storage and gene expression were studied. Moreover, in the human stellate cell line LX2, the consequences of cGKI-silencing on gene expression were investigated. Finally, cGKI expression was examined in human liver biopsies covering a wide range of liver fat content. RESULTS Retinyl-ester concentrations in the liver of cGKI-SM mice were lower compared to wild-type animals, which was associated with disturbed expression of genes involved in retinol metabolism and inflammation. cGKI-silenced LX2 cells showed an mRNA expression profile of stellate cell activation, altered matrix degradation and activated chemokine expression. On the other hand, activation of LX2 cells suppressed cGKI expression. In accordance with this finding, in human liver biopsies, we observed a negative correlation between cGKI mRNA and liver fat content. CONCLUSIONS These results suggest that the lack of cGKI possibly leads to stellate cell activation, which stimulates chemokine expression and activates inflammatory processes, which could disturb hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Marketa Kovarova
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Cora Weigert
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefan Z Lutz
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Andreas Peter
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat Commun 2018; 9:4301. [PMID: 30327468 PMCID: PMC6191445 DOI: 10.1038/s41467-018-06638-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear. Nitric oxide (NO) inhibits thrombosis in part by stimulating cyclic guanosine monophosphate (cGMP) production and cGMP-dependent protein kinase I (cGKI) activity in platelets. Here, Wen et al. develop a cGMP sensor mouse to follow cGMP dynamics in platelets, and find that shear stress activates NO-cGMP-cGKI signaling during platelet aggregation to limit thrombosis.
Collapse
|
15
|
Allen AM, Anreiter I, Vesterberg A, Douglas SJ, Sokolowski MB. Pleiotropy of the Drosophila melanogaster foraging gene on larval feeding-related traits. J Neurogenet 2018; 32:256-266. [PMID: 30303018 PMCID: PMC6309726 DOI: 10.1080/01677063.2018.1500572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Little is known about the molecular underpinning of behavioral pleiotropy. The Drosophila melanogaster foraging gene is highly pleiotropic, affecting many independent larval and adult phenotypes. Included in foraging's multiple phenotypes are larval foraging path length, triglyceride levels, and food intake. foraging has a complex structure with four promoters and 21 transcripts that encode nine protein isoforms of a cGMP dependent protein kinase (PKG). We examined if foraging's complex molecular structure underlies the behavioral pleiotropy associated with this gene. Using a promotor analysis strategy, we cloned DNA fragments upstream of each of foraging's transcription start sites and generated four separate forpr-Gal4s. Supporting our hypothesis of modular function, they had discrete, restricted expression patterns throughout the larva. In the CNS, forpr1-Gal4 and forpr4-Gal4 were expressed in neurons while forpr2-Gal4 and forpr3-Gal4 were expressed in glia cells. In the gastric system, forpr1-Gal4 and forpr3-Gal4 were expressed in enteroendocrine cells of the midgut while forpr2-Gal4 was expressed in the stem cells of the midgut. forpr3-Gal4 was expressed in the midgut enterocytes, and midgut and hindgut visceral muscle. forpr4-Gal4's gastric system expression was restricted to the hindgut. We also found promoter specific expression in the larval fat body, salivary glands, and body muscle. The modularity of foraging's molecular structure was also apparent in the phenotypic rescues. We rescued larval path length, triglyceride levels (bordered on significance), and food intake of for0 null larvae using different forpr-Gal4s to drive UAS-forcDNA. In a foraging null genetic background, forpr1-Gal4 was the only promoter driven Gal4 to rescue larval path length, forpr3-Gal4 altered triglyceride levels, and forpr4-Gal4 rescued food intake. Our results refine the spatial expression responsible for foraging's associated phenotypes, as well as the sub-regions of the locus responsible for their expression. foraging's pleiotropy arises at least in part from the individual contributions of its four promoters.
Collapse
Affiliation(s)
- A. M. Allen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
- Current address: Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK, OX1 3SR
| | - I. Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, Ontario, Canada, M5G 1M1
| | - A. Vesterberg
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - S. J. Douglas
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
| | - M. B. Sokolowski
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, Ontario, Canada, M5G 1M1
| |
Collapse
|
16
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|
17
|
Lehners M, Dobrowinski H, Feil S, Feil R. cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. J Cardiovasc Dev Dis 2018; 5:jcdd5020020. [PMID: 29671769 PMCID: PMC6023364 DOI: 10.3390/jcdd5020020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP’s role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs.
Collapse
Affiliation(s)
- Moritz Lehners
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Hyazinth Dobrowinski
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Differences in the renal antifibrotic cGMP/cGKI-dependent signaling of serelaxin, zaprinast, and their combination. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:939-948. [PMID: 28660304 DOI: 10.1007/s00210-017-1394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 01/19/2023]
Abstract
Renal fibrosis is an important factor for end-stage renal failure. However, only few therapeutic options for its treatment are established. Zaprinast, a phosphodiesterase 5 inhibitor, and serelaxin, the recombinant form of the naturally occurring hormone relaxin, are differently acting modulators of cyclic guanosine monophosphate (cGMP) signaling. Both agents enhance cGMP availability in kidney tissue. These substances alone or in combination might interfere with the development of kidney fibrosis. Therefore, we compared the effects of combination therapy with the effects of monotherapy on renal fibrosis. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) for 7 days in wild-type (WT) and cGKI knockout (KO) mice. Renal antifibrotic effects were assessed after 7 days. In WT, zaprinast and the combination of zaprinast and serelaxin significantly reduced renal interstitial fibrosis assessed by α-SMA, fibronectin, collagen1A1, and gelatinases (MMP2 and MMP9). Intriguingly in cGKI-KO, mRNA and protein expression of fibronectin and collagen1A1 were reduced by zaprinast, in contrast to serelaxin. Gelatinases are not regulated by zaprinast. Although both substances showed similar antifibrotic properties in WT, they distinguished in their effect mechanisms. In contrast to serelaxin which acts both on Smad2 and Erk1, zaprinast did not significantly diminish Erk1/2 phosphorylation. Interestingly, the combination of serelaxin/zaprinast achieved no additive antifibrotic effects compared to the monotherapy. Due to antifibrotic effects of zaprinast in cGKI-KO, we hypothesize that additional cGKI-independent mechanisms are supposed for antifibrotic signaling of zaprinast.
Collapse
|
19
|
Schinner E, Wetzl V, Schramm A, Kees F, Sandner P, Stasch JP, Hofmann F, Schlossmann J. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 2017; 7:550-561. [PMID: 28396839 PMCID: PMC5377407 DOI: 10.1002/2211-5463.12202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
Agents that enhance production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) ameliorate the progression of renal fibrosis. However, the molecular mechanism of this process is not fully understood. We hypothesize that the antifibrotic effects of cGMP and cGMP‐dependent kinase I (cGKI) are mediated via regulation of the TGFβ signalling pathway, both via ERK and the Smad‐dependent route. Kidney fibrosis was induced by unilateral ureter obstruction (UUO) in wild‐type and cGKI‐deficient (cGKI‐KO) mice. The cGMP/cGKI signalling pathway was activated by application of the soluble guanylate cyclase (sGC) stimulator BAY 41‐8543 (BAY), beginning 1 day after UUO. After 7 days, the antifibrotic effects of BAY were analysed by measuring mRNA and protein expression of characteristic fibrotic biomarkers. The effects of cGMP/TGFβ on cultured fibroblasts were also analysed in vitro. BAY application influenced the activity of the extracellular matrix (ECM)‐degrading matrix metalloproteases (MMP2 and MMP9) and their inhibitor tissue inhibitors of metalloproteinase‐1, the secretion of cytokines (e.g. IL‐6) and the expression pattern of ECM proteins (e.g. collagen, fibronectin) and profibrotic mediators (e.g. connective tissue growth factors and plasminogen‐activator inhibitor‐1). Activation of the cGMP/cGKI signalling pathway showed protective effects against fibrosis which were mediated by inhibition of P‐Erk1/2 and translocation of P‐smad3. The elucidation of these signalling mechanisms might support the development of new therapeutic options regarding cGMP/cGKI‐mediated antifibrotic actions.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Veronika Wetzl
- Department of Pharmacology and Toxicology University of Regensburg Germany; Novartis Pharma GmbH Nuremberg Germany
| | - Andrea Schramm
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Frieder Kees
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | | | | | - Franz Hofmann
- Institute of Pharmacology and Toxicology Technical University of Munich Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology University of Regensburg Germany
| |
Collapse
|
20
|
Smooth Muscle Phenotypic Diversity: Effect on Vascular Function and Drug Responses. ADVANCES IN PHARMACOLOGY 2017. [PMID: 28212802 DOI: 10.1016/bs.apha.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
At its simplest resistance to blood flow is regulated by changes in the state of contraction of the vascular smooth muscle (VSM), a function of the competing activities of the myosin kinase and phosphatase determining the phosphorylation and activity of the myosin ATPase motor protein. In contrast, the vascular system of humans and other mammals is incredibly complex and highly regulated. Much of this complexity derives from phenotypic diversity within the smooth muscle, reflected in very differing power outputs and responses to signaling pathways that regulate vessel tone, presumably having evolved over the millennia to optimize vascular function and its control. The highly regulated nature of VSM tone, described as pharmacomechanical coupling, likely underlies the many classes of drugs in clinical use to alter vascular tone through activation or inhibition of these signaling pathways. This review will first describe the phenotypic diversity within VSM, followed by presentation of specific examples of how molecular diversity in signaling, myofilament, and calcium cycling proteins impacts arterial smooth muscle function and drug responses.
Collapse
|
21
|
Angermeier E, Domes K, Lukowski R, Schlossmann J, Rathkolb B, Angelis MH, Hofmann F. Iron deficiency anemia in cyclic GMP kinase knockout mice. Haematologica 2017; 101:e48-51. [PMID: 26830212 DOI: 10.3324/haematol.2015.137026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Katrin Domes
- Institut für Pharmakologie und Toxikologie, Technische Universität München
| | - Robert Lukowski
- Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, Universität Tübingen
| | - Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, Universität Regensburg
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München
| | - Martin Hraběde Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München
| |
Collapse
|
22
|
Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster. Genetics 2016; 205:761-773. [PMID: 28007892 DOI: 10.1534/genetics.116.197939] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/03/2016] [Indexed: 12/31/2022] Open
Abstract
Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {forBAC} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis.
Collapse
|
23
|
Iatrino R, Manunta P, Zagato L. Salt Sensitivity: Challenging and Controversial Phenotype of Primary Hypertension. Curr Hypertens Rep 2016; 18:70. [DOI: 10.1007/s11906-016-0677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Rainer PP, Kass DA. Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G. Cardiovasc Res 2016; 111:154-62. [PMID: 27297890 DOI: 10.1093/cvr/cvw107] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
The second messenger cyclic guanosine 3'5' monophosphate (cGMP) and its downstream effector protein kinase G (PKG) have been discovered more than 40 years ago. In vessels, PKG1 induces smooth muscle relaxation in response to nitric oxide signalling and thus lowers systemic and pulmonary blood pressure. In platelets, PKG1 stimulation by cGMP inhibits activation and aggregation, and in experimental models of heart failure (HF), PKG1 activation by inhibiting cGMP degradation is protective. The net effect of the above-mentioned signalling is cardiovascular protection. Yet, while modulation of cGMP-PKG has entered clinical practice for treating pulmonary hypertension or erectile dysfunction, translation of promising studies in experimental HF to clinical success has failed thus far. With the advent of new technologies, novel mechanisms of PKG regulation, including mechanosensing, redox regulation, protein quality control, and cGMP degradation, have been discovered. These novel, non-canonical roles of PKG1 may help understand why clinical translation has disappointed thus far. Addressing them appears to be a requisite for future, successful translation of experimental studies to the clinical arena.
Collapse
Affiliation(s)
- Peter P Rainer
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
25
|
Dhayade S, Kaesler S, Sinnberg T, Dobrowinski H, Peters S, Naumann U, Liu H, Hunger RE, Thunemann M, Biedermann T, Schittek B, Simon HU, Feil S, Feil R. Sildenafil Potentiates a cGMP-Dependent Pathway to Promote Melanoma Growth. Cell Rep 2016; 14:2599-610. [PMID: 26971999 DOI: 10.1016/j.celrep.2016.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/23/2015] [Accepted: 02/01/2016] [Indexed: 01/12/2023] Open
Abstract
Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk.
Collapse
Affiliation(s)
- Sandeep Dhayade
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Kaesler
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Hyazinth Dobrowinski
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Hertie-Institut für klinische Hirnforschung, Abteilung Vaskuläre Neurologie, Labor für Molekulare Neuroonkologie, 72076 Tübingen, Germany
| | - He Liu
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, University Hospital Bern, 3010 Bern, Switzerland
| | - Martin Thunemann
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Tilo Biedermann
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; Department of Dermatology and Allergology, Technische Universität München, 80802 Munich, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
26
|
Akashi S, Ahmed KA, Sawa T, Ono K, Tsutsuki H, Burgoyne JR, Ida T, Horio E, Prysyazhna O, Oike Y, Rahaman MM, Eaton P, Fujii S, Akaike T. Persistent Activation of cGMP-Dependent Protein Kinase by a Nitrated Cyclic Nucleotide via Site Specific Protein S-Guanylation. Biochemistry 2016; 55:751-61. [PMID: 26784639 DOI: 10.1021/acs.biochem.5b00774] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated derivative of guanosine 3',5'-cyclic monophosphate (cGMP) formed endogenously under conditions associated with production of both reactive oxygen species and nitric oxide. It acts as an electrophilic second messenger in the regulation of cellular signaling by inducing a post-translational modification of redox-sensitive protein thiols via covalent adduction of cGMP moieties to protein thiols (protein S-guanylation). Here, we demonstrate that 8-nitro-cGMP potentially S-guanylates thiol groups of cGMP-dependent protein kinase (PKG), the enzyme that serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses. S-Guanylation of PKG was found to occur in a site specific manner; Cys42 and Cys195 were the susceptible residues among 11 Cys residues. Importantly, S-guanylation at Cys195, which is located in the high-affinity cGMP binding domain of PKG, causes persistent enzyme activation as determined by in vitro kinase assay as well as by an organ bath assay. In vivo, S-guanylation of PKG was demonstrated to occur in mice without any specific treatment and was significantly enhanced by lipopolysaccharide administration. These findings warrant further investigation in terms of the physiological and pathophysiological roles of S-guanylation-dependent persistent PKG activation.
Collapse
Affiliation(s)
- Soichiro Akashi
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Khandaker Ahtesham Ahmed
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University , 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University , 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency , Kawaguchi, Saitama 332-0012, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University , 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University , 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Joseph R Burgoyne
- Department of Cardiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital , London SE1 7EH, U.K
| | - Tomoaki Ida
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eiji Horio
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University , Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Oleksandra Prysyazhna
- Department of Cardiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital , London SE1 7EH, U.K
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University , Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Mizanur Md Rahaman
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Philip Eaton
- Department of Cardiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital , London SE1 7EH, U.K
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
27
|
Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, Schäffer TE, Bohn E, Frick JS, Borst O, Münzer P, Walker B, Markel J, Csanyi G, Pagano PJ, Loughran P, Jessup ME, Watkins SC, Bullock GC, Sperry JL, Zuckerbraun BS, Billiar TR, Lotze MT, Gawaz M, Neal MD. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125:4638-54. [PMID: 26551681 DOI: 10.1172/jci81660] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis. Mice lacking HMGB1 in platelets exhibited increased bleeding times as well as reduced thrombus formation, platelet aggregation, inflammation, and organ damage during experimental trauma/hemorrhagic shock. Platelets were the major source of HMGB1 within thrombi. In trauma patients, HMGB1 expression on the surface of circulating platelets was markedly upregulated. Moreover, evaluation of isolated platelets revealed that HMGB1 is critical for regulating platelet activation, granule secretion, adhesion, and spreading. These effects were mediated via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent protein kinase I (cGKI). Thus, we establish platelet-derived HMGB1 as an important mediator of thrombosis and identify a HMGB1-driven link between MyD88 and GC/cGKI in platelets. Additionally, these findings suggest a potential therapeutic target for patients sustaining trauma and other inflammatory disorders associated with abnormal coagulation.
Collapse
|
28
|
Limmer F, Schinner E, Castrop H, Vitzthum H, Hofmann F, Schlossmann J. Regulation of the Na(+)-K(+)-2Cl(-) cotransporter by cGMP/cGMP-dependent protein kinase I after furosemide administration. FEBS J 2015; 282:3786-98. [PMID: 26183401 DOI: 10.1111/febs.13376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/01/2022]
Abstract
Sodium chloride reabsorption in the thick ascending limb of the loop of Henle is mediated by the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). The loop diuretic furosemide is a potent inhibitor of NKCC2. However, less is known about the mechanism regulating the electrolyte transporter. Considering the well-established effects of nitric oxide on NKCC2 activity, cGMP is likely involved in this regulation. cGMP-dependent protein kinase I (cGKI; PKGI) is a cGMP target protein that phosphorylates different substrates after activation through cGMP. We investigated the potential correlation between the cGMP/cGKI pathway and NKCC2 regulation. We treated wild-type (wt) and cGKIα-rescue mice with furosemide. cGKIα-rescue mice expressed cGKIα only under the control of the smooth muscle-specific transgelin (SM22) promoter in a cGKI deficient background. Furosemide treatment increased the urine excretion of sodium and chloride in cGKIα-rescue mice compared to that in wt mice. We analyzed the phosphorylation of NKCC2 by western blotting and immunostaining using the phosphospecific antibody R5. The administration of furosemide significantly increased the phosphorylated NKCC2 signal in wt but not in cGKIα-rescue mice. NKCC2 activation led to its phosphorylation and membrane translocation. To examine whether cGKI was involved in this process, we analyzed vasodilator-stimulated phosphoprotein, which is phosphorylated by cGKI. Furosemide injection resulted in increased vasodilator-stimulated phosphoprotein phosphorylation in wt mice. We hypothesize that furosemide administration activated cGKI, leading to NKCC2 phosphorylation and membrane translocation. This cGKI-mediated pathway could be a mechanism to compensate for the inhibitory effect of furosemide on NKCC2.
Collapse
Affiliation(s)
- Franziska Limmer
- Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Germany
| | - Elisabeth Schinner
- Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Germany
| | - Helga Vitzthum
- Department of Cellular and Integrative Physiology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Germany
| | - Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Germany
| |
Collapse
|
29
|
Dippold RP, Fisher SA. Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation 2015; 21:239-48. [PMID: 24112301 DOI: 10.1111/micc.12097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022]
Abstract
The dephosphorylation of myosin by the MP causes smooth muscle relaxation. MP is also a key target of signals that regulate vascular tone and thus blood flow and pressure. Here, we review studies from the past two decades that support the hypothesis that the regulated expression of MP subunits is a critical determinant of smooth muscle responses to constrictor and dilator signals. In particular, the highly regulated splicing of the regulatory subunit Mypt1 Exon 24 is proposed to tune sensitivity to NO/cGMP-mediated relaxation. The regulated transcription of the MP inhibitory subunit CPI-17 is proposed to determine sensitivity to agonist-mediated constriction. The expression of these subunits is specific in the microcirculation and varies in developmental and disease contexts. To date, the relationship between MP subunit expression and vascular function in these different contexts is correlative; confirmation of the hypothesis will require the generation of genetically engineered mice to test the role of MP subunits and their isoforms in the specificity of vascular smooth muscle responses to constrictor and dilator signals.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Medicine (Cardiology), University of Maryland Baltimore, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Goulopoulou S, Hannan JL, Matsumoto T, Ogbi S, Ergul A, Webb RC. Reduced vascular responses to soluble guanylyl cyclase but increased sensitivity to sildenafil in female rats with type 2 diabetes. Am J Physiol Heart Circ Physiol 2015; 309:H297-304. [PMID: 25957216 DOI: 10.1152/ajpheart.00079.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 01/25/2023]
Abstract
Impaired nitric oxide (NO), soluble guanylyl cyclase (sGC), and cyclic guanosine monophosphate (cGMP) signaling (NO-sGC-cGMP) has been implicated in the pathogenesis of diabetic vascular dysfunction. Efforts to directly target this signaling have led to the development of sGC agonists that activate the heme group of sGC (stimulators) or preferentially activate sGC when the heme is oxidized (activators). In this study, we hypothesized that resistance arteries from female rats with spontaneous type 2 diabetes (Goto-Kakizaki rats, GK) would have reduced vasodilatory responses to heme-dependent sGC activation and increased responses to heme-independent sGC activation compared with control rats (Wistar). Endothelium-dependent and -independent relaxation was assessed in isolated segments from mesenteric resistance arteries (MA) mounted in a wire myograph. GK MA had reduced responses to acetylcholine (pEC50: 7.96 ± 0.06 vs. 7.66 ± 0.05, P < 0.05) and sodium nitroprusside (pEC50: 8.34 ± 0.05 vs. 7.77 ± 0.04, P < 0.05). There were no group differences in 8-bromoguanosine cGMP-induced relaxation and protein kinase G1 expression (P > 0.05). GK MA had attenuated responses to BAY 41-2272 (heme-dependent sGC stimulator; pEC50: 7.56 ± 0.05 vs. 6.93 ± 0.06, P < 0.05) and BAY 58-2667 (heme-independent sGC activator; pEC50: 10.82 ± 0.07 vs. 10.27 ± 0.08, P < 0.05) and increased sensitivity to sildenafil [phosphodiesterase 5 (PDE5) inhibitor; pEC50: 7.89 ± 0.14 vs. 8.25 ± 0.13, P < 0.05]. Isolated resistance arteries from female rats of reproductive age that spontaneously develop type 2 diabetes have increased sensitivity to PDE5 inhibition and reduced responsiveness to sGC activators and stimulators.
Collapse
Affiliation(s)
| | - Johanna L Hannan
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Safia Ogbi
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Adviye Ergul
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - R Clinton Webb
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
31
|
Murine cardiac growth, TRPC channels, and cGMP kinase I. Pflugers Arch 2014; 467:2229-34. [DOI: 10.1007/s00424-014-1682-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 01/14/2023]
|
32
|
Inhibition of phosphodiesterase 5 reduces bone mass by suppression of canonical Wnt signaling. Cell Death Dis 2014; 5:e1544. [PMID: 25429621 PMCID: PMC4260761 DOI: 10.1038/cddis.2014.510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/21/2023]
Abstract
Inhibitors of phosphodiesterase 5 (PDE5) are widely used to treat erectile
dysfunction and pulmonary hypertension in clinics. PDE5, cyclic guanosine
monophosphate (cGMP), and protein kinase G (PKG) are important components of the
non-canonical Wnt signaling. This study aimed to investigate the effect of PDE5
inhibition on canonical Wnt signaling and osteoblastogenesis, using both in
vitro cell culture and in vivo animal models. In the in
vitro experiments, PDE5 inhibition resulted in activation of cGMP-dependent
protein kinase 2 and consequent inhibition of glycogen synthase kinase
3β phosphorylation, destabilization of cytosolic
β-catenin and the ultimate suppression of canonical Wnt signaling and
reduced osteoblastic differentiation in HEK293T and C3H10T1/2 cells. In animal
experiments, systemic inhibition of PDE5 suppressed the activity of canonical Wnt
signaling and osteoblastogenesis in bone marrow-derived stromal cells, resulting in
the reduction of bone mass in wild-type adult C57B/6 mice, significantly
attenuated secreted Frizzled-related protein-1 (SFRP1) deletion-induced activation of
canonical Wnt signaling and excessive bone growth in adult
SFRP1−/− mice. Together, these results uncover a
hitherto uncharacterized role of PDE5/cGMP/PKG signaling in bone homeostasis
and provide the evidence that long-term treatment with PDE5 inhibitors at a high
dosage may potentially cause bone catabolism.
Collapse
|
33
|
Kusche-Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. Pflugers Arch 2014; 467:499-512. [DOI: 10.1007/s00424-014-1657-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023]
|
34
|
Leiss V, Illison J, Domes K, Hofmann F, Lukowski R. Expression of cGMP-dependent protein kinase type I in mature white adipocytes. Biochem Biophys Res Commun 2014; 452:151-6. [DOI: 10.1016/j.bbrc.2014.08.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023]
|
35
|
Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci U S A 2014; 111:12925-9. [PMID: 25139994 DOI: 10.1073/pnas.1414364111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conflicting results have been reported for the roles of cGMP and cGMP-dependent protein kinase I (cGKI) in various pathological conditions leading to cardiac hypertrophy and fibrosis. A cardioprotective effect of cGMP/cGKI has been reported in whole animals and isolated cardiomyocytes, but recent evidence from a mouse model expressing cGKIβ only in smooth muscle (βRM) but not in cardiomyocytes, endothelial cells, or fibroblasts has forced a reevaluation of the requirement for cGKI activity in the cardiomyocyte antihypertrophic effects of cGMP. In particular, βRM mice developed the same hypertrophy as WT controls when subjected to thoracic aortic constriction or isoproterenol infusion. Here, we challenged βRM and WT (Ctr) littermate control mice with angiotensin II (AII) infusion (7 d; 2 mg ⋅ kg(-1) ⋅ d(-1)) to induce hypertrophy. Both genotypes developed cardiac hypertrophy, which was more pronounced in Ctr animals. Cardiomyocyte size and interstitial fibrosis were increased equally in both genotypes. Addition of sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, in the drinking water had a small effect in reducing myocyte hypertrophy in WT mice and no effect in βRM mice. However, sildenafil substantially blocked the increase in collagen I, fibronectin 1, TGFβ, and CTGF mRNA in Ctr but not in βRM hearts. These data indicate that, for the initial phase of AII-induced cardiac hypertrophy, lack of cardiomyocyte cGKI activity does not worsen hypertrophic growth. However, expression of cGKI in one or more cell types other than smooth muscle is necessary to allow the antifibrotic effect of sildenafil.
Collapse
|
36
|
Ramchandran R, Raghavan A, Geenen D, Sun M, Bach L, Yang Q, Raj JU. PKG-1α leucine zipper domain defect increases pulmonary vascular tone: implications in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L537-44. [PMID: 25128522 DOI: 10.1152/ajplung.00093.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic disease characterized by a progressive increase in vasomotor tone, narrowing of the vasculature with structural remodeling, and increase in pulmonary vascular resistance. Current treatment strategies include nitric oxide therapy and methods to increase cGMP-mediated vasodilatation. cGMP-dependent protein kinases (PKG) are known mediators of nitric oxide- and cGMP-induced vasodilatation. Deletion of PKG-1 in mice has been shown to induce PH, however, the exact mechanisms by which loss of PKG-1 function leads to PH is not known. In a mouse model with a selective mutation in the NH2-terminus leucine zipper protein interaction domain of PKG-1α [leucine zipper mutant (LZM)], we found a progressive increase in right ventricular systolic pressure and right heart hypertrophy compared with wild-type (WT) mice and increased RhoA-GTPase activity in the lungs. When exposed to chronic hypoxia, LZM mice developed modestly enhanced right ventricular remodeling compared with WT mice. Tadalafil, a phosphodiesterase-5 inhibitor that increases cGMP levels, significantly attenuated hypoxia-induced cardiopulmonary remodeling in WT mice but had no effect in LZM mice. We conclude that a functional leucine zipper domain in PKG-1α is essential for maintenance of a low pulmonary vascular tone in normoxia and for cGMP-mediated beneficial effects of phosphodiesterase-5 inhibition in hypoxic cardiopulmonary remodeling.
Collapse
Affiliation(s)
- Ramaswamy Ramchandran
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Aarti Raghavan
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois; and
| | - David Geenen
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Miranda Sun
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Laura Bach
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Qiwei Yang
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois; and
| | - J Usha Raj
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois; and
| |
Collapse
|
37
|
Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol Sci 2014; 35:404-13. [PMID: 24948380 DOI: 10.1016/j.tips.2014.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/16/2022]
Abstract
cGMP inhibits hypertrophy, decreases fibrosis, and protects against cardiac ischemia-reperfusion (I/R) injury. Gene-targeting studies have not defined a clear role for its major downstream effector, cGMP-dependent protein kinase I (cGKI), in cardiac hypertrophy, but do implicate cGMP-cGKI signaling in fibrosis and I/R injury. No direct cGKI activators have advanced to clinical trials, whereas cardiac trials of agents that modulate cGMP via particulate or soluble guanylyl cyclases (GCs) and phosphodiesterase 5 (PDE5) are ongoing. Here we review concerns arising from preclinical and clinical studies that question whether targeting the cGMP pathway remains an encouraging concept for management of heart dysfunction. So far, trial results for GC modulators are inconclusive, and sildenafil, a PDE5 inhibitor, although cardioprotective in mouse models, has not shown positive clinical results. Preclinical cardioprotection observed for sildenafil may result from inhibition of PDE5 in non-cardiomyocytes or off-target effects, possibly on PDE1C. On the basis of such mechanistic considerations, re-evaluation of the cellular localization of drug target(s) and intervention protocols for cGMP-elevating agents may be needed.
Collapse
|
38
|
Catalytic activity of cGMP-dependent protein kinase type I in intact cells is independent of N-terminal autophosphorylation. PLoS One 2014; 9:e98946. [PMID: 24897423 PMCID: PMC4045857 DOI: 10.1371/journal.pone.0098946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Although cGMP-dependent protein kinase type I (cGKI) is an important mediator of cGMP signaling and upcoming drug target, its in vivo-biochemistry is not well understood. Many studies showed that purified cGKI autophosphorylates multiple sites at its N-terminus. Autophosphorylation might be involved in kinase activation, but it is unclear whether this happens also in intact cells. To study cGKI autophosphorylation in vitro and in vivo, we have generated phospho-specific antisera against major in vitro-autophosphorylation sites of the cGKI isoforms, cGKIα and cGKIβ. These antisera detected specifically and with high sensitivity phospho-cGKIα (Thr58), phospho-cGKIα (Thr84), or phospho-cGKIβ (Thr56/Ser63/Ser79). Using these antisera, we show that ATP-induced autophosphorylation of cGKI in purified preparations and cell extracts did neither require nor induce an enzyme conformation capable of substrate heterophosphorylation; it was even inhibited by pre-incubation with cGMP. Interestingly, phospho-cGKI species were not detectable in intact murine cells and tissues, both under basal conditions and after induction of cGKI catalytic activity. We conclude that N-terminal phosphorylation, although readily induced in vitro, is not required for the catalytic activity of cGKIα and cGKIβ in vivo. These results will also inform screening strategies to identify novel cGKI modulators.
Collapse
|
39
|
Kong Q, Blanton RM. Protein kinase G I and heart failure: Shifting focus from vascular unloading to direct myocardial antiremodeling effects. Circ Heart Fail 2014; 6:1268-83. [PMID: 24255056 DOI: 10.1161/circheartfailure.113.000575] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Qingwu Kong
- Tufts University School of Medicine and Division of Cardiology and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | | |
Collapse
|
40
|
Joshua J, Kalyanaraman H, Marathe N, Pilz RB. Nitric oxide as a mediator of estrogen effects in osteocytes. VITAMINS AND HORMONES 2014; 96:247-63. [PMID: 25189390 DOI: 10.1016/b978-0-12-800254-4.00010-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Postmenopausal osteoporosis due to estrogen deficiency is a major health problem, and available therapies rely largely on the inhibition of bone resorption, because estrogen replacement is associated with risks. Estrogen promotes bone health in large part by increasing osteocyte survival, but the molecular mechanisms involved are only partly understood. We showed that estradiol stimulates nitric oxide (NO) production in osteocytes, leading to increased cGMP synthesis and activation of cGMP-dependent protein kinases (PKGs). Moreover, we found that 17β-estradiol protects osteocytes against apoptosis via the NO/cGMP signaling pathway: type II PKG mediates estradiol-induced activation of the prosurvival kinases Erk and Akt, whereas type I PKG contributes to prosurvival signaling by directly phosphorylating and inactivating the cell death protein BAD. Preclinical data support an important role of NO in bone biology, and clinical trials suggest that NO donors may prevent bone loss in postmenopausal women. Our data provide novel insights into estrogen signaling through the NO/cGMP/PKG pathway and a rationale for using NO donors and other cGMP-elevating agents for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jisha Joshua
- Department of Medicine, University of California, San Diego, California, USA
| | - Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, California, USA
| | - Nisha Marathe
- Department of Medicine, University of California, San Diego, California, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
41
|
Zhang L, Lukowski R, Gaertner F, Lorenz M, Legate KR, Domes K, Angermeier E, Hofmann F, Massberg S. Anti-interleukin-6 therapy for treatment of high platelet counts in cGMP-dependent protein kinase I gene-targeted mice. BMC Pharmacol Toxicol 2013. [PMCID: PMC3765637 DOI: 10.1186/2050-6511-14-s1-p80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Zhang L, Lukowski R, Gaertner F, Lorenz M, Legate KR, Domes K, Angermeier E, Hofmann F, Massberg S. Thrombocytosis as a Response to High Interleukin-6 Levels in cGMP-Dependent Protein Kinase I Mutant Mice. Arterioscler Thromb Vasc Biol 2013; 33:1820-8. [DOI: 10.1161/atvbaha.113.301507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lin Zhang
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Robert Lukowski
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Florian Gaertner
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Michael Lorenz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Kyle R. Legate
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Katrin Domes
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Elisabeth Angermeier
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Franz Hofmann
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Steffen Massberg
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| |
Collapse
|
43
|
Thoonen R, Sips PY, Bloch KD, Buys ES. Pathophysiology of hypertension in the absence of nitric oxide/cyclic GMP signaling. Curr Hypertens Rep 2013; 15:47-58. [PMID: 23233080 DOI: 10.1007/s11906-012-0320-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling system is a well-characterized modulator of cardiovascular function, in general, and blood pressure, in particular. The availability of mice mutant for key enzymes in the NO-cGMP signaling system facilitated the identification of interactions with other blood pressure modifying pathways (e.g. the renin-angiotensin-aldosterone system) and of gender-specific effects of impaired NO-cGMP signaling. In addition, recent genome-wide association studies identified blood pressure-modifying genetic variants in genes that modulate NO and cGMP levels. Together, these findings have advanced our understanding of how NO-cGMP signaling regulates blood pressure. In this review, we will summarize the results obtained in mice with disrupted NO-cGMP signaling and highlight the relevance of this pathway as a potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Robrecht Thoonen
- Molecular Cardiology Research Institute, Molecular Cardiology Research Center, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
44
|
Schinner E, Schramm A, Kees F, Hofmann F, Schlossmann J. The cyclic GMP-dependent protein kinase Iα suppresses kidney fibrosis. Kidney Int 2013; 84:1198-206. [PMID: 23760283 DOI: 10.1038/ki.2013.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 03/20/2013] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) is synthesized by nitric oxide or natriuretic peptide-stimulated guanylyl cyclases and exhibits pleiotropic regulatory functions in the kidney. Hence, integration of cGMP signaling by cGMP-dependent protein kinases (cGKs) might play a critical role in renal physiology; however, detailed renal localization of cGKs is still lacking. Here, we performed an immunohistochemical analysis of cGKIα and cGKIβ isozymes in the mouse kidney and found both in arterioles, the mesangium, and within the cortical interstitium. In contrast to cGKIα, the β-isoform was not detected in the juxtaglomerular apparatus or medullary fibroblasts. Since interstitial fibroblasts play a prominent role in interstitial fibrosis, we focused our study on cGKI function in the interstitium, emphasizing a functional differentiation of both isoforms, and determined whether cGKIs influence renal fibrosis induced by unilateral ureter obstruction. Treatment with the guanylyl cyclase activators YC1 or isosorbide dinitrate showed stronger antifibrotic effects in wild-type than in cGKI-knockout or in smooth muscle-cGKIα-rescue mice, which are cGKI deficient in the kidney except in the renal vasculature. Moreover, fibrosis influenced the mRNA and protein expression levels of cGKIα more strongly than cGKIβ. Thus, our results indicate that cGMP, acting primarily through cGKIα, is an important suppressor of kidney fibrosis.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Lehrstuhl für Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Welter H, Kampfer C, Lauf S, Feil R, Schwarzer JU, Köhn FM, Mayerhofer A. Partial loss of contractile marker proteins in human testicular peritubular cells in infertility patients. Andrology 2013; 1:318-24. [PMID: 23413143 DOI: 10.1111/j.2047-2927.2012.00030.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2023]
Abstract
Fibrotic remodelling of the testicular tubular wall is common in human male infertility caused by impaired spermatogenesis. We hypothesized that this morphological change bears witness of an underlying fundamentally altered state of the cells building this wall, that is, peritubular smooth muscle-like cells. This could include a loss of the contractile abilities of these cells and thus be a factor in male infertility. Immune cells are increased in the tubular wall in these cases, hence local immune cell-related factors, including a prostaglandin (PG) metabolite may be involved. To explore these points in the human, we used testicular biopsies, in which tubules with normal spermatogenesis and impaired spermatogenesis are next to each other [mixed atrophy (MA)], normal biopsies and cultured human testicular peritubular cells. Proteins essential for contraction, myosin heavy chain (MYH11), calponin (Cal) and relaxation, cGMP-dependent protein kinase 1 (cGKI), were readily detected by immunohistochemistry and were equally distributed in all peritubular cells of biopsies with normal spermatogenesis. In all biopsies, vascular smooth muscle cells also stained and served as important intrinsic controls, which showed that in MA samples when spermatogenesis was impaired, staining was restricted to only few peritubular cells or was absent. When spermatogenesis was normal, regular peritubular staining became obvious. This pattern suggests complex regulatory influences, which in face of the identical systemic hormonal situation in MA patients, are likely caused by the local testicular micromilieu. The PG metabolite 15dPGJ2 may represent such a factor and it reduced Cal protein levels in peritubular cells from patients with/without impaired spermatogenesis. The documented phenotypic switch of peritubular, smooth muscle-like cells in MA patients may impair the abilities of the afflicted seminiferous tubules to contract and relax and must now be considered as a part of the complex events in male infertility.
Collapse
Affiliation(s)
- H Welter
- Anatomy III - Cell Biology, Ludwig Maximilian University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Wolfertstetter S, Huettner JP, Schlossmann J. cGMP-Dependent Protein Kinase Inhibitors in Health and Disease. Pharmaceuticals (Basel) 2013; 6:269-86. [PMID: 24275951 PMCID: PMC3816681 DOI: 10.3390/ph6020269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 02/05/2023] Open
Abstract
cGMP-dependent protein kinases (PKG) exhibit diverse physiological functions in the mammalian system e.g., in vascular and gastrointestinal smooth muscles, in platelets, in kidney, in bone growth, nociception and in the central nervous system. Furthermore, PKG were found in insects and in the malaria parasite Plasmodium falciparum. Two different genes of PKG exist: a) the PKG-I gene that is expressed as cytosolic PKG-Iα or PKG-Iβ isoform, and b) the PKG-II gene, which expresses the membrane associated PKG-II protein. The enzyme kinetics, the localization and the substrates of these PKG enzymes differ utilizing different physiological functions. Various inhibitors of PKG were developed directed against diverse functional regions of the kinase. These inhibitors of PKG have been used to analyse the specific functions of these enzymes. The review article will summarize these different inhibitors regarding their specificity and their present applications in vitro and in vivo. Furthermore, it will be discussed that the distinct inhibition of the PKG enzymes could be used as a valuable pharmacological target e.g., in the treatment of cardiovascular diseases, diarrhea, cancer or malaria.
Collapse
Affiliation(s)
- Stefanie Wolfertstetter
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | | | | |
Collapse
|
47
|
Feil R, Hölter SM, Weindl K, Wurst W, Langmesser S, Gerling A, Feil S, Albrecht U. cGMP-dependent protein kinase I, the circadian clock, sleep and learning. Commun Integr Biol 2013; 2:298-301. [PMID: 19721870 DOI: 10.4161/cib.2.4.8220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie; Universität Tübingen; Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Held KF, Dostmann WR. Real-time monitoring the spatiotemporal dynamics of intracellular cGMP in vascular smooth muscle cells. Methods Mol Biol 2013; 1020:131-145. [PMID: 23709030 PMCID: PMC4887092 DOI: 10.1007/978-1-62703-459-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Real-time and noninvasive imaging of intracellular second messengers in mammalian cells, while -preserving their in vivo phenotype, requires biosensors of exquisite constitution. Here we provide the methodology for utilizing the single wavelength cGMP-biosensor δ-FlincG in aortic vascular smooth muscle cells.
Collapse
Affiliation(s)
- Kara F Held
- Department of Pharmacology, Yale University, New Haven, USA
| | | |
Collapse
|
49
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
50
|
Müller PM, Gnügge R, Dhayade S, Thunemann M, Krippeit-Drews P, Drews G, Feil R. H₂O₂ lowers the cytosolic Ca²⁺ concentration via activation of cGMP-dependent protein kinase Iα. Free Radic Biol Med 2012; 53:1574-83. [PMID: 22922339 DOI: 10.1016/j.freeradbiomed.2012.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022]
Abstract
The cGMP-dependent protein kinase I (cGKI) is a key mediator of cGMP signaling, but the specific functions of its two isoforms, cGKIα and cGKIβ, are poorly understood. Recent studies indicated a novel cGMP-independent role for cGKIα in redox sensing. To dissect the effects of oxidative stress on the cGKI isoforms, we used mouse embryonic fibroblasts and vascular smooth muscle cells (VSMCs) expressing both, one, or none of them. In cGKIα-expressing cells, but not in cells expressing only cGKIβ, incubation with H₂O₂ induced the formation of a disulfide bond between the two identical subunits of the dimeric enzyme. Oxidation of cGKIα was associated with increased phosphorylation of its substrate, vasodilator-stimulated phosphoprotein. H₂O₂ did not stimulate cGMP production, indicating that it activates cGKIα directly via oxidation. Interestingly, there was a mutual influence of H₂O₂ and cGMP on cGKI activity and disulfide bond formation, respectively; preoxidation of the kinase with H₂O₂ slightly impaired its activation by cGMP, whereas preactivation of the enzyme with cGMP attenuated its oxidation by H₂O₂. To evaluate the functional relevance of the noncanonical H₂O₂-cGKIα pathway, we studied the regulation of the cytosolic Ca²⁺ concentration ([Ca²⁺](i)). H₂O₂ suppressed norepinephrine-induced Ca²⁺ transients in cGKIα-expressing VSMCs and, to a lower extent, in VSMCs expressing only cGKIβ or none of the isoforms. Thus, H₂O₂ lowers [Ca²⁺](i) mainly via a cGKIα-dependent pathway. These results indicate that oxidative stress selectively targets the cGKIα isoform, which then modulates cellular processes in a cGMP-independent manner. A decrease in [Ca²⁺](i) in VSMCs via activation of cGKIα might be a major mechanism of H₂O₂-induced vasodilation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Cytosol/metabolism
- Disulfides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/enzymology
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Hydrogen Peroxide/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidants/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Paul Markus Müller
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|