1
|
Hattori Y, Hattori K, Ishii K, Kobayashi M. Challenging and target-based shifting strategies for heart failure treatment: An update from the last decades. Biochem Pharmacol 2024; 224:116232. [PMID: 38648905 DOI: 10.1016/j.bcp.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Heart failure (HF) is a major global health problem afflicting millions worldwide. Despite the significant advances in therapies and prevention, HF still carries very high morbidity and mortality, requiring enormous healthcare-related expenditure, and the search for new weapons goes on. Following initial treatment strategies targeting inotropism and congestion, attention has focused on offsetting the neurohormonal overactivation and three main therapies, including angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists, β-adrenoceptor antagonists, and mineralocorticoid receptor antagonists, have been the foundation of standard treatment for patients with HF. Recently, a paradigm shift, including angiotensin receptor-neprilysin inhibitor, sodium glucose co-transporter 2 inhibitor, and ivabradine, has been added. Moreover, soluble guanylate cyclase stimulator, elamipretide, and omecamtiv mecarbil have come out as a next-generation therapeutic agent for patients with HF. Although these pharmacologic therapies have been significantly successful in relieving symptoms, there is still no complete cure for HF. We may be currently entering a new era of treatment for HF with animal experiments and human clinical trials assessing the value of antibody-based immunotherapy and gene therapy as a novel therapeutic strategy. Such tempting therapies still have some challenges to be addressed but may become a weighty option for treatment of HF. This review article will compile the paradigm shifts in HF treatment over the past dozen years or so and illustrate current landscape of antibody-based immunotherapy and gene therapy as a new therapeutic algorithm for patients with HF.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
2
|
Wang J, Shi Q, Wang Y, Dawson LW, Ciampa G, Zhao W, Zhang G, Chen B, Weiss RM, Grueter CE, Hall DD, Song LS. Gene Therapy With the N-Terminus of Junctophilin-2 Improves Heart Failure in Mice. Circ Res 2022; 130:1306-1317. [PMID: 35317607 PMCID: PMC9050933 DOI: 10.1161/circresaha.121.320680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transcriptional remodeling is known to contribute to heart failure (HF). Targeting stress-dependent gene expression mechanisms may represent a clinically relevant gene therapy option. We recently uncovered a salutary mechanism in the heart whereby JP2 (junctophilin-2), an essential component of the excitation-contraction coupling apparatus, is site-specifically cleaved and releases an N-terminal fragment (JP2NT [N-terminal fragment of JP2]) that translocates into the nucleus and functions as a transcriptional repressor of HF-related genes. This study aims to determine whether JP2NT can be leveraged by gene therapy techniques for attenuating HF progression in a preclinical pressure overload model. METHODS We intraventricularly injected adeno-associated virus (AAV) (2/9) vectors expressing eGFP (enhanced green fluorescent protein), JP2NT, or DNA-binding deficient JP2NT (JP2NTΔbNLS/ARR) into neonatal mice and induced cardiac stress by transaortic constriction (TAC) 9 weeks later. We also treated mice with established moderate HF from TAC stress with either AAV-JP2NT or AAV-eGFP. RNA-sequencing analysis was used to reveal changes in hypertrophic and HF-related gene transcription by JP2NT gene therapy after TAC. Echocardiography, confocal imaging, and histology were performed to evaluate heart function and pathological myocardial remodeling following stress. RESULTS Mice preinjected with AAV-JP2NT exhibited ameliorated cardiac remodeling following TAC. The JP2NT DNA-binding domain is required for cardioprotection as its deletion within the AAV-JP2NT vector prevented improvement in TAC-induced cardiac dysfunction. Functional and histological data suggest that JP2NT gene therapy after the onset of cardiac dysfunction is effective at slowing the progression of HF. RNA-sequencing analysis further revealed a broad reversal of hypertrophic and HF-related gene transcription by JP2NT overexpression after TAC. CONCLUSIONS Our prevention- and intervention-based approaches here demonstrated that AAV-mediated delivery of JP2NT into the myocardium can attenuate stress-induced transcriptional remodeling and the development of HF when administered either before or after cardiac stress initiation. Our data indicate that JP2NT gene therapy holds great potential as a novel therapeutic for treating hypertrophy and HF.
Collapse
Affiliation(s)
- Jinxi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Qian Shi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Yihui Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Logan W. Dawson
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Grace Ciampa
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Weiyang Zhao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Guangqin Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Chad E. Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Duane D. Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Veterans Affairs, Iowa City Medical Center, IA 52242
| |
Collapse
|
3
|
GRKs and Epac1 Interaction in Cardiac Remodeling and Heart Failure. Cells 2021; 10:cells10010154. [PMID: 33466800 PMCID: PMC7830799 DOI: 10.3390/cells10010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
β-adrenergic receptors (β-ARs) play a major role in the physiological regulation of cardiac function through signaling routes tightly controlled by G protein-coupled receptor kinases (GRKs). Although the acute stimulation of β-ARs and the subsequent production of cyclic AMP (cAMP) have beneficial effects on cardiac function, chronic stimulation of β-ARs as observed under sympathetic overdrive promotes the development of pathological cardiac remodeling and heart failure (HF), a leading cause of mortality worldwide. This is accompanied by an alteration in cAMP compartmentalization and the activation of the exchange protein directly activated by cAMP 1 (Epac1) signaling. Among downstream signals of β-ARs, compelling evidence indicates that GRK2, GRK5, and Epac1 represent attractive therapeutic targets for cardiac disease. Here, we summarize the pathophysiological roles of GRK2, GRK5, and Epac1 in the heart. We focus on their signalosome and describe how under pathological settings, these proteins can cross-talk and are part of scaffolded nodal signaling systems that contribute to a decreased cardiac function and HF development.
Collapse
|
4
|
Mora MT, Gong JQX, Sobie EA, Trenor B. The role of β-adrenergic system remodeling in human heart failure: A mechanistic investigation. J Mol Cell Cardiol 2020; 153:14-25. [PMID: 33326834 DOI: 10.1016/j.yjmcc.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
β-adrenergic receptor antagonists (β-blockers) are extensively used to improve cardiac performance in heart failure (HF), but the electrical improvements with these clinical treatments are not fully understood. The aim of this study was to analyze the electrophysiological effects of β-adrenergic system remodeling in heart failure with reduced ejection fraction and the underlying mechanisms. We used a combined mathematical model that integrated β-adrenergic signaling with electrophysiology and calcium cycling in human ventricular myocytes. HF remodeling, both in the electrophysiological and signaling systems, was introduced to quantitatively analyze changes in electrophysiological properties due to the stimulation of β-adrenergic receptors in failing myocytes. We found that the inotropic effect of β-adrenergic stimulation was reduced in HF due to the altered Ca2+ dynamics resulting from the combination of structural, electrophysiological and signaling remodeling. Isolated cells showed proarrhythmic risk after sympathetic stimulation because early afterdepolarizations appeared, and the vulnerability was greater in failing myocytes. When analyzing coupled cells, β-adrenergic stimulation reduced transmural repolarization gradients between endocardium and epicardium in normal tissue, but was less effective at reducing these gradients after HF remodeling. The comparison of the selective activation of β-adrenergic isoforms revealed that the response to β2-adrenergic receptors stimulation was blunted in HF while β1-adrenergic receptors downstream effectors regulated most of the changes observed after sympathetic stimulation. In conclusion, this study was able to reproduce an altered β-adrenergic activity on failing myocytes and to explain the mechanisms involved. The derived predictions could help in the treatment of HF and guide in the design of future experiments.
Collapse
Affiliation(s)
- Maria T Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jingqi Q X Gong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
5
|
Abi-Gerges N, Miller PE, Ghetti A. Human Heart Cardiomyocytes in Drug Discovery and Research: New Opportunities in Translational Sciences. Curr Pharm Biotechnol 2019; 21:787-806. [PMID: 31820682 DOI: 10.2174/1389201021666191210142023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
In preclinical drug development, accurate prediction of drug effects on the human heart is critically important, whether in the context of cardiovascular safety or for the purpose of modulating cardiac function to treat heart disease. Current strategies have significant limitations, whereby, cardiotoxic drugs can escape detection or potential life-saving therapies are abandoned due to false positive toxicity signals. Thus, new and more reliable translational approaches are urgently needed to help accelerate the rate of new therapy development. Renewed efforts in the recovery of human donor hearts for research and in cardiomyocyte isolation methods, are providing new opportunities for preclinical studies in adult primary cardiomyocytes. These cells exhibit the native physiological and pharmacological properties, overcoming the limitations presented by artificial cellular models, animal models and have great potential for providing an excellent tool for preclinical drug testing. Adult human primary cardiomyocytes have already shown utility in assessing drug-induced cardiotoxicity risk and helping in the identification of new treatments for cardiac diseases, such as heart failure and atrial fibrillation. Finally, strategies with actionable decision-making trees that rely on data derived from adult human primary cardiomyocytes will provide the holistic insights necessary to accurately predict human heart effects of drugs.
Collapse
Affiliation(s)
- Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| |
Collapse
|
6
|
Ito DW, Hannigan KI, Ghosh D, Xu B, Del Villar SG, Xiang YK, Dickson EJ, Navedo MF, Dixon RE. β-adrenergic-mediated dynamic augmentation of sarcolemmal Ca V 1.2 clustering and co-operativity in ventricular myocytes. J Physiol 2019; 597:2139-2162. [PMID: 30714156 PMCID: PMC6462464 DOI: 10.1113/jp277283] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/03/2019] [Indexed: 01/25/2023] Open
Abstract
Key points Prevailing dogma holds that activation of the β‐adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L‐type CaV1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV1.2 channel clusters decorate T‐tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+‐dependent co‐operative gating behaviour mediated by physical interactions between adjacent channel C‐terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A‐dependent augmentation of CaV1.2 channel abundance along cardiomyocyte T‐tubules, resulting in the appearance of channel ‘super‐clusters’, and enhanced channel co‐operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub‐sarcolemmal pool of pre‐synthesized CaV1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation–contraction coupling.
Abstract Voltage‐dependent L‐type CaV1.2 channels play an indispensable role in cardiac excitation–contraction coupling. Activation of the β‐adrenergic receptor (βAR)/cAMP/protein kinase A (PKA) signalling pathway leads to enhanced CaV1.2 activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. CaV1.2 channels exhibit a clustered distribution along the T‐tubule sarcolemma of ventricular myocytes where nanometer proximity between channels permits Ca2+‐dependent co‐operative gating behaviour mediated by dynamic, physical, allosteric interactions between adjacent channel C‐terminal tails. This amplifies Ca2+ influx and augments myocyte Ca2+ transient and contraction amplitudes. We investigated whether βAR signalling could alter CaV1.2 channel clustering to facilitate co‐operative channel interactions and elevate Ca2+ influx in ventricular myocytes. Bimolecular fluorescence complementation experiments reveal that the βAR agonist, isoproterenol (ISO), promotes enhanced CaV1.2–CaV1.2 physical interactions. Super‐resolution nanoscopy and dynamic channel tracking indicate that these interactions are expedited by enhanced spatial proximity between channels, resulting in the appearance of CaV1.2 ‘super‐clusters’ along the z‐lines of ISO‐stimulated cardiomyocytes. The mechanism that leads to super‐cluster formation involves rapid, dynamic augmentation of sarcolemmal CaV1.2 channel abundance after ISO application. Optical and electrophysiological single channel recordings confirm that these newly inserted channels are functional and contribute to overt co‐operative gating behaviour of CaV1.2 channels in ISO stimulated myocytes. The results of the present study reveal a new facet of βAR‐mediated regulation of CaV1.2 channels in the heart and support the novel concept that a pre‐synthesized pool of sub‐sarcolemmal CaV1.2 channel‐containing vesicles/endosomes resides in cardiomyocytes and can be mobilized to the sarcolemma to tune excitation–contraction coupling to meet metabolic and/or haemodynamic demands. Prevailing dogma holds that activation of the β‐adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L‐type CaV1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV1.2 channel clusters decorate T‐tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+‐dependent co‐operative gating behaviour mediated by physical interactions between adjacent channel C‐terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A‐dependent augmentation of CaV1.2 channel abundance along cardiomyocyte T‐tubules, resulting in the appearance of channel ‘super‐clusters’, and enhanced channel co‐operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub‐sarcolemmal pool of pre‐synthesized CaV1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation–contraction coupling.
Collapse
Affiliation(s)
- Danica W Ito
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Karen I Hannigan
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Silvia G Del Villar
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Eamonn J Dickson
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
7
|
Various effects of AAV9-mediated βARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and δ-sarcoglycan-deficient (Sgcd-/-) mice. Neuromuscul Disord 2019; 29:231-241. [DOI: 10.1016/j.nmd.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 10/21/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023]
|
8
|
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
|
9
|
de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018; 9:904. [PMID: 30147654 PMCID: PMC6095970 DOI: 10.3389/fphar.2018.00904] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
Affiliation(s)
| | | | - Walter J. Koch
- Department of Pharmacology – Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Gong H, San Y, Wang L, Lv Q, Chen L. The effects and possible mechanism of β 2AR gene expression in cardiocytes of canines with heart failure. Exp Ther Med 2017; 14:539-546. [PMID: 28672964 PMCID: PMC5488606 DOI: 10.3892/etm.2017.4521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/21/2017] [Indexed: 11/15/2022] Open
Abstract
The objective of the present study was to observe the changes of β2-adrenergic receptor (β2AR) protein expression in a canine model of heart failure (HF), and the function of cardiocytes after transfection with Adv-β2AR. The canine model of chronic HF was induced by rapid right ventricular pacing and cardiocytes were isolated with collagenase II. Cardiocytes were transfected with Adv-β2AR to observe contractile function with a motion edge-detection system of single cells. Expression of β2AR protein in cardiocytes was measured by immunoblotting and the levels of intracellular cAMP were measured by ELISA. Compared with the control group (the sham group), the expression of β2AR protein in HF cardiocytes did not change, but the basal (1 mM Ca2+) contraction amplitude percentage (1.809±0.922 vs. 1.120±0.432%, P<0.05), the maximum contraction amplitude percentage (14.855±2.377 vs. 10.784±2.675%, P<0.01) and the basal levels of intracellular cAMP (9.39±2.54 vs. 5.26±0.95 pmol/ml, n=6, P<0.05) of HF cardiocytes were significantly decreased. However, when HF cardiocytes were transfected with Adv-β2AR and cultured for 48 h, compared with the non-transfected group, the basal contraction amplitude percentage (0.851±0.324 vs. 1.629±0.522%, P<0.05), the maximum contraction amplitude percentage (9.260±2.208% vs. 12.205±1.437%, P<0.01) and the basal levels of intracellular cAMP (5.26±0.95 vs. 9.03±1.03 pmol/ml, n=6, P<0.05) of cardiocytes in the transfected group were significantly increased. In conclusion, the expression of β2AR protein in HF cardiocytes did not change, but contraction function was impaired. The moderate overexpression of β2AR gene in the HF cardiocytes increased the levels of intracellular cAMP and improved contraction function.
Collapse
Affiliation(s)
- Haibin Gong
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Yu San
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Lei Wang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Qian Lv
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Libin Chen
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
11
|
Calcium dynamics in cardiac excitatory and non-excitatory cells and the role of gap junction. Math Biosci 2017; 289:51-68. [PMID: 28457965 DOI: 10.1016/j.mbs.2017.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/12/2016] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
Calcium ions aid in the generation of action potential in myocytes and are responsible for the excitation-contraction coupling of heart. The heart muscle has specialized patches of cells, called excitatory cells (EC) such as the Sino-atrial node cells capable of auto-generation of action potential and cells which receive signals from the excitatory cells, called non-excitatory cells (NEC) such as cells of the ventricular and auricular walls. In order to understand cardiac calcium homeostasis, it is, therefore, important to study the calcium dynamics taking into account both types of cardiac cells. Here we have developed a model to capture the calcium dynamics in excitatory and non-excitatory cells taking into consideration the gap junction mediated calcium ion transfer from excitatory cell to non-excitatory cell. Our study revealed that the gap junctional coupling between excitatory and non-excitatory cells plays important role in the calcium dynamics. It is observed that any reduction in the functioning of gap junction may result in abnormal calcium oscillations in NEC, even when the calcium dynamics is normal in EC cell. Sensitivity of gap junction is observed to be independent of the pacing rate and hence a careful monitoring is required to maintain normal cardiomyocyte condition. It also highlights that sarcoplasmic reticulum may not be always able to control the amount of cytoplasmic calcium under the condition of calcium overload.
Collapse
|
12
|
Das PN, Pedruzzi G, Bairagi N, Chatterjee S. Coupling calcium dynamics and mitochondrial bioenergetic: an in silico study to simulate cardiomyocyte dysfunction. MOLECULAR BIOSYSTEMS 2016; 12:806-17. [PMID: 26742687 DOI: 10.1039/c5mb00872g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coupling of intracellular Ca(2+) dynamics with mitochondrial bioenergetic is crucial for the functioning of cardiomyocytes both in healthy and disease conditions. The pathophysiological signature of the Cardiomyocyte Dysfunction (CD) is commonly related to decreased ATP production due to mitochondrial functional impairment and to an increased mitochondrial calcium content ([Ca(2+)]m). These features advanced the therapeutic approaches which aim to reduce [Ca(2+)]m. But whether [Ca(2+)]m overload is the pathological trigger for CD or a physiological consequence, remained controversial. We addressed this issue in silico and showed that [Ca(2+)]m might not directly cause CD. Through model parameter recalibration, we demonstrated how mitochondria cope up with functionally impaired processes and consequently accumulate calcium. A strong coupling of the [Ca(2+)]m oscillations with the ATP synthesis rate ensures robust calcium cycling and avoids CD. We suggested a cardioprotective role of the mitochondrial calcium uniporter and predicted that a mitochondrial sodium calcium exchanger could be a potential therapeutic target to restore the normal functioning of the cardiomyocyte.
Collapse
Affiliation(s)
- Phonindra Nath Das
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Gabriele Pedruzzi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata-700032, India
| | - Samrat Chatterjee
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad-121001, India.
| |
Collapse
|
13
|
Stillitano F, Karakikes I, Hajjar RJ. Gene Transfer in Cardiomyocytes Derived from ES and iPS Cells. Methods Mol Biol 2016; 1521:183-193. [PMID: 27910049 DOI: 10.1007/978-1-4939-6588-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent of human induced pluripotent stem cell (hiPSC) technology has produced patient-specific hiPSC derived cardiomyocytes (hiPSC-CMs) that can be used as a platform to study cardiac diseases and to explore new therapies.The ability to genetically manipulate hiPSC-CMs not only is essential for identifying the structural and/or functional role of a protein but can also provide valuable information regarding therapeutic applications. In this chapter, we describe protocols for culture, maintenance, and cardiac differentiation of hiPSCs. Then, we provide a basic procedure to transduce hiPSC-CMs.
Collapse
Affiliation(s)
- Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA.
| | - Ioannis Karakikes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| |
Collapse
|
14
|
Kim KE, Tae HJ, Natalia P, Lee JC, Ahn JH, Park JH, Kim IH, Ohk TG, Park CW, Cho JH, Won MH. Cardiac physiologic regulation of sub-type specific adrenergic receptors in transgenic mice overexpressing β 1- and β 2-adrenergic receptors. Clin Exp Emerg Med 2016; 3:175-180. [PMID: 27752636 PMCID: PMC5065340 DOI: 10.15441/ceem.16.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/28/2023] Open
Abstract
Objective Combination of β1-adrenergic receptor (AR) blockade and β2-AR activation might be a potential novel therapy for treating heart failure. However, use of β-AR agonists and/or antagonists in the clinical setting is controversial because of the lack of information on cardiac inotropic or chronotropic regulation by AR signaling. Methods In this study, we performed hemodynamic evaluation by examining force frequency response (FFR), Frank-Starling relationship, and response to a non-selective β-AR agonist (isoproterenol) in hearts isolated from 6-month-old transgenic (TG) mice overexpressing β1- and β2-ARs (β1- and β2-AR TG mice, respectively). Results Cardiac physiologic consequences of β1- and β2-AR overexpression resulted in similar maximal response to isoproterenol and faster temporary decline of positive inotropic response in β2-AR TG mice. β1-AR TG mice showed a pronounced negative limb of FFR, whereas β2-AR TG mice showed high stimulation frequencies with low contractile depression during FFR. In contrast, Frank-Starling relationship was equally enhanced in both β1- and β2-AR TG mice. Conclusion Hemodynamic evaluation performed in the present showed a difference in β1- and β2-AR signaling, which may be due to the difference in the desensitization of β1- and β2-ARs.
Collapse
Affiliation(s)
- Ka Eul Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Hyun-Jin Tae
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea; Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Petrashevskaya Natalia
- CardioPulmonary Genomics Program, Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jae-Chul Lee
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Joon Ha Park
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - In Hye Kim
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Chan Woo Park
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
15
|
Gong H, Li Y, Wang L, Lv Q, Wang X. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure. Exp Ther Med 2016; 12:1355-1362. [PMID: 27602067 PMCID: PMC4998176 DOI: 10.3892/etm.2016.3450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/13/2016] [Indexed: 01/15/2023] Open
Abstract
The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.
Collapse
Affiliation(s)
- Haibin Gong
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Yanfei Li
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Lei Wang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Qian Lv
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Xiuli Wang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
16
|
Hullmann J, Traynham CJ, Coleman RC, Koch WJ. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 2016; 110:52-64. [PMID: 27180008 DOI: 10.1016/j.phrs.2016.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a global epidemic with the highest degree of mortality and morbidity of any disease presently studied. G protein-coupled receptors (GPCRs) are prominent regulators of cardiovascular function. Activated GPCRs are "turned off" by GPCR kinases (GRKs) in a process known as "desensitization". GRKs 2 and 5 are highly expressed in the heart, and known to be upregulated in HF. Over the last 20 years, both GRK2 and GRK5 have been demonstrated to be critical mediators of the molecular alterations that occur in the failing heart. In the present review, we will highlight recent findings that further characterize "non-canonical" GRK signaling observed in HF. Further, we will also present potential therapeutic strategies (i.e. small molecule inhibition, microRNAs, gene therapy) that may have potential in combating the deleterious effects of GRKs in HF.
Collapse
Affiliation(s)
| | - Christopher J Traynham
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Ryan C Coleman
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
17
|
Matkar PN, Leong-Poi H, Singh KK. Cardiac gene therapy: are we there yet? Gene Ther 2016; 23:635-48. [DOI: 10.1038/gt.2016.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/19/2023]
|
18
|
Abstract
Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA.
| | - Michael G Katz
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| | - Charles R Bridges
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| | - Roger J Hajjar
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| |
Collapse
|
19
|
Mason D, Chen YZ, Krishnan HV, Sant S. Cardiac gene therapy: Recent advances and future directions. J Control Release 2015; 215:101-11. [PMID: 26254712 DOI: 10.1016/j.jconrel.2015.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/15/2022]
Abstract
Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.
Collapse
Affiliation(s)
- Daniel Mason
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yu-Zhe Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Harini Venkata Krishnan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
20
|
Sampath S, Klimas M, Feng D, Baumgartner R, Manigbas E, Liang AL, Evelhoch JL, Chin CL. Characterization of regional left ventricular function in nonhuman primates using magnetic resonance imaging biomarkers: a test-retest repeatability and inter-subject variability study. PLoS One 2015; 10:e0127947. [PMID: 26010607 PMCID: PMC4444127 DOI: 10.1371/journal.pone.0127947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Pre-clinical animal models are important to study the fundamental biological and functional mechanisms involved in the longitudinal evolution of heart failure (HF). Particularly, large animal models, like nonhuman primates (NHPs), that possess greater physiological, biochemical, and phylogenetic similarity to humans are gaining interest. To assess the translatability of these models into human diseases, imaging biomarkers play a significant role in non-invasive phenotyping, prediction of downstream remodeling, and evaluation of novel experimental therapeutics. This paper sheds insight into NHP cardiac function through the quantification of magnetic resonance (MR) imaging biomarkers that comprehensively characterize the spatiotemporal dynamics of left ventricular (LV) systolic pumping and LV diastolic relaxation. MR tagging and phase contrast (PC) imaging were used to quantify NHP cardiac strain and flow. Temporal inter-relationships between rotational mechanics, myocardial strain and LV chamber flow are presented, and functional biomarkers are evaluated through test-retest repeatability and inter subject variability analyses. The temporal trends observed in strain and flow was similar to published data in humans. Our results indicate a dominant dimension based pumping during early systole, followed by a torsion dominant pumping action during late systole. Early diastole is characterized by close to 65% of untwist, the remainder of which likely contributes to efficient filling during atrial kick. Our data reveal that moderate to good intra-subject repeatability was observed for peak strain, strain-rates, E/circumferential strain-rate (CSR) ratio, E/longitudinal strain-rate (LSR) ratio, and deceleration time. The inter-subject variability was high for strain dyssynchrony, diastolic strain-rates, peak torsion and peak untwist rate. We have successfully characterized cardiac function in NHPs using MR imaging. Peak strain, average systolic strain-rate, diastolic E/CSR and E/LSR ratios, and deceleration time were identified as robust biomarkers that could potentially be applied to future pre-clinical drug studies.
Collapse
Affiliation(s)
- Smita Sampath
- Imaging, Merck Research Laboratories, Merck Sharp & Dohme, Singapore, Singapore
- * E-mail:
| | - Michael Klimas
- Imaging, Merck Research Laboratories, Merck & Co. Inc., West Point, Pennsylvania, United States of America
| | - Dai Feng
- Biometric Research, Merck Research Laboratories, Biostatistics and Research Decision Sciences, Merck & Co. Inc., Rahway, New Jersey, United States of America
| | - Richard Baumgartner
- Biometric Research, Merck Research Laboratories, Biostatistics and Research Decision Sciences, Merck & Co. Inc., Rahway, New Jersey, United States of America
| | | | - Ai-Leng Liang
- Imaging, Merck Research Laboratories, Merck Sharp & Dohme, Singapore, Singapore
| | - Jeffrey L. Evelhoch
- Imaging, Merck Research Laboratories, Merck & Co. Inc., West Point, Pennsylvania, United States of America
| | - Chih-Liang Chin
- Imaging, Merck Research Laboratories, Merck Sharp & Dohme, Singapore, Singapore
| |
Collapse
|
21
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Heart failure (HF) is a common end point for many underlying cardiovascular diseases. Down-regulation and desensitization of β-adrenergic receptors (β-AR) caused by G-protein-coupled receptor (GPCR) kinase 2 (GRK2) are prominent features of HF. Recent Advances and Critical Issues: Significant progress has been made to understand the pathological role of GRK2 in the heart both as a GPCR kinase and as a molecule that can exert GPCR-independent effects. Inhibition of cardiac GRK2 has proved to be therapeutic in the failing heart and may offer synergistic and additional benefits to β-blocker therapy. However, the mechanisms of how GRK2 directly contributes to the pathogenesis of HF need further investigation, and additional verification of the mechanistic details are needed before GRK2 inhibition can be used for the treatment of HF. FUTURE DIRECTIONS The newly identified characteristics of GRK2, including the S-nitrosylation of GRK2 and the localization of GRK2 on mitochondria, merit further investigation. They may contribute to it being a pro-death kinase and result in HF under stressed conditions through regulation of intracellular signaling, including cardiac reduction-oxidation (redox) balance. A thorough understanding of the functions of GRK2 in the heart is necessary in order to finalize it as a candidate for drug development.
Collapse
Affiliation(s)
- Zheng Maggie Huang
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
23
|
Duarte-Costa S, Castro-Ferreira R, Neves JS, Leite-Moreira AF. S100A1: a major player in cardiovascular performance. Physiol Res 2014; 63:669-81. [PMID: 25157660 DOI: 10.33549/physiolres.932712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium cycling is a major determinant of cardiac function. S100A1 is the most abundant member of the calcium-binding S100 protein family in myocardial tissue. S100A1 interacts with a variety of calcium regulatory proteins such as SERCA2a, ryanodine receptors, L-type calcium channels and Na(+)/Ca(2+) exchangers, thus enhancing calcium cycling. Aside from this major function, S100A1 has an important role in energy balance, myofilament sliding, myofilament calcium sensibility, titin-actin interaction, apoptosis and cardiac remodeling. Apart from its properties regarding cardiomyocytes, S100A1 is also important in vessel relaxation and angiogenesis. S100A1 potentiates cardiac function thus increasing the cardiomyocytes' functional reserve; this is an important feature in heart failure. In fact, S100A1 seems to normalize cardiac function after myocardial infarction. Also, S100A1 is essential in the acute response to adrenergic stimulation. Gene therapy experiments show promising results, although further studies are still needed to reach clinical practice. In this review, we aim to describe the molecular basis and regulatory function of S100A1, exploring its interactions with a myriad of target proteins. We also explore its functional effects on systolic and diastolic function as well as its acute actions. Finally, we discuss S100A1 gene therapy and its progression so far.
Collapse
Affiliation(s)
- S Duarte-Costa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
24
|
Won YW, Bull DA, Kim SW. Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release 2014; 195:110-9. [PMID: 25076177 DOI: 10.1016/j.jconrel.2014.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 01/18/2023]
Abstract
Ischemic heart disease is rapidly growing as the common cause of death in the world. It is a disease that occurs as a result of coronary artery stenosis and is caused by the lack of oxygen within cardiac muscles due to an imbalance between oxygen supply and demand. The conventional medical therapy is focused on the use of drug eluting stents, coronary-artery bypass graft surgery and anti-thrombosis. Gene therapy provides great opportunities for treatment of cardiovascular disease. In order for gene therapy to be successful, the development of proper gene delivery systems and hypoxia-regulated gene expression vectors is the most important factors. Several non-viral gene transfer methods have been developed to overcome the safety problems of viral transduction. Some of which include plasmids that regulate gene expression that is controlled by environment specific promoters in the transcriptional or the translational level. This review explores polymeric gene carriers that target the myocardium and hypoxia-inducible vectors, which regulate gene expression in response to hypoxia, and their application in animal myocardial infarction models.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Bennett MK, Sweet WE, Baicker-McKee S, Looney E, Karohl K, Mountis M, Tang WHW, Starling RC, Moravec CS. S100A1 in human heart failure: lack of recovery following left ventricular assist device support. Circ Heart Fail 2014; 7:612-8. [PMID: 24842913 PMCID: PMC4102621 DOI: 10.1161/circheartfailure.113.000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We hypothesized that S100A1 is regulated during human hypertrophy and heart failure and that it may be implicated in remodeling after left ventricular assist device. S100A1 is decreased in animal and human heart failure, and restoration produces functional recovery in animal models and in failing human myocytes. With the potential for gene therapy, it is important to carefully explore human cardiac S100A1 regulation and its role in remodeling. METHODS AND RESULTS We measured S100A1, the sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, phospholamban, and ryanodine receptor proteins, as well as β-adrenergic receptor density in nonfailing, hypertrophied (left ventricular hypertrophy), failing, and failing left ventricular assist device-supported hearts. We determined functional consequences of protein alterations in isolated contracting muscles from the same hearts. S100A1, sarcoplasmic endoplasmic reticulum Ca(2+)ATPase and phospholamban were normal in left ventricular hypertrophy, but decreased in failing hearts, while ryanodine receptor was unchanged in either group. Baseline muscle contraction was not altered in left ventricular hypertrophy or failing hearts. β-Adrenergic receptor and inotropic response were decreased in failing hearts. In failing left ventricular assist device-supported hearts, S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase showed no recovery, while phospholamban, β-adrenergic receptor, and the inotropic response fully recovered. CONCLUSIONS S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, both key Ca(2+)-regulatory proteins, are decreased in human heart failure, and these changes are not reversed after left ventricular assist device. The clinical significance of these findings for cardiac recovery remains to be addressed.
Collapse
Affiliation(s)
- Mosi K Bennett
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Wendy E Sweet
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Sara Baicker-McKee
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Elizabeth Looney
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Kristen Karohl
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Maria Mountis
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - W H Wilson Tang
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Randall C Starling
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Christine S Moravec
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH.
| |
Collapse
|
26
|
Atwa ZT, Safar HH. Outcome of congenital heart diseases in Egyptian children: Is there gender disparity? EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2014. [DOI: 10.1016/j.epag.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
27
|
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190:424-39. [PMID: 24746626 DOI: 10.1016/j.jconrel.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/18/2023]
Abstract
Most currently available cationic polymers have significant acute toxicity concerns such as cellular toxicity, aggregation of erythrocytes, and entrapment in the lung capillary bed, largely due to their poor biocompatibility and non-degradability under physiological conditions. To develop more intelligent polymers, disulfide bonds are introduced in the design of biodegradable polymers. Herein, the sustained innovations of biomimetic nano-sized constructs with bioreducible poly(disulfide amine)s demonstrate a viable clinical tool for the treatment of cardiovascular disease, anemia, diabetes, and cancer.
Collapse
Affiliation(s)
- Young Sook Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA.
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA; Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4:264. [PMID: 24133451 PMCID: PMC3783981 DOI: 10.3389/fphys.2013.00264] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022] Open
Abstract
Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs). β-adrenergic receptors (βARs) are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS). In compromised conditions such as heart failure (HF), chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data accumulated over the last two decades indicates that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2), which was originally known as βARK1 (for βAR kinase). GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition; in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
29
|
Won YW, Lee M, Kim HA, Nam K, Bull DA, Kim SW. Synergistically combined gene delivery for enhanced VEGF secretion and antiapoptosis. Mol Pharm 2013; 10:3676-83. [PMID: 24007285 DOI: 10.1021/mp400178m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene-delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and to prolong its antiapoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP-1) as well as a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | | | | | | | |
Collapse
|
30
|
Manipulating L-type calcium channels in cardiomyocytes using split-intein protein transsplicing. Proc Natl Acad Sci U S A 2013; 110:15461-6. [PMID: 24003157 DOI: 10.1073/pnas.1308161110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Manipulating expression of large genes (>6 kb) in adult cardiomyocytes is challenging because these cells are only efficiently transduced by viral vectors with a 4-7 kb packaging capacity. This limitation impedes understanding structure-function mechanisms of important proteins in heart. L-type calcium channels (LTCCs) regulate diverse facets of cardiac physiology including excitation-contraction coupling, excitability, and gene expression. Many important questions about how LTCCs mediate such multidimensional signaling are best resolved by manipulating expression of the 6.6 kb pore-forming α1C-subunit in adult cardiomyocytes. Here, we use split-intein-mediated protein transsplicing to reconstitute LTCC α1C-subunit from two distinct halves, overcoming the difficulty of expressing full-length α1C in cardiomyocytes. Split-intein-tagged α1C fragments encoding dihydropyridine-resistant channels were incorporated into adenovirus and reconstituted in cardiomyocytes. Similar to endogenous LTCCs, recombinant channels targeted to dyads, triggered Ca(2+) transients, associated with caveolin-3, and supported β-adrenergic regulation of excitation-contraction coupling. This approach lowers a longstanding technical hurdle to manipulating large proteins in cardiomyocytes.
Collapse
|
31
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 PMCID: PMC11848682 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T. Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Julia Ritterhoff
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Philip Raake
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, PA 19122, USA
| | - Hugo A. Katus
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
32
|
Pal SN, Kofidis T. Therapeutic potential of genes in cardiac repair. Expert Rev Cardiovasc Ther 2013; 11:1015-28. [PMID: 23945013 DOI: 10.1586/14779072.2013.814867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases remain the primary reason of premature death and contribute to a major percentage of global patient morbidity. Recent knowledge in the molecular mechanisms of myocardial complications have identified novel therapeutic targets along with the availability of vectors that offer the chance for designing gene therapy technique for protection and revival of the diseased heart functions. Gene transfer procedure into the myocardium is demonstrated through direct injection of plasmid DNA or through the coronary vasculature using the direct or indirect delivery of viral vectors. Direct DNA injection to the myocardium is reported to be of immense value in research studies that aims at understanding the activities of various elements in myocardium. It is also deemed vital for investigating the effect of the myocardial pathophysiology on expression of the foreign genes that are transferred. Gene therapies have been reported to heal cardiac pathologies such as myocardial ischemia, heart failure and inherited myopathies in several animal models. The results obtained from these animal studies have also encouraged a flurry of early clinical trials. This translational research has been triggered by an enhanced understanding of the biological mechanisms involved in tissue repair after ischemic injury. While safety concerns take utmost priority in these trials, several combinational therapies, various routes and dose of delivery are being tested before concrete optimization and complete potential of gene therapy is convincingly understood.
Collapse
Affiliation(s)
- Shripad N Pal
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
33
|
Vasudevan NT, Mohan ML, Gupta MK, Martelli EE, Hussain AK, Qin Y, Chandrasekharan UM, Young D, Feldman AM, Sen S, Dorn GW, Dicorleto PE, Naga Prasad SV. Gβγ-independent recruitment of G-protein coupled receptor kinase 2 drives tumor necrosis factor α-induced cardiac β-adrenergic receptor dysfunction. Circulation 2013; 128:377-87. [PMID: 23785004 DOI: 10.1161/circulationaha.113.003183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proinflammatory cytokine tumor necrosis factor-α (TNFα) induces β-adrenergic receptor (βAR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known. METHODS AND RESULTS Two different proinflammatory transgenic mouse models with cardiac overexpression of myotrophin (a prohypertrophic molecule) or TNFα showed that TNFα alone is sufficient to mediate βAR desensitization as measured by cardiac adenylyl cyclase activity. M-mode echocardiography in these mouse models showed cardiac dysfunction paralleling βAR desensitization independent of sympathetic overdrive. TNFα-mediated βAR desensitization that precedes cardiac dysfunction is associated with selective upregulation of G-protein coupled receptor kinase 2 (GRK2) in both mouse models. In vitro studies in β2AR-overexpressing human embryonic kidney 293 cells showed significant βAR desensitization, GRK2 upregulation, and recruitment to the βAR complex following TNFα. Interestingly, inhibition of phosphoinositide 3-kinase abolished GRK2-mediated βAR phosphorylation and GRK2 recruitment on TNFα. Furthermore, TNFα-mediated βAR phosphorylation was not blocked with βAR antagonist propranolol. Additionally, TNFα administration in transgenic mice with cardiac overexpression of Gβγ-sequestering peptide βARK-ct could not prevent βAR desensitization or cardiac dysfunction showing that GRK2 recruitment to the βAR is Gβγ independent. Small interfering RNA knockdown of GRK2 resulted in the loss of TNFα-mediated βAR phosphorylation. Consistently, cardiomyocytes from mice with cardiac-specific GRK2 ablation normalized the TNFα-mediated loss in contractility, showing that TNFα-induced βAR desensitization is GRK2 dependent. CONCLUSIONS TNFα-induced βAR desensitization is mediated by GRK2 and is independent of Gβγ, uncovering a hitherto unknown cross-talk between TNFα and βAR function, providing the underpinnings of inflammation-mediated cardiac dysfunction.
Collapse
Affiliation(s)
- Neelakantan T Vasudevan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sandri M, Rizzi R, Schiattarella GG, Levialdi Ghiron JH, Latronico MV, Pironti G, Chiariello GA, Esposito G, Tampieri A, Condorelli G. A collagen membrane-based engineered heart tissue improves cardiac function in ischemic rat hearts. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.12.00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the relatively new field of cardiac tissue engineering, different biomaterials, methods and techniques have been tested for cardiac repair, but we are still far from the achievement of a valid model that can be tested for therapeutic goals. In this study, the authors examined the efficacy of newly preformed membranes based on collagen type I for the transplantation of cardiac cells. The membrane prototype, cross-linked with 1,4-butanediol diglycidyl ether (BDDGE) and fibronectin-enriched, gave rise to spontaneously beating heart cell constructs, 5–9 days after seeding with neonatal rat cardiac cells. This membrane was grafted, with and without beating cardiac cells, onto the infarcted area of rat models of heart failure. Seriate echocardiography, performed on rats before transplantation and at 4 and 8 weeks after transplantation, demonstrated that rats treated with collagen membranes previously seeded with beating cells showed an improvement in cardiac function after 8 weeks. These results suggest that this new type of collagen membrane can be used as vector for the transplantation of beating heart cells for the regeneration of the injured myocardium and hence represents an important potential tool for cardiac tissue repair technologies.
Collapse
Affiliation(s)
- Monica Sandri
- Institute of Science and Technology for Ceramics – National Research Council of Italy (ISTEC-CNR), Faenza, Italy
| | - Roberto Rizzi
- Institute of Genetic and Biomedical Research – National Research Council of Italy (IRGB-CNR), Milan, Italy
| | | | - Jung Hee Levialdi Ghiron
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | | | - Gianluigi Pironti
- Division of Cardiology, University of Naples “Federico II,” Naples, Italy
| | - Giovanni A. Chiariello
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Giovanni Esposito
- Division of Cardiology, University of Naples “Federico II,” Naples, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics – National Research Council of Italy (ISTEC-CNR), Faenza, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research – National Research Council of Italy (IRGB-CNR), Milan, Italy
| |
Collapse
|
35
|
Hong YM. Cardiomyopathies in children. KOREAN JOURNAL OF PEDIATRICS 2013; 56:52-9. [PMID: 23482511 PMCID: PMC3589591 DOI: 10.3345/kjp.2013.56.2.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/04/2013] [Indexed: 01/06/2023]
Abstract
Cardiomyopathy (CMP) is a heterogeneous disease caused by a functional abnormality of the cardiac muscle. CMP is of 2 major types, dilated and hypertrophic, and is further classified as either primary or secondary. Secondary CMP is caused by extrinsic factors, including infection, ischemia, hypertension, and metabolic disorders. Primary CMP is diagnosed when the extrinsic factors of secondary CMP are absent. Furthermore, the World Health Organization, American Heart Association, and European Cardiology Association have different systems for clinically classifying primary CMP. Primary CMP is rare and associated with a family history of the disease, implying that genetic factors might affect its incidence. In addition, the incidence of CMP varies widely according to patient ethnicity. Genetic testing plays an important role in the care of patients with CMP and their families because it confirms diagnosis, determines the appropriate care for the patient, and possibly affects patient prognosis. The diagnosis and genetic identification of CMP in patients' families allow the possibility to identify novel genes that may lead to new treatments. This review focuses on the epidemiology, pathophysiology, diagnosis, and treatment of CMP, with the aim of providing pediatricians with insights that may be helpful in the early identification and management of idiopathic CMP in children.
Collapse
Affiliation(s)
- Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Hypoxia-inducible plasmid expressing both miSHP-1 and HO-1 for the treatment of ischemic disease. J Control Release 2012; 165:22-8. [PMID: 23108071 DOI: 10.1016/j.jconrel.2012.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/11/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023]
Abstract
Ischemic heart disease (IHD) is one of the leading causes of death worldwide. Unfortunately, current pharmacological treatments for ischemic heart disease do not reliably prevent the remodeling of the left ventricle and the progression to heart failure. Gene therapy offers a novel means to directly treat the pathophysiology underlying the long-term complications of ischemic heart disease. To date, gene therapies directed at single molecular targets have not been successful in the treatment of ischemic heart disease. In this study, we describe a gene therapy combination for inhibiting cardiomyocyte apoptosis under hypoxic conditions. This gene therapy combination utilizes a hypoxia-inducible plasmid expressing both heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP-1): pEpo-SV-miSHP-HO-1. This novel gene therapy construct demonstrated an enhanced expression of HO-1, production of miSHP-1, down-regulation of SHP-1, and inhibition of cardiomyocyte apoptosis under hypoxic compared to normoxic conditions. These results suggest that pEpo-SV-miSHP-HO-1 may be a promising gene therapy combination construct for the clinical treatment of ischemic disease.
Collapse
|
37
|
Chen L, Xu Y, Li W, Wu H, Luo Z, Li X, Huang F, Young C, Liu Z, Zhou S. The novel compound liguzinediol exerts positive inotropic effects in isolated rat heart via sarcoplasmic reticulum Ca2+ ATPase-dependent mechanism. Life Sci 2012; 91:402-408. [PMID: 22906633 DOI: 10.1016/j.lfs.2012.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/27/2012] [Accepted: 08/02/2012] [Indexed: 11/15/2022]
Abstract
AIMS The present work investigated the underlying mechanism for the positive inotropic effect of liguzinediol (LZDO) in isolated rat hearts. MAIN METHODS Isolated rat heart perfusion, intracellular action potential recording, patch clamp and Ca2+ imaging were used to measure the isolated rat heart contractility, action potential duration, L-type Ca2+ current and sarcoplasmic reticulum (SR) Ca2+ transient in rat cardiomyocyte, respectively. KEY FINDINGS LZDO (1, 10, and 100μM) significantly enhanced the inotropy of isolated rat hearts, but not heart rates. Nimodipine (1μM, an L-type Ca2+ channel antagonist), ruthenium red (5μM, a ryanodine receptor inhibitor) and thapsigargin (2μM, an irreversible SR Ca2+ ATPase inhibitor) completely blocked the positive inotropic effect of LZDO. LZDO significantly enhanced the intracellular Ca2+ transient in rat cardiomyocyte. However, LZDO (100μM) did not increase L-type Ca2+ channel current. Moreover, LZDO (100μM) restored the depletion effect of caffeine on Ca2+ transient. The following compounds also failed to block the positive inotropic effect of LZDO (100μM): β-AR antagonist (propranolol 1μM), phosphodiesterase (PDE) inhibitor (IBMX 5μM), Na+-K+ ATPase inhibitor (ouabain 1μM), α(1)-AR antagonist (prazosin 1μM), dopamine D1 receptor antagonist (SCH23390 1μM) and Na+-Ca2+ exchange inhibitor (KB-R7943 1μM). SIGNIFICANCE The positive inotropic effect of LZDO in isolated rat hearts was mediated through an elevation of SR Ca2+ transient, which may act on SR Ca2+ ATPase. LZDO has a unique biological mechanism that may prove effective in treating heart failure in clinic.
Collapse
Affiliation(s)
- Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; Institute of Chinese Medicine of Taizhou China Medical City, Taizhou 225300, China.
| | - Yi Xu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Wei Li
- Department of Chemistry and Processing for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Hao Wu
- Department of Chemistry and Processing for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Zhuoka Luo
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xuehua Li
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Feifei Huang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Clint Young
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, Canada BC V5G4W8
| | - Zheng Liu
- Department of Chemistry and Processing for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shuyuan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10070, China
| |
Collapse
|
38
|
Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, Ghaedi M, Arjmand S, Najavand S, Khoshdel A. HIF-1α Overexpression Induces Angiogenesis in Mesenchymal Stem Cells. Biores Open Access 2012; 1:174-83. [PMID: 23514846 PMCID: PMC3559201 DOI: 10.1089/biores.2012.9905] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapy continues to be an innovative and promising strategy for heart failure. Stem cell injection alone, however, is hampered by poor cell survival and differentiation. This study was aimed to explore the possibility of improving stem cell therapy through genetic modification of stem cells, in order for them to promote angiogenesis in an auto- and paracrine manner under hypoxic conditions. Hypoxia inducible factor-1α was overexpressed in bone marrow-derived mesenchymal stem cells (MSCs) by stable transduction using a lentiviral vector. Under hypoxic and normoxic conditions, the vascular endothelial growth factor (VEGF) concentration in the cells' supernatant was measured by an enzyme-linked immunosorbent assay. Migration was assayed by wound healing and c-Met expression by flow cytometry. Tube formation was evaluated on a Matrigel basement membrane. The concentration of VEGF was significantly increased in the supernatant of HIF-1α-overexpressing MSCs; this medium was significantly more effective in inducing endothelial cell migration compared to untransduced MSCs. Transduced cells showed increased levels of c-Met expression and were more efficient at tube formation. However, no indication of differentiation toward an endothelial phenotype was observed. This study indicated that genetic modification of MSCs by HIF-1α overexpression has the potential to improve components of the angiogenesis process under a hypoxic condition by paracrine and autocrine mechanisms.
Collapse
Affiliation(s)
- Vahid Razban
- National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kairouz V, Lipskaia L, Hajjar RJ, Chemaly ER. Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Ann N Y Acad Sci 2012; 1254:42-50. [PMID: 22548568 DOI: 10.1111/j.1749-6632.2012.06520.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno-associated viral vector expressing sarco-endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.
Collapse
Affiliation(s)
- Victor Kairouz
- Department of Internal Medicine, University at Buffalo School of Medicine and Biomedical Sciences, Erie County Medical Center, Buffalo, New York, USA
| | | | | | | |
Collapse
|
40
|
In search of novel targets for heart disease: myocardin and myocardin-related transcriptional cofactors. Biochem Res Int 2012; 2012:973723. [PMID: 22666593 PMCID: PMC3362810 DOI: 10.1155/2012/973723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that gene-regulatory networks, which are responsible for directing cardiovascular development, are altered under stress conditions in the adult heart. The cardiac gene regulatory network is controlled by cardioenriched transcription factors and multiple-cell-signaling inputs. Transcriptional coactivators also participate in gene-regulatory circuits as the primary targets of both physiological and pathological signals. Here, we focus on the recently discovered myocardin-(MYOCD) related family of transcriptional cofactors (MRTF-A and MRTF-B) which associate with the serum response transcription factor and activate the expression of a variety of target genes involved in cardiac growth and adaptation to stress via overlapping but distinct mechanisms. We discuss the involvement of MYOCD, MRTF-A, and MRTF-B in the development of cardiac dysfunction and to what extent modulation of the expression of these factors in vivo can correlate with cardiac disease outcomes. A close examination of the findings identifies the MYOCD-related transcriptional cofactors as putative therapeutic targets to improve cardiac function in heart failure conditions through distinct context-dependent mechanisms. Nevertheless, we are in support of further research to better understand the precise role of individual MYOCD-related factors in cardiac function and disease, before any therapeutic intervention is to be entertained in preclinical trials.
Collapse
|
41
|
Jiang X, Xu C, Wang Y, Gao L, Yan C, Li D, Sun H. β2-adrenoceptor transfection enhances contractile reserve of isolated rat ventricular myocytes exposed to chronic isoprenaline stimulation by improving β1-adrenoceptor responsiveness. J Recept Signal Transduct Res 2012; 32:36-41. [PMID: 22216755 DOI: 10.3109/10799893.2011.610107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Heart failure (HF) is a progressive deterioration in heart function associated with overactivity of the sympathetic nervous system. Elevated sympathetic nervous system activity down regulates the β-adrenergic signal system, suppressing β-adrenoceptors (β-ARs)-mediated contractile support in the failing heart. OBJECTIVE We investigated the effects of β(2)-AR gene transfer on shortening amplitude of isolated ventricular myocytes under chronic exposure to isoprenaline (ISO), and further determine the contributions of β(1)-AR and β(2)-AR to the contraction. MATERIALS AND METHODS Cardiomyocytes were isolated from adult rat hearts and then transfected with β(2)-AR gene using an adenovirus vector. Four hours after the infection, cardiomyocytes were treated with ISO for another 24 hours to imitate high levels of circulating catecholamines in HF. Western blotting was performed to measure myocardial protein expression of β(2)-AR. Video-based edge-detection system was used to evaluate basal and ISO-stimulated shortening amplitudes of cardiomyocytes. RESULTS β(2)-AR gene transfer increased β(2)-AR protein content. Chronic ISO stimulation produced a negative inotropic response, whereas acute ISO stimulation showed a positive inotropic response. β(2)-AR gene transfer had no significant effects on shortening amplitude of cardiomyocytes under normal conditions, but enhanced the blunted contraction of cardiomyocytes under pathological conditions induced by chronic ISO stimulation, and the effect was inhibited by β(1)-AR antagonist, CGP 20712A, instead of β(2)-AR antagonist, ICI 118,551. DISCUSSION AND CONCLUSIONS We conclude that β(2)-AR gene transfer in isolated ventricular myocytes under chronic ISO stimulation improves cellular contraction, and the beneficial effects might be mediated by improving β(1)-adrenoceptor responsiveness.
Collapse
Affiliation(s)
- XinWei Jiang
- Department of Physiology, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Katz MG, Fargnoli AS, Pritchette LA, Bridges CR. Gene delivery technologies for cardiac applications. Gene Ther 2012; 19:659-69. [PMID: 22418063 DOI: 10.1038/gt.2012.11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ischemic heart disease (IHD) and heart failure (HF) are major causes of morbidity and mortality in the Western society. Advances in understanding the molecular pathology of these diseases, the evolution of vector technology, as well as defining the targets for therapeutic interventions has placed these conditions within the reach of gene-based therapy. One of the cornerstones of limiting the effectiveness of gene therapy is the establishment of clinically relevant methods of genetic transfer. Recently there have been advances in direct and transvascular gene delivery methods with the use of new technologies. Current research efforts in IHD are focused primarily on the stimulation of angiogenesis, modify the coronary vascular environment and improve endothelial function with localized gene-eluting catheters and stents. In contrast to standard IHD treatments, gene therapy in HF primarily targets inhibition of apoptosis, reduction in adverse remodeling and increase in contractility through global cardiomyocyte transduction for maximal efficacy. This article will review a variety of gene-transfer strategies in models of coronary artery disease and HF and discuss the relative success of these strategies in improving the efficiency of vector-mediated cardiac gene delivery.
Collapse
Affiliation(s)
- M G Katz
- Department of Thoracic and Cardiovascular Surgery, Sanger Heart and Vascular Institute, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | | | | | | |
Collapse
|
43
|
Katz MG, Fargnoli AS, Tomasulo CE, Pritchette LA, Bridges CR. Model-specific selection of molecular targets for heart failure gene therapy. J Gene Med 2012; 13:573-86. [PMID: 21954055 DOI: 10.1002/jgm.1610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Surgery, Division of Cardiovascular Surgery, The University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Reinkober J, Tscheschner H, Pleger ST, Most P, Katus HA, Koch WJ, Raake PWJ. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther 2012; 19:686-93. [PMID: 22336718 DOI: 10.1038/gt.2012.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a common pathological end point for several cardiac diseases. Despite reasonable achievements in pharmacological, electrophysiological and surgical treatments, prognosis for chronic HF remains poor. Modern therapies are generally symptom oriented and do not currently address specific intracellular molecular signaling abnormalities. Therefore, new and innovative therapeutic approaches are warranted and, ideally, these could at least complement established therapeutic options if not replace them. Gene therapy has potential to serve in this regard in HF as vectors can be directed toward diseased myocytes and directly target intracellular signaling abnormalities. Within this review, we will dissect the adrenergic system contributing to HF development and progression with special emphasis on G-protein-coupled receptor kinase 2 (GRK2). The levels and activity of GRK2 are increased in HF and we and others have demonstrated that this kinase is a major molecular culprit in HF. We will cover the evidence supporting gene therapy directed against myocardial as well as adrenal GRK2 to improve the function and structure of the failing heart and how these strategies may offer complementary and synergistic effects with the existing HF mainstay therapy of β-adrenergic receptor antagonism.
Collapse
Affiliation(s)
- J Reinkober
- Department of Internal Medicine III, Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Raake PWJ, Schlegel P, Ksienzyk J, Reinkober J, Barthelmes J, Schinkel S, Pleger S, Mier W, Haberkorn U, Koch WJ, Katus HA, Most P, Müller OJ. AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 2012; 34:1437-47. [PMID: 22261894 DOI: 10.1093/eurheartj/ehr447] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS G protein-coupled receptor kinase 2 (GRK2), which is markedly upregulated in failing human myocardium, has been implicated as a contributing factor or consequence of heart failure (HF). Importantly, cardiac-specific GRK2 knockout mice have recently proved the pathological nature of GRK2 in HF. Targeted inhibition of GRK2 is possible using a peptide inhibitor known as the βARKct, which has rescued several disparate small animal HF models. This study was designed to evaluate long-term βARKct expression in a clinically relevant large animal HF model, using stable myocardial gene delivery with adeno-associated virus serotype 6 (AAV6). METHODS AND RESULTS A porcine model of HF subsequent to left ventricular (LV) myocardial infarction (MI) was used to study the effects of retrograde injection into the anterior interventricular vein of either AAV6.βARKct or AAV6.luciferase as a control 2 weeks after MI. Echocardiography and LV hemodynamics were performed before and 6 weeks after gene transfer. Robust and long-term βARKct expression was found after AAV6-mediated delivery, leading to significant amelioration of LV haemodynamics and contractile function in HF pigs compared with AAV6.luciferase-treated control animals that showed a continued decline in cardiac function. Interestingly, the neurohormonal axis was virtually normalized in AVV6.βARKct-treated HF animals, represented by reductions in plasma norepinephrine levels, whereas AAV6.luciferase-treated pigs showed further increases in plasma catecholamine levels. As a result, LV remodelling and foetal gene expression was reversed by AVV6.βARKct gene therapy. CONCLUSION These data--showing sustained amelioration of cardiac function in a post-MI pig HF model--demonstrate the therapeutic potential of βARKct gene therapy for HF.
Collapse
Affiliation(s)
- Philip W J Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Akin BL, Jones LR. Characterizing phospholamban to sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein binding interactions in human cardiac sarcoplasmic reticulum vesicles using chemical cross-linking. J Biol Chem 2012; 287:7582-93. [PMID: 22247554 DOI: 10.1074/jbc.m111.334987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chemical cross-linking was used to study protein binding interactions between native phospholamban (PLB) and SERCA2a in sarcoplasmic reticulum (SR) vesicles prepared from normal and failed human hearts. Lys(27) of PLB was cross-linked to the Ca(2+) pump at the cytoplasmic extension of M4 (at or near Lys(328)) with the homobifunctional cross-linker, disuccinimidyl glutarate (7.7 Å). Cross-linking was augmented by ATP but abolished by Ca(2+) or thapsigargin, confirming in native SR vesicles that PLB binds preferentially to E2 (low Ca(2+) affinity conformation of the Ca(2+)-ATPase) stabilized by ATP. To assess the functional effects of PLB binding on SERCA2a activity, the anti-PLB antibody, 2D12, was used to disrupt the physical interactions between PLB and SERCA2a in SR vesicles. We observed a tight correlation between 2D12-induced inhibition of PLB cross-linking to SERCA2a and 2D12 stimulation of Ca(2+)-ATPase activity and Ca(2+) transport. The results suggest that the inhibitory effect of PLB on Ca(2+)-ATPase activity in SR vesicles results from mutually exclusive binding of PLB and Ca(2+) to the Ca(2+) pump, requiring PLB dissociation for catalytic activation. Importantly, the same result was obtained with SR vesicles prepared from normal and failed human hearts; therefore, we conclude that PLB binding interactions with the Ca(2+) pump are largely unchanged in failing myocardium.
Collapse
Affiliation(s)
- Brandy L Akin
- Krannert Institute of Cardiology and the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
48
|
A phospholamban-tethered cardiac Ca2+ pump reveals stoichiometry and dynamic interactions between the two proteins. Biochem J 2011; 439:313-9. [DOI: 10.1042/bj20110926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study PLB (phospholamban) inhibition of the cardiac Ca2+ pump [SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a)], a fusion protein (SER-20G-PLB) was engineered by tethering SERCA2a with PLB through a 20-glycine residue chain, allowing the PLB tether to either bind to or dissociate from the inhibition site on SERCA2a. When expressed in insect cells, SER-20G-PLB produced active Ca2+ uptake, which was stimulated by the anti-PLB antibody, both similar to that which occurred with the control sample co-expressing WT (wild-type)-SERCA2a and WT-PLB. The KCa values of Ca2+-dependent ATPase were similar for SER-20G-PLB (0.29±0.02 μM) and for the control sample (0.30±0.02 μM), both greater than 0.17±0.01 μM for WT-SERCA2a expressed alone. Thus SER-20G-PLB retains a fully active Ca2+ pump, but its apparent Ca2+ affinity was decreased intrinsically by tethered PLB at a 1:1 molar stoichiometry. Like WT-PLB, SER-20G-PLB ran as both monomers and homo-pentamers on SDS/PAGE. As Ca2+ concentrations increase from 0 to the micromolar range, the proportion of non-inhibiting pentamers increased from 32% to 52%, suggesting that Ca2+ activation of the pump completely dissociates the PLB tether from the inhibition site on SERCA2a, with concurrent association of PLB pentamers. Collectively, the regulation of SERCA2a is achieved through the Ca2+-dependent equilibria involving PLB association and dissociation from SERCA2a, and assembling and disassembling of SER-20G-PLB pentamers.
Collapse
|
49
|
Raake PWJ, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ, Most P. Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 2011; 90:542-53. [PMID: 21866097 DOI: 10.1038/clpt.2011.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of β-adrenergic receptor (β-AR) signaling, Ca(2+) disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and we delineate promising gene therapy structures. Finally, we analyze potential limitations related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations.
Collapse
Affiliation(s)
- P W J Raake
- Division of Cardiology, Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Brinks H, Rohde D, Voelkers M, Qiu G, Pleger ST, Herzog N, Rabinowitz J, Ruhparwar A, Silvestry S, Lerchenmüller C, Mather PJ, Eckhart AD, Katus HA, Carrel T, Koch WJ, Most P. S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol 2011; 58:966-73. [PMID: 21851887 PMCID: PMC3919460 DOI: 10.1016/j.jacc.2011.03.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/07/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study investigated the hypothesis whether S100A1 gene therapy can improve pathological key features in human failing ventricular cardiomyocytes (HFCMs). BACKGROUND Depletion of the Ca²⁺-sensor protein S100A1 drives deterioration of cardiac performance toward heart failure (HF) in experimental animal models. Targeted repair of this molecular defect by cardiac-specific S100A1 gene therapy rescued cardiac performance, raising the immanent question of its effects in human failing myocardium. METHODS Enzymatically isolated HFCMs from hearts with severe systolic HF were subjected to S100A1 and control adenoviral gene transfer and contractile performance, calcium handling, signaling, and energy homeostasis were analyzed by video-edge-detection, FURA2-based epifluorescent microscopy, phosphorylation site-specific antibodies, and mitochondrial assays, respectively. RESULTS Genetically targeted therapy employing the human S100A1 cDNA normalized decreased S100A1 protein levels in HFCMs, reversed both contractile dysfunction and negative force-frequency relationship, and improved contractile reserve under beta-adrenergic receptor (β-AR) stimulation independent of cAMP-dependent (PKA) and calmodulin-dependent (CaMKII) kinase activity. S100A1 reversed underlying Ca²⁺ handling abnormalities basally and under β-AR stimulation shown by improved SR Ca²⁺ handling, intracellular Ca²⁺ transients, diastolic Ca²⁺ overload, and diminished susceptibility to arrhythmogenic SR Ca²⁺ leak, respectively. Moreover, S100A1 ameliorated compromised mitochondrial function and restored the phosphocreatine/adenosine-triphosphate ratio. CONCLUSIONS Our results demonstrate for the first time the therapeutic efficacy of genetically reconstituted S100A1 protein levels in HFCMs by reversing pathophysiological features that characterize human failing myocardium. Our findings close a gap in our understanding of S100A1's effects in human cardiomyocytes and strengthen the rationale for future molecular-guided therapy of human HF.
Collapse
Affiliation(s)
- Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Berne, Bern, Switzerland
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David Rohde
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Mirko Voelkers
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Gang Qiu
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell & Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sven T. Pleger
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Nicole Herzog
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Joseph Rabinowitz
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arjang Ruhparwar
- Division of Cardiac Surgery, Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Scott Silvestry
- Division of Cardiothoracic Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carolin Lerchenmüller
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell & Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Paul J. Mather
- Advanced Heart Failure and Cardiac Transplant Center, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrea D. Eckhart
- Eugene Feiner Laboratory for Vascular Biology and Thrombosis, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hugo A. Katus
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Thierry Carrel
- Department of Cardiac and Vascular Surgery, University Hospital Berne, Bern, Switzerland
| | - Walter J. Koch
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrick Most
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell & Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|