1
|
Fei X, Song C, Cui J, Li Y, Lei X, Tang H. The role of deubiquitinases in cardiovascular diseases: mechanisms and therapeutic implications. Front Cardiovasc Med 2025; 12:1582049. [PMID: 40376148 PMCID: PMC12078317 DOI: 10.3389/fcvm.2025.1582049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
Cardiovascular diseases (CVDs) have become the leading cause of death globally, surpassing infectious diseases and other chronic illnesses. The incidence and mortality rates of CVDs are rising worldwide, posing a key challenge in public health. The ubiquitination system is a vast and complex. It is an important post-translational modification that plays a crucial role in various cellular processes. Deubiquitination is catalyzed by deubiquitinases (DUBs), which remove ubiquitin (Ub) from ubiquitinated proteins, thereby reversing the ubiquitination process. DUBs play an important role in many biological processes, such as DNA repair, cell metabolism, differentiation, epigenetic regulation, and protein stability control. They also participate in the regulation of many signaling pathways associated with the development and progression of CVDs. In this review, we primarily focus on the role of DUBs in various key pathological mechanisms of atherosclerosis (AS), such as foam cell formation, vascular remodeling (VR), endothelial-to-mesenchymal transition (End-MT), and clonal hematopoiesis (CH). In the heart, we summarize the involvement of DUBs in diseases and pathological processes, including heart failure (HF), myocardial infarction (MI), myocardial hypertrophy (MH) and ischemia/reperfusion (I/R) injury. Additionally, we also explore the diabetic cardiomyopathy (DCM) and the use of doxorubicin-induced cardiotoxicity in clinical settings. A comprehensive understanding of deubiquitination may provide new insights for the treatment and drug design of CVDs.
Collapse
Affiliation(s)
- Xiangyu Fei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuqing Li
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huifang Tang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Mishra S, Chander V, Kass DA. Cardiac cGMP Regulation and Therapeutic Applications. Hypertension 2025; 82:185-196. [PMID: 39660453 PMCID: PMC11732264 DOI: 10.1161/hypertensionaha.124.21709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
cGMP plays a central role in cardiovascular regulation in health and disease. It is synthesized by NO or natriuretic peptide activated cyclases and hydrolyzed to 5'GMP by select members of the PDEs (phosphodiesterase) superfamily. The primary downstream effector is cGMP-dependent protein kinase, primarily cGK-1a (cyclic GMP-dependent protein kinase 1 alpha) also known as protein kinase G 1a in the heart and vasculature. cGMP signaling is controlled in intracellular nanodomains to regulate myocyte growth, survival, metabolism, protein homeostasis, G-protein-coupled receptor signaling, and other critical functions. The vascular effects of cGMP signaling have been dominated by its lowering of smooth muscle tone, but other cellular processes are also engaged. Localization of cyclases and corresponding PDEs within intracellular domains, along with their varying expression across different cell types, adds multiorgan complexity to cGMP signaling. This diversity can be leveraged therapeutically by targeting selective pathway components to impact some but not other cGMP signaling effects. Here, we review the generation and regulation of cGMP by PDEs and cyclases, focusing mainly on their role in cardiac physiology and pathophysiology. Current therapeutic uses of cGMP modulation and ongoing trials testing new potential applications are discussed.
Collapse
Affiliation(s)
- Sumita Mishra
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, (S.M., V.C.), Virginia Tech, Blacksburg, VA
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, (S.M.), Virginia Tech, Blacksburg, VA
- Department of Human Nutrition, Foods, and Exercise, College of Life Sciences (S.M.), Virginia Tech, Blacksburg, VA
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA (S.M.)
| | - Vivek Chander
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, (S.M., V.C.), Virginia Tech, Blacksburg, VA
| | - David A. Kass
- Division of Cardiology, Department of Medicine (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Das BB, Raj S. Contemporary treatment of right ventricular failure. JHLT OPEN 2025; 7:100203. [PMID: 40144829 PMCID: PMC11935500 DOI: 10.1016/j.jhlto.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Right ventricular failure (RVF) is a clinical syndrome resulting from structural and functional changes in the right ventricle (RV), leading to inadequate blood flow to the pulmonary circulation and elevated systemic venous pressures. Factors modulating RV function include afterload, preload, contractility, and interventricular dependency. The pathophysiology of RVF involves complex interactions, such as maladaptive hypertrophy, metabolic reprogramming, inflammation, fibrosis, apoptosis, and endothelial dysfunction. Therapeutic strategies are limited for RVF, as basic and clinical research has historically focused mainly on the left ventricle. Novel pharmacological interventions targeting metabolism, calcium homeostasis, oxidative stress, extracellular matrix remodeling, endothelial function, and inflammation are needed to address RVF effectively. This review explores the etiology, mechanisms, and pathophysiology of RVF, drugs directly targeting the RV myocardium, the intricate biological processes between RV and pulmonary vascular remodeling, surgical and device therapies, and future perspectives on managing RVF.
Collapse
Affiliation(s)
- Bibhuti B. Das
- Department of Pediatrics, Division of Pediatric Cardiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shashi Raj
- Heart Failure and Transplantation, Department of Pediatric Cardiology, Narayana Health, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Wayne N, Singamneni VS, Venkatesh R, Cherlin T, Verma SS, Guerraty MA. Genetic Insights Into Coronary Microvascular Disease. Microcirculation 2025; 32:e12896. [PMID: 39755372 DOI: 10.1111/micc.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Coronary microvascular disease (CMVD) affects the coronary pre-arterioles, arterioles, and capillaries and can lead to blood supply-demand mismatch and cardiac ischemia. CMVD can present clinically as ischemia or myocardial infarction with no obstructive coronary arteries (INOCA or MINOCA, respectively). Currently, therapeutic options for CMVD are limited, and there are no targeted therapies. Genetic studies have emerged as an important tool to gain rapid insights into the molecular mechanisms of human diseases. For example, coronary artery disease (CAD) genome-wide association studies (GWAS) have enrolled hundreds of thousands of patients and have identified > 320 loci, elucidating CAD pathogenic pathways and helping to identify therapeutic targets. Here, we review the current landscape of genetic studies of CMVD, consisting mostly of genotype-first approaches. We then present the hypothesis that CAD GWAS have enrolled heterogenous populations and may be better characterized as ischemic heart disease (IHD) GWAS. We discuss how several of the genetic loci currently associated with CAD may be involved in the pathogenesis of CMVD. Genetic studies could help accelerate progress in understanding CMVD pathophysiology and identifying putative therapeutic targets. Larger phenotype-first genomic studies into CMVD with adequate sex and ancestry representation are needed. Given the extensive CAD genetic and functional validation data, future research should leverage these loci as springboards for CMVD genomic research.
Collapse
Affiliation(s)
- Nicole Wayne
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Venkata S Singamneni
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rasika Venkatesh
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tess Cherlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marie A Guerraty
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Takayama A, Yoshida S, Kawakami K. Tadalafil use is associated with a lower incidence of Type 2 diabetes in men with benign prostatic hyperplasia: A population-based cohort study. J Intern Med 2024; 296:422-434. [PMID: 39287476 DOI: 10.1111/joim.20012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Tadalafil, commonly prescribed for benign prostatic hyperplasia (BPH), may benefit patients with Type 2 diabetes mellitus (T2DM) for glycemic markers and complications. However, the association between the long-term use of tadalafil and the incidence of T2DM has not been investigated. METHODS We emulated a target trial of tadalafil use (5 mg/day) and the risk of T2DM using a population-based claims database in Japan. Patients who initiated tadalafil or alpha-blockers for BPH and had no history of diabetes diagnosis, no dispensing of glucose-lowering drugs, and no history of hemoglobin A1c levels of ≥6.5% (47-48 mmol/mol) were included. The primary outcome was the incidence of T2DM. Pooled logistic regression was used to estimate adjusted risk ratios (RRs) and 5-year cumulative incidence differences (CIDs). RESULTS A total of 5180 participants initiated tadalafil treatment and were compared with 20,049 patients who initiated alpha-blockers. The median follow-up time for each arm was 27.2 months (interquartile range [IQR], 12.0-47.9) in tadalafil users and 31.3 months (IQR, 13.7-57.2) in alpha-blocker users. The incidence rates of T2DM in tadalafil and alpha-blocker users were 5.4 (95% confidence interval [CI], 4.0-7.2) and 8.8 (95% CI, 7.8-9.8) per 1000-person years, respectively. Initiation of tadalafil was associated with a reduced risk of T2DM (RR, 0.47; 95% CI, 0.39-0.62; 5-year CID, -0.031; 95% CI, -0.040 to -0.019). CONCLUSION The incidence of T2DM was lower in men with BPH treated with tadalafil than in those treated with alpha-blockers. Thus, tadalafil may be more beneficial than alpha-blockers in preventing T2DM.
Collapse
Affiliation(s)
- Atsushi Takayama
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Satomi Yoshida
- Department of Clinical Medicine, Division of Social Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| |
Collapse
|
6
|
Liang X, Zhou J, Wang H, Zhang Z, Yin M, Zhu Y, Li L, Chen C, Wei M, Hu M, Zhao C, Yao J, Li G, Dinh‐Xuan A, Xiao J, Bei Y. miR-30d Attenuates Pulmonary Arterial Hypertension via Targeting MTDH and PDE5A and Modulates the Beneficial Effect of Sildenafil. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407712. [PMID: 39206778 PMCID: PMC11516105 DOI: 10.1002/advs.202407712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary arterial hypertension (PAH) is associated with aberrant pulmonary vascular smooth muscle cell (PASMC) function and vascular remodeling. MiR-30d plays an important role in the pathogenesis of several cardiovascular disorders. However, the function of miR-30d in PAH progression remained unknown. Our study shows that circulating miR-30d level is significantly reduced in the plasma from PAH patients. In miR-30d transgenic (TG) rats, overexpressing miR-30d attenuates monocrotaline (MCT)-induced pulmonary hypertension (PH) and pulmonary vascular remodeling. Increasing miR-30d also inhibits platelet-derived growth factor-bb (PDGF-bb)-induced proliferation and migration of human PASMC. Metadherin (MTDH) and phosphodiesterase 5A (PDE5A) are identified as direct target genes of miR-30d. Meanwhile, nuclear respiratory factor 1 (NRF1) acts as a positive upstream regulator of miR-30d. Using miR-30d knockout (KO) rats treated with sildenafil, a PDE5A inhibitor that is used in clinical PAH therapies, it is further found that suppressing miR-30d partially attenuates the beneficial effect of sildenafil against MCT-induced PH and vascular remodeling. The present study shows a protective effect of miR-30d against PAH and pulmonary vascular remodeling through targeting MTDH and PDE5A and reveals that miR-30d modulates the beneficial effect of sildenafil in treating PAH. MiR-30d should be a prospective target to treat PAH and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Cuimei Zhao
- Department of CardiologyShanghai Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Jianhua Yao
- Department of CardiologyTenth People's HospitalSchool of MedicineTongji UniversityShanghai200090China
- Department of CardiologyShigatse People's HospitalTibet857000China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Anh‐Tuan Dinh‐Xuan
- Lung Function & Respiratory Physiology UnitsDepartment of Respiratory Physiology and Sleep MedicineCochin & George Pompidou HospitalsAssistance Publique‐Hôpitaux de Paris (APHP) CentreUniversity Paris CitéParis75014France
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
7
|
Paronetto MP, Crescioli C. Rethinking of phosphodiesterase 5 inhibition: the old, the new and the perspective in human health. Front Endocrinol (Lausanne) 2024; 15:1461642. [PMID: 39355618 PMCID: PMC11442314 DOI: 10.3389/fendo.2024.1461642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The phosphodiesterases type 5 (PDE5) are catalytic enzymes converting the second messenger cyclic guanosine monophosphate (cGMP) to 5' GMP. While intracellular cGMP reduction is associated with several detrimental effects, cGMP stabilization associates with numerous benefits. The PDE5 specific inhibitors, PDE5i, found their explosive fortune as first-line treatment for erectile dysfunction (ED), due to their powerful vasoactive properties. The favorable effect for ED emerged as side-effect when PDE5i were originally proposed for coronary artery disease (CAD). From that point on, the use of PDE5i captured the attention of researchers, clinicians, and companies. Indeed, PDE5-induced intracellular cGMP stabilization offers a range of therapeutic opportunities associated not only with vasoactive effects, but also with immune regulatory/anti-inflammatory actions. Chronic inflammation is acknowledged as the common link underlying most non-communicable diseases, including metabolic and cardiac diseases, autoimmune and neurodegenerative disorders, cancer. In this scenario, the clinical exploitation of PDE5i is undeniably beyond ED, representing a potential therapeutic tool in several human diseases. This review aims to overview the biological actions exerted by PDE5i, focusing on their ability as modulators of inflammation-related human diseases, with particular attention to inflammatory-related disorders, like cardiac diseases and cancer.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| |
Collapse
|
8
|
Lorenc-Koci E, Kamińska K, Lenda T, Konieczny J. The Effect of Chronic Treatment with the Inhibitor of Phosphodiesterase 5 (PDE5), Sildenafil, in Combination with L-DOPA on Asymmetric Behavior and Monoamine Catabolism in the Striatum and Substantia Nigra of Unilaterally 6-OHDA-Lesioned Rats. Molecules 2024; 29:4318. [PMID: 39339313 PMCID: PMC11434559 DOI: 10.3390/molecules29184318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (K.K.); (T.L.); (J.K.)
| | | | | | | |
Collapse
|
9
|
Ibarra C, Bergh E, Tsao K, Johnson A. Prenatal diagnostic and intervention considerations in congenital diaphragmatic hernia. Semin Pediatr Surg 2024; 33:151436. [PMID: 39018717 DOI: 10.1016/j.sempedsurg.2024.151436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect with significant morbidity and mortality. The prenatal management of a pregnancy with a fetus affected with CDH is complex and requires a multi-disciplinary team approach. An improved understanding of prenatal diagnosis and management is essential to developing strategies to optimize outcomes for these patients. In this review, we explore the current knowledge on diagnosis, severity stratification, prognostic prediction, and indications for fetal intervention in the fetus with CDH.
Collapse
Affiliation(s)
- Claudia Ibarra
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| | - Eric Bergh
- Department of Obstetrics and Gynecology, Division of Fetal Intervention, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States.
| | - Kuojen Tsao
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, Houston, TX, United States
| | - Anthony Johnson
- Department of Obstetrics and Gynecology, Division of Fetal Intervention, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
10
|
Lippner DS, Xu J, Ma S, Reisert J, Zhao H. Phosphodiesterase 5A regulates the vomeronasal pump in mice. Genesis 2024; 62:e23603. [PMID: 38738564 PMCID: PMC11338583 DOI: 10.1002/dvg.23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors-sildenafil or tadalafil-to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male-male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.
Collapse
Affiliation(s)
- Dennean S. Lippner
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Jiang Xu
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104
| | - Siqi Ma
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Hu W, Liu Y, Lian C, Lu H. Genetic insight into putative causes of xanthelasma palpebrarum: a Mendelian randomization study. Front Immunol 2024; 15:1347112. [PMID: 38601164 PMCID: PMC11004296 DOI: 10.3389/fimmu.2024.1347112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Xanthelasma palpebrarum (XP) is the most common form of cutaneous xanthoma, with a prevalence of 1.1%~4.4% in the population. However, the cause of XP remains largely unknown. In the present study, we used Mendelian randomization to assess the genetic association between plasma lipids, metabolic traits, and circulating protein with XP, leveraging summary statistics from large genome-wide association studies (GWAS). Genetically predicted plasma cholesterol and LDL-C, but not HDL-C or triglyceride, were significantly associated with XP. Metabolic traits, including BMI, fasting glucose, type 2 diabetes, systolic and diastolic blood pressure, were not significantly associated with XP. Furthermore, we found genetically predicted 12 circulating proteins were associated with XP, including FN1, NTM, FCN2, GOLM1, ICAM5, PDE5A, C5, CLEC11A, CXCL1, CCL2, CCL11, CCL13. In conclusion, this study identified plasma cholesterol, LDL-C, and 12 circulating proteins to be putative causal factors for XP, highlighting the role of plasma cholesterol and inflammatory response in XP development.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Cuihong Lian
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Haocheng Lu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Saravi B, Goebel U, Hassenzahl LO, Jung C, David S, Feldheiser A, Stopfkuchen-Evans M, Wollborn J. Capillary leak and endothelial permeability in critically ill patients: a current overview. Intensive Care Med Exp 2023; 11:96. [PMID: 38117435 PMCID: PMC10733291 DOI: 10.1186/s40635-023-00582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Capillary leak syndrome (CLS) represents a phenotype of increased fluid extravasation, resulting in intravascular hypovolemia, extravascular edema formation and ultimately hypoperfusion. While endothelial permeability is an evolutionary preserved physiological process needed to sustain life, excessive fluid leak-often caused by systemic inflammation-can have detrimental effects on patients' outcomes. This article delves into the current understanding of CLS pathophysiology, diagnosis and potential treatments. Systemic inflammation leading to a compromise of endothelial cell interactions through various signaling cues (e.g., the angiopoietin-Tie2 pathway), and shedding of the glycocalyx collectively contribute to the manifestation of CLS. Capillary permeability subsequently leads to the seepage of protein-rich fluid into the interstitial space. Recent insights into the importance of the sub-glycocalyx space and preserving lymphatic flow are highlighted for an in-depth understanding. While no established diagnostic criteria exist and CLS is frequently diagnosed by clinical characteristics only, we highlight more objective serological and (non)-invasive measurements that hint towards a CLS phenotype. While currently available treatment options are limited, we further review understanding of fluid resuscitation and experimental approaches to target endothelial permeability. Despite the improved understanding of CLS pathophysiology, efforts are needed to develop uniform diagnostic criteria, associate clinical consequences to these criteria, and delineate treatment options.
Collapse
Affiliation(s)
- Babak Saravi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center, University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, St. Franziskus-Hospital, Muenster, Germany
| | - Lars O Hassenzahl
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Aarne Feldheiser
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Evang. Kliniken Essen-Mitte, Huyssens-Stiftung/Knappschaft, University of Essen, Essen, Germany
| | - Matthias Stopfkuchen-Evans
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jakob Wollborn
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Garcia-Rubio VG, Cabrera-Becerra SE, Ocampo-Ortega SA, Blancas-Napoles CM, Sierra-Sánchez VM, Romero-Nava R, Gutiérrez-Rojas RA, Huang F, Hong E, Villafaña S. siRNA Targeting PDE5A Partially Restores Vascular Damage Due to Type 1 Diabetes in a Streptozotocin-Induced Rat Model. Sci Pharm 2023; 91:52. [DOI: 10.3390/scipharm91040052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Diabetes mellitus is a metabolic disease that can produce different alterations such as endothelial dysfunction, which is defined as a decrease in the vasodilator responses of the mechanisms involved such as the nitric oxide (NO) pathway. The overexpression of PDE5A has been reported in diabetes, which causes an increase in the hydrolysis of cGMP and a decrease in the NO pathway. For this reason, the aim of this study was to evaluate whether siRNAs targeting PDE5A can reduce the endothelial dysfunction associated with diabetes. We used male Wistar rats (200–250 g) that were administered streptozotocin (STZ) (60 mg/kg i.p) to induce diabetes. Two weeks after STZ administration, the siRNAs or vehicle were administered and then, at 4 weeks, dose–response curves to acetylcholine were performed and PDE5A mRNA levels were measured by RT-PCR. siRNAs were designed by the bioinformatic analysis of human–rat FASTA sequences and synthesised in the Mermade-8 equipment. Our results showed that 4 weeks of diabetes produces a decrease in the vasodilator responses to acetylcholine and an increase in the expression of PDE5A mRNA, while the administration of siRNAs partially restores the vasodilator response and decreases PDE5A expression. We conclude that the administration of siRNAs targeting PDE5A partially reverts the endothelial impairment associated with diabetes.
Collapse
Affiliation(s)
- Vanessa Giselle Garcia-Rubio
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| | - Sandra Edith Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| | - Sergio Adrian Ocampo-Ortega
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| | - Vivany Maydel Sierra-Sánchez
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| | | | - Fengyang Huang
- Departamento de Farmacología y Toxicología, “Hospital Infantil de México Federico Gómez” (HIMFG), Ciudad de México 06720, Mexico
| | - Enrique Hong
- Departamento de Neurofarmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Ciudad de México 11340, Mexico
| |
Collapse
|
14
|
Oliveros W, Delfosse K, Lato DF, Kiriakopulos K, Mokhtaridoost M, Said A, McMurray BJ, Browning JW, Mattioli K, Meng G, Ellis J, Mital S, Melé M, Maass PG. Systematic characterization of regulatory variants of blood pressure genes. CELL GENOMICS 2023; 3:100330. [PMID: 37492106 PMCID: PMC10363820 DOI: 10.1016/j.xgen.2023.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 07/27/2023]
Abstract
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.
Collapse
Affiliation(s)
- Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Kate Delfosse
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniella F. Lato
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Katerina Kiriakopulos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Milad Mokhtaridoost
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Abdelrahman Said
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brandon J. McMurray
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jared W.L. Browning
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Meng
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Philipp G. Maass
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Yoshida S, Kreger AM, Shaik IH, West RE, Venkataramanan R, Gittes GK. Intra-amniotic sildenafil administration in rabbits: Safety, pharmacokinetics, organ distribution and histologic evaluation. Toxicol Appl Pharmacol 2023; 469:116527. [PMID: 37080362 DOI: 10.1016/j.taap.2023.116527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND The effectiveness of sildenafil in the management of pulmonary hypertension in congenital diaphragmatic hernia (CDH) has been reported but has not been systematically evaluated. Our studies have also demonstrated that intra-amniotic (IA) sildenafil administration improves pulmonary hypertension in CDH. METHODS We evaluated the pharmacokinetics of sildenafil after IA administration in pregnant rabbits. Following maternal laparotomy, fetuses received IA injection of 0.8 mg of sildenafil. Maternal blood, amniotic fluid, and fetal tissues were collected at various time points. The concentrations of sildenafil and its major metabolite in samples were analyzed by liquid chromatography-mass spectrometry. To assess organ toxicity, 7 days after IA sildenafil administration, fetal organs were examined histologically. RESULTS After IA dosing, sildenafil was absorbed quickly with an absorption half-life of 0.03-0.07 h into the fetal organs. All the organs showed a maximum concentration within 1 h and the disposition half-life ranged from 0.56 to 0.73 h. Most of the sildenafil was eliminated from both mothers and fetuses within 24 h after a single dose. There was no histological evidence of organ toxicity in the fetuses after a single dose of IA administration of sildenafil. CONCLUSION IA sildenafil is rapidly absorbed into the fetus, distributes into the mother and is eliminated by the mother without accumulation or fetal organ toxicity. This study confirms the feasibility and the safety of IA administration of sildenafil and enables future applications in the treatment of CDH fetuses.
Collapse
Affiliation(s)
- Shiho Yoshida
- Division of Pediatric Surgery, Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA
| | - Alexander M Kreger
- Division of Pediatric Surgery, Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA
| | - Imam H Shaik
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raymond E West
- Small Molecule Biomarker Core (SMBC), University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pathology School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|
16
|
Wu H, Han F. Investigation of shared genes and regulatory mechanisms associated with coronavirus disease 2019 and ischemic stroke. Front Neurol 2023; 14:1151946. [PMID: 37090981 PMCID: PMC10115163 DOI: 10.3389/fneur.2023.1151946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveClinical associations between coronavirus disease (COVID-19) and ischemic stroke (IS) have been reported. This study aimed to investigate the shared genes between COVID-19 and IS and explore their regulatory mechanisms.MethodsPublished datasets for COVID-19 and IS were downloaded. Common differentially expressed genes (DEGs) in the two diseases were identified, followed by protein–protein interaction (PPI) network analysis. Moreover, overlapping module genes associated with the two diseases were investigated using weighted correlation network analysis (WGCNA). Through intersection analysis of PPI cluster genes and overlapping module genes, hub-shared genes associated with the two diseases were obtained, followed by functional enrichment analysis and external dataset validation. Moreover, the upstream miRNAs and transcription factors (TFs) of the hub-shared genes were predicted.ResultsA total of 91 common DEGs were identified from the clusters of the PPI network, and 129 overlapping module genes were screened using WGCNA. Based on further intersection analysis, four hub-shared genes in IS and COVID-19 were identified, including PDE5A, ITGB3, CEACAM8, and BPI. These hub-shared genes were remarkably enriched in pathways such as ECM-receptor interaction and focal adhesion pathways. Moreover, ITGB3, PDE5A, and CEACAM8 were targeted by 53, 32, and 3 miRNAs, respectively, and these miRNAs were also enriched in the aforementioned pathways. Furthermore, TFs, such as lactoferrin, demonstrated a stronger predicted correlation with the hub-shared genes.ConclusionThe four identified hub-shared genes may participate in crucial mechanisms underlying both COVID-19 and IS and may exhibit the potential to be biomarkers or therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Fei Han,
| |
Collapse
|
17
|
Gui X, Chu X, Du Y, Wang Y, Zhang S, Ding Y, Tong H, Xu M, Li Y, Ju W, Sun Z, Li Z, Zeng L, Xu K, Qiao J. Impaired Platelet Function and Thrombus Formation in PDE5A-Deficient Mice. Thromb Haemost 2023; 123:207-218. [PMID: 36252813 DOI: 10.1055/a-1962-1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intracellular cyclic GMP (cGMP) inhibits platelet function. Platelet cGMP levels are controlled by phosphodiesterase 5A (PDE5A)-mediated degradation. However, the exact role of PDE5A in platelet function and thrombus formation remains poorly understood. In this study, we characterized the role of PDE5A in platelet activation and function. Platelets were isolated from wild type or PDE5A-/- mice to measure platelet aggregation, activation, phosphatidylserine exposure (annexin-V binding), reactive oxygen species (ROS) generation, platelet spreading as well as clot retraction. Cytosolic calcium mobilization was measured using Fluo-4 AM by a microplate reader. Western blot was used to measure the phosphorylation of VASP, ERK1/2, p38, JNK, and AKT. FeCl3-induced arterial thrombosis and venous thrombosis were assessed to evaluate the in vivo hemostatic function and thrombus formation. Additionally, in vitro thrombus formation was assessed in a microfluidic whole-blood perfusion assay. PDE5A-deficient mice presented significantly prolonged tail bleeding time and delayed arterial and venous thrombus formation. PDE5A deficiency significantly inhibited platelet aggregation, ATP release, P-selectin expression, and integrin aIIbb3 activation. In addition, an impaired spreading on collagen or fibrinogen and clot retraction was observed in PDE5A-deficient platelets. Moreover, PDE5A deficiency reduced phosphatidylserine exposure, calcium mobilization, ROS production, and increased intracellular cGMP level along with elevated VASP phosphorylation and reduced phosphorylation of ERK1/2, p38, JNK, and AKT. In conclusion, PDE5A modulates platelet activation and function and thrombus formation, indicating that therapeutically targeting it might be beneficial for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuhan Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| |
Collapse
|
18
|
Swiecicka A. The efficacy of PDE5 inhibitors in diabetic patients. Andrology 2023; 11:245-256. [PMID: 36367281 PMCID: PMC10107754 DOI: 10.1111/andr.13328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Phosphodiesterase 5 inhibitors (PDE5i), since their introduction in the late 1990s, have proven their efficacy in treating several conditions, predominantly pulmonary hypertension and erectile dysfunction where they remain the first-line therapeutic option. However, in the recent years, growing evidence from both animal and human studies has emerged to suggest the additional benefits of PDE5i in cardiovascular and metabolic disorders. This is of specific interest to the diabetes population where prevalent cardiovascular disease and metabolic dysregulation significantly contribute to the increased morbidity and mortality. OBJECTIVES To examine the available data on the non-standard, pleiotropic effects of PDE5i in patients with diabetes mellitus. MATERIALS AND METHODS The review of the published background research, preclinical studies and clinical trials. RESULTS In human studies, PDE5 inhibition appeared to be associated with reduced cardiovascular mortality and overall improved clinical outcomes in those with established cardiovascular disease. PDE5i were also consistently found to reduce albuminuria in subjects with diabetic nephropathy. Furthermore, animal data suggest a plausible effect of this group of medication on sensory function and neuropathic symptoms in diabetic neuropathy as well as improved wound healing. A decrease in insulin resistance and augmentation of beta cell function seen in preclinical studies has not been consistently demonstrated in human trials. DISCUSSION AND CONCLUSION In animal models, PDE5 inhibition appears to decrease oxidative stress and reduce some of the micro- and macrovascular complications associated with diabetes. However, data from human trials are limited and largely inconsistent, highlighting the need for adequately powered, randomised-controlled trials in diabetic cohorts in order to fully assess the benefits of PDE5i in this group of patients.
Collapse
Affiliation(s)
- Agnieszka Swiecicka
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
19
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
20
|
Jing G, Xia Z, Lei Q. Co-expression of soluble guanylyl cyclase subunits and PDE5A shRNA to elevate cellular cGMP level: A potential gene therapy for myocardial cell death. Technol Health Care 2022; 31:901-910. [PMID: 36442224 DOI: 10.3233/thc-220333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Genetic manipulation on the NO-sGC-cGMP pathway has been rarely achieved, partially due to complexity of the soluble guanylyl cyclase (sGC) enzyme. OBJECTIVE: We aim to develop gene therapy directly targeting the pathway to circumvent cytotoxicity and tolerance after prolonged use of NO-donors and the insufficiency of PDE inhibitors. METHODS: In this study, we constructed lentivirus vectors expressing GUCY1A3 and GUCY1B3 genes, which encoded the α1 and β1 subunits of soluble guanylyl cyclase (sGC), respectively, to enhance cGMP synthesis. We also constructed lentiviral vector harboring PDE5A shRNA to alleviate phosphodiesterase activity and cGMP degradation. RESULTS: Transductions of human HEK293 cells with the constructs were successful, as indicated by the fluorescent signal and altered gene expression produced by each vector. Overexpression of GUCY1A3 and GUCY1B3 resulted in increased sGC enzyme activity and elevated cGMP level in the cells. Expression of PDE5A shRNA resulted in decreased PDE5A expression and elevated cGMP level. Co-transduction of the three lentiviral vectors resulted in a more significant elevation of cGMP in HEK293 cells without obvious cytotoxicity. CONCLUSION: To the best of our knowledge, this is the first study to show that co-expression of exogenous subunits of the soluble guanylyl cyclase could form functional enzyme and increase cellular cGMP level in mammalian cells. Simultaneous expression of PDE5A shRNA could alleviate feedback up-regulation on PDE5A caused by cGMP elevation. Further studies are required to evaluate the effects of these constructs in vivo.
Collapse
Affiliation(s)
- Gao Jing
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
- Family Medicine Clinic, Tianjin United Family Healthcare, Tianjin, China
| | - Zhang Xia
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Quan Lei
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
21
|
Lazo REL, Mengarda M, Almeida SL, Caldonazo A, Espinoza JT, Murakami FS. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review. J Control Release 2022; 350:308-323. [PMID: 35995298 DOI: 10.1016/j.jconrel.2022.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Oral sildenafil (SDF) is used to treat pulmonary arterial hypertension (PAH), and its bioavailability is approximately 40%. Several formulations of nano and microparticles (for pulmonary delivery) are being developed because it is possible to improve characteristics such as release time, bioavailability, dose, frequency, and even directly target the drug to the lungs. This review summarizes the latest SDF drug delivery systems for PAH and explains challenges related to the development, the preclinical, and the clinical studies. A scoping review was conducted by searching electronic databases including PubMed, Scopus, and Web of Science to identify studies published between 2001 and 2021. From 300 articles found, 31 met the inclusion criteria. This review identified colloidal formulations such as polymeric, lipid, and metal-organic framework nanoparticles. Strategies were determined to reach the deep airways such as polymeric microparticles, large porous microparticles, nanocomposites, and nano in microparticles. Finally, aspects related to toxicological, pharmacokinetics, and gaps in information for potential use in humans were discussed. SDF formulations are significant candidates for the treatment of PAH by inhalation. In summation, future preclinical studies are still required in large animals, as there is no particular formulation yet submitted to clinical studies.
Collapse
Affiliation(s)
- Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Susana Leão Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Joel Toribio Espinoza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Ponta Grossa, Ponta Grossa, 84030-900 Paraná, Brazil
| | - Fábio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil.
| |
Collapse
|
22
|
De Bie FR, Basurto D, Kumar S, Deprest J, Russo FM. Sildenafil during the 2nd and 3rd Trimester of Pregnancy: Trials and Tribulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11207. [PMID: 36141480 PMCID: PMC9517616 DOI: 10.3390/ijerph191811207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Sildenafil, a phosphodiesterase 5 inhibitor with a vasodilatory and anti-remodeling effect, has been investigated concerning various conditions during pregnancy. Per indication, we herein review the rationale and the most relevant experimental and clinical studies, including systematic reviews and meta-analyses, when available. Indications for using sildenafil during the second and third trimester of pregnancy include maternal pulmonary hypertension, preeclampsia, preterm labor, fetal growth restriction, oligohydramnios, fetal distress, and congenital diaphragmatic hernia. For most indications, the rationale for administering prenatal sildenafil is based on limited, equivocal data from in vitro studies and rodent disease models. Clinical studies report mild maternal side effects and suggest good fetal tolerance and safety depending on the underlying pathology.
Collapse
Affiliation(s)
| | - David Basurto
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Sailesh Kumar
- Mater Research Institute and School of Medicine, University of Queensland, Brisbane, QLD 4343, Australia
| | - Jan Deprest
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, 3000 Leuven, Belgium
| | - Francesca Maria Russo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
van Nijnatten J, Brandsma CA, Steiling K, Hiemstra PS, Timens W, van den Berge M, Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep 2022; 12:5610. [PMID: 35379844 PMCID: PMC8980043 DOI: 10.1038/s41598-022-09093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.
Collapse
|
24
|
Melis MR, Argiolas A. Erectile Function and Sexual Behavior: A Review of the Role of Nitric Oxide in the Central Nervous System. Biomolecules 2021; 11:biom11121866. [PMID: 34944510 PMCID: PMC8699072 DOI: 10.3390/biom11121866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO), the neuromodulator/neurotransmitter formed from l-arginine by neuronal, endothelial and inducible NO synthases, is involved in numerous functions across the body, from the control of arterial blood pressure to penile erection, and at central level from energy homeostasis regulation to memory, learning and sexual behavior. The aim of this work is to review earlier studies showing that NO plays a role in erectile function and sexual behavior in the hypothalamus and its paraventricular nucleus and the medial preoptic area, and integrate these findings with those of recent studies on this matter. This revisitation shows that NO influences erectile function and sexual behavior in males and females by acting not only in the paraventricular nucleus and medial preoptic area but also in extrahypothalamic brain areas, often with different mechanisms. Most importantly, since these areas are strictly interconnected with the paraventricular nucleus and medial preoptic area, send to and receive neural projections from the spinal cord, in which sexual communication between brain and genital apparatus takes place, this review reveals that central NO participates in concert with neurotransmitters/neuropeptides to a neural circuit controlling both the consummatory (penile erection, copulation, lordosis) and appetitive components (sexual motivation, arousal, reward) of sexual behavior.
Collapse
|
25
|
El-Hachem N, Fardoun MM, Slika H, Baydoun E, Eid AH. Repurposing Cilostazol for Raynaud's Phenomenon. Curr Med Chem 2021; 28:2409-2417. [PMID: 32881655 DOI: 10.2174/0929867327666200903114154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Raynaud 's Phenomenon (RP) results from exaggerated cold-induced vasoconstriction. RP patients suffer from vasospastic attacks and compromised digital blood perfusion leading to a triple color change at the level the fingers. Severe RP may cause ulcers and threaten tissue viability. Many drugs have been used to alleviate the symptoms of RP. These include calcium-channel blockers, cGMP-specific phosphodiesterase type 5 inhibitors, prostacyclin analogs, and angiotensin receptor blockers. Despite their variety, these drugs do not treat RP but rather alleviate its symptoms. To date, no drug for RP has been yet approved by the U.S Food and Drugs Administration. Cilostazol is a selective inhibitor of phosphodiesterase-III, originally prescribed to treat intermittent claudication. Owing to its antiplatelet and vasodilating properties, cilostazol is being repurposed as a potential drug for RP. This review focuses on the different lines of action of cilostazol serving to enhance blood perfusion in RP patients.
Collapse
Affiliation(s)
- Nehme El-Hachem
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Beirut, Lebanon
| | - Manal M Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Hasan Slika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
26
|
Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, Morales-Pacheco M, Trujillo-Bornios SI, Rodríguez-Dorantes M. New Approaches in Oncology for Repositioning Drugs: The Case of PDE5 Inhibitor Sildenafil. Front Oncol 2021; 11:627229. [PMID: 33718200 PMCID: PMC7952883 DOI: 10.3389/fonc.2021.627229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The use of already-approved drugs to treat new or alternative diseases has proved to be beneficial in medicine, because it reduces both drug development costs and timelines. Most drugs can be used to treat different illnesses, due their mechanisms of action are not restricted to one molecular target, organ or illness. Diverging from its original intent offers an opportunity to repurpose previously approved drugs to treat other ailments. This is the case of sildenafil (Viagra), a phosphodiesterase-5 (PDE5) inhibitor, which was originally designed to treat systemic hypertension and angina but is currently commercialized as erectile dysfunction treatment. Sildenafil, tadalafil, and vardenafil are PDE5 inhibitors and potent vasodilators, that extend the physiological effects of nitric oxide and cyclic guanosine monophosphate (cGMP) signaling. Although most of the biological implications of these signaling regulations remain unknown, they offer a large therapeutic potential for several diseases. In addition, some PDE5 inhibitors' molecular effects seem to play a key role in different illnesses such as kidney disease, diabetes mellitus, and cancer. In this review, we discuss the molecular effects of PDE5 inhibitors and their therapeutic repurposing in different types of cancer.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Alberto Losada-Garcia
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | | |
Collapse
|
27
|
Wang L, Wu Q, Liu J, Zhang H, Bai L. Lactic acid inhibits iNKT cell functions via a phosphodiesterase-5 dependent pathway. Biochem Biophys Res Commun 2021; 547:9-14. [PMID: 33588236 DOI: 10.1016/j.bbrc.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022]
Abstract
Lactic acid in tumor microenvironment inhibits iNKT cell functions and thus dampens their anti-tumor efficacy. The underlying mechanisms remain unclear. Here, we show that phosphodiesterase-5 inhibitors, sildenafil and tadalafil, promote IFN-γ and IL-4 production in iNKT cells in a cGMP-PKG pathway dependent manner. To favor their cytokine production, iNKT cells reduce Pde5a mRNA lever after activation. In line with the reduction of cytokines caused by lactic acid, lactic acid elevates Pde5a mRNA lever in activated iNKT cells. As a result, phosphodiesterase-5 inhibitor partially restores the cytokine production in lactic acid-treated cells. Our results demonstrate that phosphodiesterase-5 inhibits cytokine production in iNKT cells, and that contributes to the lactic acid-caused dysfunction of iNKT cells.
Collapse
Affiliation(s)
- Lili Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Qielan Wu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Jiwei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Huimin Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| | - Li Bai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
28
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
29
|
Li A, Zhu Z, He Y, Dong Q, Tang D, Chen Z, Huang W. DDCI-01, a novel long acting phospdiesterase-5 inhibitor, attenuated monocrotaline-induced pulmonary hypertension in rats. Pulm Circ 2020; 10:2045894020939842. [PMID: 33240482 PMCID: PMC7672744 DOI: 10.1177/2045894020939842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive, malignant heart disease, characterized by pulmonary arteriole remodeling and increased pulmonary vascular resistance, which eventually leads to right heart failure. This study sought to evaluate the effects of a novel long-acting phospdiesterase-5 inhibitor, namely DDCI-01, as an early intervention for monocrotaline-induced pulmonary hypertensive rats. To establish this model, 50 mg/kg of monocrotaline was intraperitoneally injected into rats. At Day 7 after monocrotaline injection, two doses of DDCI-01 (3 or 9 mg/kg/day) or tadalafil (at 3 or 9 mg/kg/day) were intragastrically administered. The rats were anesthetized with pentobarbital for hemodynamic and echocardiographic measurements, at Day 21 after monocrotaline injection. Compared to the monocrotaline group, DDCI-01 at 3 and 9 mg/kg/day (P) reduced the mean pulmonary arterial pressure (mPAP), right ventricular systolic pressure, right ventricular transverse diameter, pulmonary arterial medial wall thickness (WT%), and right ventricle hypertrophy. However, no significant difference in the indices mentioned as above was found between DDCI-01 (3 mg/kg/day) and tadalafil (3 mg/kg/day). In addition, DDCI-01 at 9 mg/kg/day resulted in lower mPAP and WT%, as well as higher cyclic guanosine monophosphate levels in the lung and plasma compared with the same dose of tadalafil (9 mg/kg/day) (all P < 0.05). These findings suggested that DDCI-01 improved monocrotaline-induced pulmonary hypertension in rats, and a dose of DDCI-01 of 9 mg/kg/day might be more effective than the same dose of tadalafil in monocrotaline-induced pulmonary hypertension in rats.
Collapse
Affiliation(s)
- Ailing Li
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Zhongkai Zhu
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Yangke He
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Qian Dong
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dianyong Tang
- Internation Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Zhongzhu Chen
- Internation Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Wei Huang
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
30
|
Rout A, Tantry US, Novakovic M, Sukhi A, Gurbel PA. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother 2020; 21:1851-1865. [PMID: 32659185 DOI: 10.1080/14656566.2020.1787987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Achieving reperfusion immediately after acute myocardial infarction improves outcomes; despite this, patients remain at a high risk for mortality and morbidity at least for the first year after the event. Ischemia-reperfusion injury (IRI) has a complex pathophysiology and plays an important role in myocardial tissue injury, repair, and remodeling. AREAS COVERED In this review, the authors discuss the various mechanisms and their pharmacological agents currently available for reducing myocardial ischemia-reperfusion injury (IRI). They review important original investigations and trials in various clinical databases for treatments targeting IRI. EXPERT OPINION Encouraging results observed in many preclinical studies failed to show similar success in attenuating myocardial IRI in large-scale clinical trials. Identification of critical risk factors for IRI and targeting them individually rather than one size fits all approach should be the major focus of future research. Various newer therapies like tocilizumab, anakinra, colchicine, revacept, and therapies targeting the reperfusion injury salvage kinase pathway, survivor activating factor enhancement, mitochondrial pathways, and angiopoietin-like peptide 4 hold promise for the future.
Collapse
Affiliation(s)
- Amit Rout
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Marko Novakovic
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Ajaypaul Sukhi
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| |
Collapse
|
31
|
Cesarini V, Guida E, Campolo F, Crescioli C, Di Baldassarre A, Pisano C, Balistreri CR, Ruvolo G, Jannini EA, Dolci S. Type 5 phosphodiesterase (PDE5) and the vascular tree: From embryogenesis to aging and disease. Mech Ageing Dev 2020; 190:111311. [PMID: 32628940 PMCID: PMC7333613 DOI: 10.1016/j.mad.2020.111311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Vascular development depends on the timely differentiation of endothelial and smooth muscle cells. Vascular aging and vascular disease are influenced by endothelial and vascular smooth muscle cell compartments. A survey of the literature on the role of PDE5 in vascular development, aging and disease is reported. The role of PDE5 on vascular development, aging and disease needs to be further investigated by its genetic ablation.
Vascular tree development depends on the timely differentiation of endothelial and vascular smooth muscle cells. These latter are key players in the formation of the vascular scaffold that offers resistance to the blood flow. This review aims at providing an overview on the role of PDE5, the cGMP-specific phosphodiesterase that historically attracted much attention for its involvement in male impotence, in the regulation of vascular smooth muscle cell function. The overall goal is to underscore the importance of PDE5 expression and activity in this cell type in the context of the organs where its function has been extensively studied.
Collapse
Affiliation(s)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Calogera Pisano
- Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Rita Balistreri
- Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giovanni Ruvolo
- Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
32
|
Wen JJ, Cummins C, Radhakrishnan RS. Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020. [DOI: https:/doi.org/10.3390/cells9061393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Severe burn injury initiates a feedback cycle of inflammation, fibrosis, oxidative stress and cardiac mitochondrial damage via the PDE5A-cGMP-PKG pathway. Aim: To test if the PDE5A-cGMP-PKG pathway may contribute to burn-induced heart dysfunction. Methods: Sprague–Dawley rats were divided four groups: sham; sham/sildenafil; 24 h post burn (60% total body surface area scald burn, harvested at 24 h post burn); and 24 h post burn/sildenafil. We monitored heart function and oxidative adducts, as well as cardiac inflammatory, cardiac fibrosis and cardiac remodeling responses in vivo. Results: Sildenafil inhibited the burn-induced PDE5A mRNA level and increased the cGMP level and PKG activity, leading to the normalization of PKG down-regulated genes (IRAG, PLB, RGS2, RhoA and MYTP), a decreased ROS level (H2O2), decreased oxidatively modified adducts (malonyldialdehyde [MDA], carbonyls), attenuated fibrogenesis as well as fibrosis gene expression (ANP, BNP, COL1A2, COL3A2, αSMA and αsk-Actin), and reduced inflammation and related gene expression (RELA, IL-18 and TGF-β) after the burn. Additionally, sildenafil treatment preserved left ventricular heart function (CO, EF, SV, LVvol at systolic, LVPW at diastolic and FS) and recovered the oxidant/antioxidant balance (total antioxidant, total SOD activity and Cu,ZnSOD activity). Conclusions: The PDE5A-cGMP-PKG pathway mediates burn-induced heart dysfunction. Sildenafil treatment recovers burn-induced cardiac dysfunction.
Collapse
|
33
|
Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020; 9:cells9061393. [PMID: 32503314 PMCID: PMC7349507 DOI: 10.3390/cells9061393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Severe burn injury initiates a feedback cycle of inflammation, fibrosis, oxidative stress and cardiac mitochondrial damage via the PDE5A-cGMP-PKG pathway. Aim: To test if the PDE5A-cGMP-PKG pathway may contribute to burn-induced heart dysfunction. Methods: Sprague–Dawley rats were divided four groups: sham; sham/sildenafil; 24 h post burn (60% total body surface area scald burn, harvested at 24 h post burn); and 24 h post burn/sildenafil. We monitored heart function and oxidative adducts, as well as cardiac inflammatory, cardiac fibrosis and cardiac remodeling responses in vivo. Results: Sildenafil inhibited the burn-induced PDE5A mRNA level and increased the cGMP level and PKG activity, leading to the normalization of PKG down-regulated genes (IRAG, PLB, RGS2, RhoA and MYTP), a decreased ROS level (H2O2), decreased oxidatively modified adducts (malonyldialdehyde [MDA], carbonyls), attenuated fibrogenesis as well as fibrosis gene expression (ANP, BNP, COL1A2, COL3A2, αSMA and αsk-Actin), and reduced inflammation and related gene expression (RELA, IL-18 and TGF-β) after the burn. Additionally, sildenafil treatment preserved left ventricular heart function (CO, EF, SV, LVvol at systolic, LVPW at diastolic and FS) and recovered the oxidant/antioxidant balance (total antioxidant, total SOD activity and Cu,ZnSOD activity). Conclusions: The PDE5A-cGMP-PKG pathway mediates burn-induced heart dysfunction. Sildenafil treatment recovers burn-induced cardiac dysfunction.
Collapse
|
34
|
da Silveira GD, Bressan LP, Schmidt MEP, Dal Molin TR, Teixeira CA, Poppi RJ, da Silva JAF. Electrochemical behavior of 5-type phosphodiesterase inhibitory drugs in solid state by voltammetry of immobilized microparticles. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04533-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverría J. Medicinal Plants and Phytochemicals for the Treatment of Pulmonary Hypertension. Front Pharmacol 2020; 11:145. [PMID: 32226378 PMCID: PMC7080987 DOI: 10.3389/fphar.2020.00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease that is associated with pulmonary arteries remodeling, right ventricle hypertrophy, right ventricular failure and finally death. The present study aims to review the medicinal plants and phytochemicals used for PH treatment in the period of 1994 – 2019. Methods PubMed, Cochrane and Scopus were searched based on pulmonary hypertension, plant and phytochemical keywords from August 23, 2019. All articles that matched the study based on title and abstract were collected, non-English, repetitive and review studies were excluded. Results Finally 41 studies remained from a total of 1290. The results show that many chemical treatments considered to this disease are ineffective in the long period because they have a controlling role, not a therapeutic one. On the other hand, plants and phytochemicals could be more effective due to their action on many mechanisms that cause the progression of PH. Conclusion Studies have shown that herbs and phytochemicals used to treat PH do their effects from six mechanisms. These mechanisms include antiproliferative, antioxidant, antivascular remodeling, anti-inflammatory, vasodilatory and apoptosis inducing actions. According to the present study, many of these medicinal plants and phytochemicals can have effects that are more therapeutic than chemical drugs if used appropriately.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
36
|
Esmaeili S, Azizian S, Shahmoradi B, Moradi S, Shahlaei M, Khodarahmi R. Dipyridamole inhibits α-amylase/α-glucosidase at sub-micromolar concentrations; in-vitro, in-vivo and theoretical studies. Bioorg Chem 2019; 88:102972. [DOI: 10.1016/j.bioorg.2019.102972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/20/2023]
|
37
|
D'Andrea S, Barbonetti A, Martorella A, Necozione S, Francavilla F, Francavilla S. Effect of prolonged treatment with phosphodiesterase-5-inhibitors on endothelial dysfunction in vascular diseases and vascular risk conditions: A systematic review analysis and meta-analysis of randomized double-blind placebo-controlled trials. Int J Clin Pract 2019; 73:e13296. [PMID: 30471172 DOI: 10.1111/ijcp.13296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To challenge the argument that continuous use of phosphodiesterase-5-selective inhibitors may reduce endothelial cell dysfunction in patients with vascular diseases or vascular risk conditions. DESIGN This study included systematic reviews and meta-analysis of randomized double-blind placebo-controlled trials dealing with the prolonged use of phosphodiesterase-5-selective inhibitors. The risk of bias and quality of trials were assessed by the Cochrane algorithm. Fixed or random effect models, standardised mean differences and heterogeneity were estimated in the study. DATA SOURCES Systematic search for randomized double-blind placebo-controlled trials was done in PubMed, Scopus, CINAHL, Science direct and the Cochrane Library. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomized double-blind placebo-controlled trials reporting measures of endothelial cell dysfunction and/or endothelial cell activation were included. RESULTS On the whole, 469 subjects were allocated to the phosphodiesterase-5-selective inhibitor group, while 463 were assigned to the placebo group in 13 randomized double-blind placebo-controlled trials. Flow-mediated dilation of the brachial artery was found to improve after the administration of phosphodiesterase-5-selective inhibitors (P < 0.0001). The results were questioned by the elevated and uncorrectable heterogeneity (I2 = 92%) and the asymmetry of the funnel plot suggested a publication bias. Phosphodiesterase-5-selective inhibitors have no effect on endothelial cell dysfunction, as assessed in the resistance vessels by digital arterial tonometry. The blood level of endothelin-1 was observed to be decreased in phosphodiesterase-5-selective inhibitors arm (P = 0.03), although the effect disappeared once the publication bias and heterogeneity were corrected. The effect of phosphodiesterase-5-selective inhibitors on biomarkers of endothelial cell activation was found to be inconsistent. CONCLUSIONS The results on the benefits of a prolonged use of phosphodiesterase-5-selective inhibitors, with the objective of lowering endothelial cell dysfunction in patients with vascular diseases or vascular risk conditions are not convincing. This is because of the overall low quality of evidence, giving an unclear scientific support to this treatment. Systematic review registration: PROSPERO registration: CRD42017055399.
Collapse
Affiliation(s)
- Settimio D'Andrea
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Arcangelo Barbonetti
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Alessio Martorella
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | | | - Felice Francavilla
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Sandro Francavilla
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
38
|
Choi HI, Kang BM, Jang J, Hwang ST, Kwon O. Novel effect of sildenafil on hair growth. Biochem Biophys Res Commun 2018; 505:685-691. [PMID: 30292404 DOI: 10.1016/j.bbrc.2018.09.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, is known to increase the intracellular level of cyclic guanosine monophosphate (cGMP), which causes vasodilation. However, the effect of sildenafil on human hair follicles (hHFs) is unknown. OBJECTIVE The purpose of this study was to determine the role of sildenafil in hair growth. METHODS We investigated the expression of PDE5 in human dermal papilla cells (hDPCs) and hHFs. The effects of sildenafil on hDPC proliferation were evaluated using BrdU assays. The mRNA expression of growth factors and extracellular signal-regulated kinase (ERK) phosphorylation were investigated using real-time PCR and western blotting, respectively. Additionally, anagen induction and perifollicular vessel formation were evaluated using an in vivo mice model. RESULTS We confirmed high expression of PDE5 in hDPCs and hHFs. Sildenafil enhances proliferation of hDPCs and up-regulates the mRNA expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), which are responsible for hair growth. Additionally, sildenafil up-regulates the levels of phosphorylated ERK and accelerates anagen induction by stimulating perifollicular vessel formation after topical application in mice. CONCLUSION Our study demonstrates for the first time, the significant therapeutic potential of sildenafil on hair growth and its potential use in treatment of alopecia.
Collapse
Affiliation(s)
- Hye-In Choi
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bo-Mi Kang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeehee Jang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Ohsang Kwon
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Hofmann F. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol 2018; 113:31. [PMID: 29934662 DOI: 10.1007/s00395-018-0690-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, Munich, Germany.
| |
Collapse
|
40
|
Abstract
Biomarkers are increasingly being investigated in the treatment of pulmonary vascular disease. In particular, the signaling pathways targeted by therapies for pulmonary arterial hypertension provide biomarkers that potentially can be used to guide therapy and to assess clinical response as an alternative to invasive procedures such as right-sided cardiac catheterization. Moreover, the growing use of combination therapy for both the initial and subsequent treatment of pulmonary arterial hypertension highlights the need for biomarkers in this treatment approach. Currently approved therapies for pulmonary arterial hypertension target 3 major signaling pathways: the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate pathway, the endothelin pathway, and the prostacyclin pathway. Although the main biomarker used in practice and evaluated in clinical trials is N-terminal pro-brain natriuretic peptide, other putative biomarkers include the endogenous nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine, NO metabolites including S-nitrosothiols and nitrite, exhaled NO, endothelins, cyclic guanosine monophosphate, cyclic adenosine monophosphate, and atrial natriuretic peptide. This review describes accessible biomarkers, related to the actual molecules targeted by current therapies, for measuring and predicting response to the individual pulmonary arterial hypertension treatment classes as well as combination therapy.
Collapse
|
41
|
Abstract
Nitric oxide is an endogenous pulmonary vasodilator that is synthesized from L-arginine in pulmonary vascular endothelial cells by nitric oxide synthase and diffuses to adjacent vascular smooth muscle cells where it activates soluble guanylyl cyclase. This enzyme converts GTP to cGMP which activates cGMP dependent protein kinase leading to a series of events that decrease intracellular calcium and reduce vascular muscle tone. Nitric oxide is an important mediator of pulmonary vascular tone and vascular remodeling. A number of studies suggest that the bioavailability of nitric oxide is reduced in patients with pulmonary vascular disease and that augmentation of the nitric oxide/cGMP pathway may be an effective strategy for treatment. Several medications that target nitric oxide/cGMP signaling are now available for the treatment of pulmonary hypertension. This review explores the history of nitiric oxide research, describes the major NO synthetic and signaling pathways and discusses a variety of abnormalities in NO production and metabolism that may contribute to the pathophysiology of pulmonary vascular disease. A summary of the clinical use of presently available medications that target nitric oxide/cGMP signaling in the treatment of pulmonary hypertension is also presented.
Collapse
|
42
|
Sahay S, Khirfan G, Tonelli AR. Management of combined pre- and post-capillary pulmonary hypertension in advanced heart failure with reduced ejection fraction. Respir Med 2017; 131:94-100. [PMID: 28947049 DOI: 10.1016/j.rmed.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/01/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Management of pulmonary hypertension (PH) has remained an unmet need in advanced left heart failure with reduced ejection fraction. In fact, patients are frequently denied heart transplant due to untreated pulmonary hypertension. The availability of mechanically circulatory devices and PH therapies has provided a ray of hope. PH specific therapies are currently not FDA approved for patients with left heart failure with reduced ejection fraction. However, clinicians have used these medications in anecdotal manner. With this review, we want to highlight the expanding use of PH specific therapy and mechanical circulatory devices in the management of PH in the setting of advanced heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Sandeep Sahay
- Weill Cornell Medical College, Institute of Academic Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, USA.
| | - Ghaleb Khirfan
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
43
|
Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, Fanoudi S, Mohtashami E, Rahimi VB, Mohebbi M, Vahedi MM. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother 2017; 94:541-556. [PMID: 28779712 DOI: 10.1016/j.biopha.2017.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/02/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterases are a group of enzymes that hydrolyze cyclic nucleotides, which assume a key role in directing intracellular levels of the second messengers' cAMP and cGMP, and consequently cell function. The disclosure of 11 isoenzyme families and our expanded knowledge of their functions at the cell and molecular level stimulate the improvement of isoenzyme selective inhibitors for the treatment of various diseases, particularly cardiovascular diseases. Hence, future and new mechanistic investigations and carefully designed clinical trials could help reap additional benefits of natural/synthetic PDE inhibitors for cardiovascular disease in patients. This review has concentrated on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Rafighdoust
- Department of Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Mohtashami
- Department of Pharmacodynamic and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Mohebbi
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
44
|
A Novel Therapeutic Approach in the Treatment of Pulmonary Arterial Hypertension: Allium ursinum Liophylisate Alleviates Symptoms Comparably to Sildenafil. Int J Mol Sci 2017; 18:ijms18071436. [PMID: 28677661 PMCID: PMC5535927 DOI: 10.3390/ijms18071436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Right-sided heart failure—often caused by elevated pulmonary arterial pressure—is a chronic and progressive condition with particularly high mortality rates. Recent studies and our current findings suggest that components of Wild garlic (Allium ursinum, AU) may play a role in reducing blood pressure, inhibiting angiotensin-converting enzyme (ACE), as well as improving right ventricle function in rabbit models with heart failure. We hypothesize that AU may mitigate cardiovascular damage caused by pulmonary arterial hypertension (PAH) and has value in the supplementary treatment of the complications of the disease. In this present investigation, PAH was induced by a single dose of monocrotaline (MCT) injection in Sprague-Dawley rats, and animals were divided into 4 treatment groups as follows: I. healthy control animals (Control group); II. pulmonary hypertensive rats (PAH group); III. pulmonary hypertensive rats + daily sildenafil treatment (Sildenafil group); and IV. pulmonary hypertensive rats + Wild garlic liophylisate-enriched chow (WGLL group), for 8 weeks. Echocardiographic measurements were obtained on the 0 and 8 weeks with fundamental and Doppler imaging. Isolated working heart method was used to determinate cardiac functions ex vivo after thoracotomy on the 8th week. Histological analyses were carried out on excised lung samples, and Western blot technique was used to determine Phosphodiesterase type 5 enzyme (PDE5) expression in both myocardial and pulmonary tissues. Our data demonstrate that right ventricle function measured by echocardiography was deteriorated in PAH animals compared to controls, which was counteracted by AU treatment. Isolated working heart measurements showed elevated aortic flow in WGLL group compared to PAH animals. Histological analysis revealed dramatic increase in medial wall thickness of pulmonary arteries harvested from PAH animals, but arteries of animals in sildenafil- and WGLL-treated groups showed physiological status. Our results suggest that bioactive compounds in Allium ursinum could have beneficial effects in pulmonary hypertension.
Collapse
|
45
|
In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5. Interdiscip Sci 2017. [DOI: 10.1007/s12539-017-0243-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Di Luigi L, Corinaldesi C, Colletti M, Scolletta S, Antinozzi C, Vannelli GB, Giannetta E, Gianfrilli D, Isidori AM, Migliaccio S, Poerio N, Fraziano M, Lenzi A, Crescioli C. Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy. Inflammation 2017; 39:1238-52. [PMID: 27165639 PMCID: PMC4883282 DOI: 10.1007/s10753-016-0359-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T helper 1 (Th1) type cytokines and chemokines are bioactive mediators in inflammation underling several diseases and co-morbid conditions, such as cardiovascular and metabolic disorders. Th1 chemokine CXCL10 participates in heart damage initiation/progression; cardioprotection has been recently associated with sildenafil, a type 5 phosphodiesterase inhibitor. We aimed to evaluate the effect of sildenafil on CXCL10 in inflammatory conditions associated with diabetic cardiomyopathy. We analyzed: CXCL10 gene and protein in human cardiac, endothelial, and immune cells challenged by pro-inflammatory stimuli with and without sildenafil; serum CXCL10 in diabetic subjects at cardiomyopathy onset, before and after 3 months of treatment with sildenafil vs. placebo. Sildenafil significantly decreased CXCL10 protein secretion (IC50 = 2.6 × 10−7) and gene expression in human cardiomyocytes and significantly decreased circulating CXCL10 in subjects with chemokine basal level ≥ 930 pg/ml, the cut-off value as assessed by ROC analysis. In conclusion, sildenafil could be a pharmacologic tool to control CXCL10-associated inflammation in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Clarissa Corinaldesi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Marta Colletti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Sabino Scolletta
- Department of Medical Biotechnologies, Anesthesia and Intensive Care, University of Siena, Siena, Italy
| | - Cristina Antinozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gabriella B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Noemi Poerio
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
47
|
Chekol R, Gheysens O, Ahamed M, Cleynhens J, Pokreisz P, Vanhoof G, Janssens S, Verbruggen A, Bormans G. Carbon-11 and Fluorine-18 Radiolabeled Pyridopyrazinone Derivatives for Positron Emission Tomography (PET) Imaging of Phosphodiesterase-5 (PDE5). J Med Chem 2016; 60:486-496. [PMID: 28009175 DOI: 10.1021/acs.jmedchem.6b01666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type 5 (PDE5) plays an important role in various pathologies including pulmonary arterial hypertension and cardiomyopathy. PDE5 represents an important therapeutic and/or prognostic target, but noninvasive assessment of PDE5 expression is lacking. The purpose of this study was to develop and evaluate pyridopyrazinone derivatives labeled with carbon-11 or fluorine-18 as PDE5-specific PET tracers. In biodistribution studies, highest PDE5-specific retention was observed for [11C]-12 and [18F]-17 in the lungs of wild-type mice and in the myocardium of transgenic mice with cardiomyocyte-specific PDE5 overexpression at 30 min postinjection. In vivo dynamic microPET images in rats revealed that both tracers crossed the blood-brain barrier but brain retention was not PDE5-specific. Both [11C]-12 and [18F]-17 showed specific binding to PDE5 in myocardium of transgenic mice; however [18F]-17 showed significantly higher PDE5-specific inhibitable binding than [11C]-12.
Collapse
Affiliation(s)
- Rufael Chekol
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology, KU Leuven , and Nuclear Medicine, UZ Leuven, BE-300 Leuven Belgium
| | - Muneer Ahamed
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Jan Cleynhens
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, UZ Leuven, KU Leuven , 3000 Leuven, Belgium
| | - Greet Vanhoof
- Discovery Sciences, Janssen Pharmaceutica, R&D , B-2340 Beerse, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, UZ Leuven, KU Leuven , 3000 Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Guy Bormans
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| |
Collapse
|
48
|
Kim SK, Massett MP. Genetic Regulation of Endothelial Vasomotor Function. Front Physiol 2016; 7:571. [PMID: 27932996 PMCID: PMC5122706 DOI: 10.3389/fphys.2016.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/09/2016] [Indexed: 12/01/2022] Open
Abstract
The endothelium plays an important role in the regulation of vasomotor tone and the maintenance of vascular integrity. Endothelial dysfunction, i.e., impaired endothelial dependent dilation, is a fundamental component of the pathogenesis of cardiovascular disease. Although endothelial dysfunction is associated with a number of cardiovascular disease risk factors, those risk factors are not the only determinants of endothelial dysfunction. Despite knowing many molecules involved in endothelial signaling pathways, the genetic contribution to endothelial function has yet to be fully elucidated. This mini-review summarizes current evidence supporting the genetic contribution to endothelial vasomotor function. Findings from population-based studies, association studies for candidate genes, and unbiased large genomic scale studies in humans and rodent models are discussed. A brief synopsis of the current studies addressing the genetic regulation of endothelial responses to exercise training is also included.
Collapse
Affiliation(s)
- Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M UniversityCollege Station, TX, USA
- Tufts Medical Center, Molecular Cardiology Research InstituteBoston, MA, USA
| | - Michael P. Massett
- Department of Health and Kinesiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
49
|
Kokkonen K, Kass DA. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases. Annu Rev Pharmacol Toxicol 2016; 57:455-479. [PMID: 27732797 DOI: 10.1146/annurev-pharmtox-010716-104756] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) form an 11-member superfamily comprising 100 different isoforms that regulate the second messengers cyclic adenosine or guanosine 3',5'-monophosphate (cAMP or cGMP). These PDE isoforms differ with respect to substrate selectivity and their localized control of cAMP and cGMP within nanodomains that target specific cellular pools and synthesis pathways for the cyclic nucleotides. Seven PDE family members are physiologically relevant to regulating cardiac function, disease remodeling of the heart, or both: PDE1 and PDE2, both dual-substrate (cAMP and cGMP) esterases; PDE3, PDE4, and PDE8, which principally hydrolyze cAMP; and PDE5A and PDE9A, which target cGMP. New insights regarding the different roles of PDEs in health and disease and their local signaling control are broadening the potential therapeutic utility for PDE-selective inhibitors. In this review, we discuss these PDEs, focusing on the different mechanisms by which they control cardiac function in health and disease by regulating intracellular nanodomains.
Collapse
Affiliation(s)
- Kristen Kokkonen
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
50
|
Bobin P, Belacel-Ouari M, Bedioune I, Zhang L, Leroy J, Leblais V, Fischmeister R, Vandecasteele G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch Cardiovasc Dis 2016; 109:431-43. [PMID: 27184830 DOI: 10.1016/j.acvd.2016.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), thereby regulating multiple aspects of cardiac and vascular muscle functions. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families that are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP, controlling specific cell functions in response to various neurohormonal stimuli. In the myocardium and vascular smooth muscle, the PDE3 and PDE4 families predominate, degrading cAMP and thereby regulating cardiac excitation-contraction coupling and smooth muscle contractile tone. PDE3 inhibitors are positive inotropes and vasodilators in humans, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important for the degradation of cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. There is experimental evidence that these PDEs, as well as other PDE families, including PDE1, PDE2 and PDE9, may play important roles in cardiac diseases, such as hypertrophy and heart failure, as well as several vascular diseases. After a brief presentation of the cyclic nucleotide pathways in cardiac and vascular cells, and the major characteristics of the PDE superfamily, this review will focus on the current use of PDE inhibitors in cardiovascular diseases, and the recent research developments that could lead to better exploitation of the therapeutic potential of these enzymes in the future.
Collapse
Affiliation(s)
- Pierre Bobin
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Milia Belacel-Ouari
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ibrahim Bedioune
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Liang Zhang
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jérôme Leroy
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Grégoire Vandecasteele
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|