1
|
Hathorn B, Haykowsky MJ, Almandoz J, Pandey A, Sarma S, Hearon CM, Babb TG, Balmain BN, Fu Q, Zaha VG, Levine BD, Nelson MD. Insights Into the Role of Obesity in Heart Failure With Preserved Ejection Fraction Pathophysiology and Management. Can J Cardiol 2025:S0828-282X(25)00199-0. [PMID: 40122162 DOI: 10.1016/j.cjca.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
Heart failure (HF) is a significant global health issue, categorized by left ventricular ejection fraction, being either reduced (HFrEF < 0.40) or preserved (HFpEF > 0.50), or in the middle of this range. Although the overall incidence of HF remains stable, HFpEF cases are increasing, representing about 50% of all HF cases. Outcomes for HFpEF are similar to those for HFrEF, leading to substantial health-care resource use. Despite extensive research over the past 2 decades, the prognosis and mortality rates for HFpEF remain high. A key feature of HFpEF is exercise intolerance, characterized by severe exertional dyspnea and fatigue, which significantly impacts quality of life. The underlying mechanisms of exercise intolerance are not fully understood due to the complex pathophysiology and multisystem involvement. Obesity is a common comorbidity in HFpEF, especially in North America, leading to worsening symptoms, hemodynamics, and mortality rates. Increased adiposity leads to inflammation, hypertension, dyslipidemia, and insulin resistance, and impairing cardiac, vascular, pulmonary, and skeletal muscle function. Therefore, managing obesity is crucial in treating HFpEF. In this review we explore the pathophysiologic mechanisms of HFpEF, emphasizing obesity's role, and we discuss current management strategies while identifying areas needing further research.
Collapse
Affiliation(s)
- Brandon Hathorn
- Applied Physiology and Advanced Imaging Laboratory, University of Texas at Arlington, Arlington, Texas, USA
| | - Mark J Haykowsky
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime Almandoz
- Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Satyam Sarma
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bryce N Balmain
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Qi Fu
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Clinical Imaging Research Center, University of Texas at Arlington, Arlington, Texas, USA
| | - Benjamin D Levine
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, University of Texas at Arlington, Arlington, Texas, USA; Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Clinical Imaging Research Center, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
2
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Oneglia AP, Szczepaniak LS, Jaffery MF, Cipher DJ, McDonald JG, Haykowsky MJ, Moreau KL, Clegg DJ, Zaha V, Nelson MD. Myocardial steatosis impairs left ventricular diastolic-systolic coupling in healthy humans. J Physiol 2023; 601:1371-1382. [PMID: 36891609 DOI: 10.1113/jp284272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Mounting evidence suggests that myocardial steatosis contributes to left ventricular diastolic dysfunction, but definitive evidence in humans is lacking due to confounding comorbidities. As such, we utilized a 48-h food restriction model to acutely increase myocardial triglyceride (mTG) content - measured by 1 H magnetic resonance spectroscopy - in 27 young healthy volunteers (13 men/14 women). Forty-eight hours of fasting caused a more than 3-fold increase in mTG content (P < 0.001). Diastolic function - defined as early diastolic circumferential strain rate (CSRd) - was unchanged following the 48-h fasting intervention, but systolic circumferential strain rate was elevated (P < 0.001), indicative of systolic-diastolic uncoupling. Indeed, in a separate control experiment in 10 individuals, administration of low-dose dobutamine (2 μg/kg/min) caused a similar change in systolic circumferential strain rate as was found during 48 h of food restriction, along with a proportionate increase in CSRd, such that the two metrics remained coupled. Taken together, these data indicate that myocardial steatosis contributes to diastolic dysfunction by impairing diastolic-systolic coupling in healthy adults, and suggest that steatosis may contribute to the progression of heart disease. KEY POINTS: Preclinical evidence strongly suggests that myocardial lipid accumulation (termed steatosis) is an important mechanism driving heart disease. Definitive evidence in humans is limited due to the confounding influence of multiple underlying comorbidities. Using a 48-h food restriction model to acutely increase myocardial triglyceride content in young healthy volunteers, we demonstrate an association between myocardial steatosis and left ventricular diastolic dysfunction. These data advance the hypothesis that myocardial steatosis may contribute to diastolic dysfunction and suggest myocardial steatosis as a putative therapeutic target.
Collapse
Affiliation(s)
- Andrew P Oneglia
- College of Nursing and Health Innovation, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | | | - Manall F Jaffery
- College of Nursing and Health Innovation, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Daisha J Cipher
- College of Nursing and Health Innovation, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark J Haykowsky
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Kerrie L Moreau
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Vlad Zaha
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael D Nelson
- College of Nursing and Health Innovation, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
4
|
[Mechano-energetic defects in heart failure]. Herz 2023; 48:123-133. [PMID: 36700949 DOI: 10.1007/s00059-022-05161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
Heart failure is characterized by defects in excitation-contraction coupling, energetic deficit and oxidative stress. The energy for cardiac contraction and relaxation is provided in mitochondria, whose function is tightly regulated by excitation-contraction coupling in cardiac myocytes. In heart failure with reduced ejection fraction (HFrEF), alterations in the ion balance in cardiac myocytes impair mitochondrial Ca2+ uptake, which is required for activation of the Krebs cycle, causing an energetic deficit and oxidative stress in mitochondria. Recent clinical studies suggest that in heart failure with preserved ejection fraction (HFpEF), in stark contrast to HFrEF, hypercontractility often occurs as an attempt to compensate for a pathological increase in systemic and pulmonary vascular resistance. This hypercontractility increases cardiac energy and oxygen demands at rest and reduces the contractile, diastolic and coronary reserves, preventing an adequate increase in cardiac output during exercise. Moreover, increased contractility causes long-term maladaptive remodeling processes due to oxidative stress and redox-sensitive prohypertrophic signaling pathways. As overweight and diabetes, particularly in the interplay with hemodynamic stress, are important risk factors for the development of HFpEF, interventions targeting metabolism in particular could ameliorate the development and progression of HFpEF.
Collapse
|
5
|
Dawood AF, Alzamil NM, Hewett PW, Momenah MA, Dallak M, Kamar SS, Abdel Kader DH, Yassin H, Haidara MA, Maarouf A, Al-Ani B. Metformin Protects against Diabetic Cardiomyopathy: An Association between Desmin-Sarcomere Injury and the iNOS/mTOR/TIMP-1 Fibrosis Axis. Biomedicines 2022; 10:984. [PMID: 35625721 PMCID: PMC9139128 DOI: 10.3390/biomedicines10050984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
The intermediate filament protein desmin is essential for maintaining the structural integrity of sarcomeres, the fundamental unit of cardiac muscle. Diabetes mellitus (DM) can cause desmin to become dysregulated, following episodes of nitrosative stress, through the activation of the iNOS/mTOR/TIMP-1 pathway, thereby stimulating collagen deposition in the myocardium. In this study, type 2 diabetes mellitus (T2DM) was induced in rats. One group of animals was pre-treated with metformin (200 mg/kg) prior to diabetes induction and subsequently kept on metformin until sacrifice at week 12. Cardiac injuries developed in the diabetic rats as demonstrated by a significant (p < 0.0001) inhibition of desmin immunostaining, profound sarcomere ultrastructural alterations, substantial damage to the left ventricular tissue, collagen deposition, and abnormal ECG recordings. DM also significantly induced the cardiac expression of inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and the profibrogenic biomarker tissue inhibitor of metalloproteinase-1 (TIMP-1). The expression of all these markers was significantly inhibited by metformin. In addition, a significant (p < 0.0001) correlation between desmin tissue levels/sarcomere damage and glycated hemoglobin, heart rate, iNOS, mTOR, and fibrosis was observed. These findings demonstrate an association between damage of the cardiac contractile unit—desmin and sarcomere—and the iNOS/mTOR/TIMP-1/collagen axis of fibrosis in T2DM-induced cardiomyopathy, with metformin exhibiting beneficial cardiovascular pleiotropic effects.
Collapse
Affiliation(s)
- Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Department of Physiology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Norah M. Alzamil
- Department of Clinical Science, Family Medicine, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Peter W. Hewett
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Maha A. Momenah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohammad Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Samaa S. Kamar
- Department of Medical Histology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (S.S.K.); (D.H.A.K.)
| | - Dina H. Abdel Kader
- Department of Medical Histology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (S.S.K.); (D.H.A.K.)
| | - Hanaa Yassin
- Department of Physiology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Mohamed A. Haidara
- Department of Physiology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK;
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
6
|
Isola R, Broccia F, Casti A, Loy F, Isola M, Vargiu R. STZ-diabetic rat heart maintains developed tension amplitude by increasing sarcomere length and crossbridge density. Exp Physiol 2021; 106:1572-1586. [PMID: 33977604 PMCID: PMC8362044 DOI: 10.1113/ep089000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
New Findings What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes‐associated altered ventricular function result from changes of acto‐myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type‐I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented β‐myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction.
Abstract We investigated whether diabetes‐associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto‐myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin‐induced diabetic and age‐matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A‐band length were measured on TEM images. Type I and III collagen and β‐myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two‐fold enhancement of β‐MHC content and longer sarcomeres and A‐band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super‐relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesca Broccia
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| |
Collapse
|
7
|
Varga B, Meli AC, Radoslavova S, Panel M, Lacampagne A, Gergely C, Cazorla O, Cloitre T. Internal structure and remodeling in dystrophin-deficient cardiomyocytes using second harmonic generation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102295. [PMID: 32889047 DOI: 10.1016/j.nano.2020.102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining. Images were acquired on alive DMD (mdx) and wild type cardiomyocytes at different ages and at various external calcium concentrations. An automated image processing was developed to identify individual myofibrils and extract data about their organization. We observed a structural aging-dependent remodeling in mdx cardiomyocytes affecting sarcomere sinuosity, orientation and length that could not be anticipated from standard optical imaging. These results revealed for the first time the interest of SHG to evaluate the intracellular and sarcomeric remodeling of DMD cardiac tissue in an age-dependent manner that could participate in progressive contractile dysfunction.
Collapse
Affiliation(s)
- Béla Varga
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Silviya Radoslavova
- L2C, University of Montpellier, CNRS, Montpellier, France; PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Mathieu Panel
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Csilla Gergely
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
8
|
SMN-deficiency disrupts SERCA2 expression and intracellular Ca 2+ signaling in cardiomyocytes from SMA mice and patient-derived iPSCs. Skelet Muscle 2020; 10:16. [PMID: 32384912 PMCID: PMC7206821 DOI: 10.1186/s13395-020-00232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of alpha motor neurons and skeletal muscle atrophy. The disease is caused by mutations of the SMN1 gene that result in reduced functional expression of survival motor neuron (SMN) protein. SMN is ubiquitously expressed, and there have been reports of cardiovascular dysfunction in the most severe SMA patients and animal models of the disease. In this study, we directly assessed the function of cardiomyocytes isolated from a severe SMA model mouse and cardiomyocytes generated from patient-derived IPSCs. Consistent with impaired cardiovascular function at the very early disease stages in mice, heart failure markers such as brain natriuretic peptide were significantly elevated. Functionally, cardiomyocyte relaxation kinetics were markedly slowed and the T50 for Ca2+ sequestration increased to 146 ± 4 ms in SMN-deficient cardiomyocytes from 126 ± 4 ms in wild type cells. Reducing SMN levels in cardiomyocytes from control patient IPSCs slowed calcium reuptake similar to SMA patent-derived cardiac cells. Importantly, restoring SMN increased calcium reuptake rate. Taken together, these results indicate that SMN deficiency impairs cardiomyocyte function at least partially through intracellular Ca2+ cycling dysregulation.
Collapse
|
9
|
Ladd D, Tilūnaitė A, Roderick HL, Soeller C, Crampin EJ, Rajagopal V. Assessing Cardiomyocyte Excitation-Contraction Coupling Site Detection From Live Cell Imaging Using a Structurally-Realistic Computational Model of Calcium Release. Front Physiol 2019; 10:1263. [PMID: 31632297 PMCID: PMC6783691 DOI: 10.3389/fphys.2019.01263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023] Open
Abstract
Calcium signaling plays a pivotal role in cardiomyocytes, coupling electrical excitation to mechanical contraction of the heart. Determining locations of active calcium release sites, and how their recruitment changes in response to stimuli and in disease states is therefore of central interest in cardiac physiology. Current algorithms for detecting release sites from live cell imaging data are however not easily validated against a known “ground truth,” which makes interpretation of the output of such algorithms, in particular the degree of confidence in site detection, a challenging task. Computational models are capable of integrating findings from multiple sources into a consistent, predictive framework. In cellular physiology, such models have the potential to reveal structure and function beyond the temporal and spatial resolution limitations of individual experimental measurements. Here, we create a spatially detailed computational model of calcium release in an eight sarcomere section of a ventricular cardiomyocyte, using electron tomography reconstruction of cardiac ultrastructure and confocal imaging of protein localization. This provides a high-resolution model of calcium diffusion from intracellular stores, which can be used as a platform to simulate confocal fluorescence imaging in the context of known ground truth structures from the higher resolution model. We use this capability to evaluate the performance of a recently proposed method for detecting the functional response of calcium release sites in live cells. Model permutations reveal how calcium release site density and mitochondria acting as diffusion barriers impact the detection performance of the algorithm. We demonstrate that site density has the greatest impact on detection precision and recall, in particular affecting the effective detectable depth of sites in confocal data. Our findings provide guidance on how such detection algorithms may best be applied to experimental data and give insights into limitations when using two-dimensional microscopy images to analyse three-dimensional cellular structures.
Collapse
Affiliation(s)
- David Ladd
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Agnė Tilūnaitė
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Edmund J Crampin
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Wu CK, Lee JK, Hsu JC, Su MYM, Wu YF, Lin TT, Lan CW, Hwang JJ, Lin LY. Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. Eur J Heart Fail 2019; 22:445-454. [PMID: 31696627 DOI: 10.1002/ejhf.1617] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS It has been proposed that an increase of myocardial adiposity is related to left ventricular (LV) diastolic dysfunction. The specific roles of myocardial steatosis including epicardial fat and intramyocardial fat for diastolic function are unknown in those patients suffering heart failure (HF) with reduced (HFrEF) or preserved ejection fraction (HFpEF). This study aims to determine the complex relationship between myocardial adiposity in patients with HFrEF or HFpEF. METHODS AND RESULTS Using cardiac magnetic resonance imaging (CMRI), myocardial steatosis was measured in 305 subjects (34 patients with HFrEF, 163 with HFpEF, and 108 non-HF controls). We also evaluated cardiac structure and diastolic and systolic function by echocardiography and CMRI. Patients with HFpEF had significantly more intramyocardial fat than HFrEF patients or non-HF controls [intramyocardial fat content (%), 1.56 (1.26, 1.89) vs. 0.75 (0.50, 0.87) and 1.0 (0.79, 1.15), P < 0.05]. Intramyocardial fat amount (%) was higher in HFpEF women than in men [1.91% (1.17%, 2.32%) vs. 1.22 (0.87%, 2.02%), P = 0.01]. When estimated by CMRI (left ventricular peak filling rate), echocardiographic E/e' level, or left atrial volume index, intramyocardial fat correlated with LV diastolic dysfunction parameters in HFpEF patients, and this was independent of age, co-morbidities, body mass index, gender, and myocardial fibrosis (standardized coefficient: β = -0.34, P = 0.03; β = 0.29, P = 0.025; and β = 0.25, P = 0.02, respectively). CONCLUSIONS Patients with HFpEF had significantly more intramyocardial fat than HFrEF patients or non-HF controls. Independent of risk factors or gender, intramyocardial fat correlated with LV diastolic dysfunction parameters in HFpEF patients.
Collapse
Affiliation(s)
- Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jen-Kuang Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jung-Chi Hsu
- Division of Cardiology, Department of Internal Medicine, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Mao-Yuan M Su
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Fan Wu
- Department of Family Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Ting-Tse Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chen-Wei Lan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
12
|
Chakouri N, Reboul C, Boulghobra D, Kleindienst A, Nottin S, Gayrard S, Roubille F, Matecki S, Lacampagne A, Cazorla O. Stress-induced protein S-glutathionylation and phosphorylation crosstalk in cardiac sarcomeric proteins - Impact on heart function. Int J Cardiol 2018; 258:207-216. [PMID: 29544934 DOI: 10.1016/j.ijcard.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The interplay between oxidative stress and other signaling pathways in the contractile machinery regulation during cardiac stress and its consequences on cardiac function remains poorly understood. We evaluated the effect of the crosstalk between β-adrenergic and redox signaling on post-translational modifications of sarcomeric regulatory proteins, Myosin Binding Protein-C (MyBP-C) and Troponin I (TnI). METHODS AND RESULTS We mimicked in vitro high level of physiological cardiac stress by forcing rat hearts to produce high levels of oxidized glutathione. This led to MyBP-C S-glutathionylation associated with lower protein kinase A (PKA) dependent phosphorylations of MyBP-C and TnI, increased myofilament Ca2+ sensitivity, and decreased systolic and diastolic properties of the isolated perfused heart. Moderate physiological cardiac stress achieved in vivo with a single 35 min exercise (Low stress induced by exercise, LSE) increased TnI and cMyBP-C phosphorylations and improved cardiac function in vivo (echocardiography) and ex-vivo (isolated perfused heart). High stress induced by exercise (HSE) altered strongly oxidative stress markers and phosphorylations were unchanged despite increased PKA activity. HSE led to in vivo intrinsic cardiac dysfunction associated with myofilament Ca2+ sensitivity defects. To limit protein S-glutathionylation after HSE, we treated rats with N-acetylcysteine (NAC). NAC restored the ability of PKA to modulate myofilament Ca2+ sensitivity and prevented cardiac dysfunction observed in HSE animals. CONCLUSION Under cardiac stress, adrenergic and oxidative signaling pathways work in concert to alter myofilament properties and are key regulators of cardiac function.
Collapse
Affiliation(s)
- Nourdine Chakouri
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Cyril Reboul
- EA 4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Doria Boulghobra
- EA 4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Adrien Kleindienst
- EA 4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Stéphane Nottin
- EA 4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Sandrine Gayrard
- EA 4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - François Roubille
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Alain Lacampagne
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Olivier Cazorla
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Papadaki M, Holewinski RJ, Previs SB, Martin TG, Stachowski MJ, Li A, Blair CA, Moravec CS, Van Eyk JE, Campbell KS, Warshaw DM, Kirk JA. Diabetes with heart failure increases methylglyoxal modifications in the sarcomere, which inhibit function. JCI Insight 2018; 3:121264. [PMID: 30333300 DOI: 10.1172/jci.insight.121264] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Patients with diabetes are at significantly higher risk of developing heart failure. Increases in advanced glycation end products are a proposed pathophysiological link, but their impact and mechanism remain incompletely understood. Methylglyoxal (MG) is a glycolysis byproduct, elevated in diabetes, and modifies arginine and lysine residues. We show that left ventricular myofilament from patients with diabetes and heart failure (dbHF) exhibited increased MG modifications compared with nonfailing controls (NF) or heart failure patients without diabetes. In skinned NF human and mouse cardiomyocytes, acute MG treatment depressed both calcium sensitivity and maximal calcium-activated force in a dose-dependent manner. Importantly, dbHF myocytes were resistant to myofilament functional changes from MG treatment, indicating that myofilaments from dbHF patients already had depressed function arising from MG modifications. In human dbHF and MG-treated mice, mass spectrometry identified increased MG modifications on actin and myosin. Cosedimentation and in vitro motility assays indicate that MG modifications on actin and myosin independently depress calcium sensitivity, and mechanistically, the functional consequence requires actin/myosin interaction with thin-filament regulatory proteins. MG modification of the myofilament may represent a critical mechanism by which diabetes induces heart failure, as well as a therapeutic target to avoid the development of or ameliorate heart failure in these patients.
Collapse
Affiliation(s)
- Maria Papadaki
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | | | - Samantha Beck Previs
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Marisa J Stachowski
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Amy Li
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Cheavar A Blair
- University of Kentucky, Department of Physiology, Lexington, Kentucky, USA
| | - Christine S Moravec
- The Cleveland Clinic, Department of Molecular Cardiology, Cleveland, Ohio, USA
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, California, USA
| | - Kenneth S Campbell
- University of Kentucky, Department of Physiology, Lexington, Kentucky, USA
| | - David M Warshaw
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| |
Collapse
|
14
|
Samuel TJ, Beaudry R, Haykowsky MJ, Sarma S, Nelson MD. Diastolic stress testing: similarities and differences between isometric handgrip and cycle echocardiography. J Appl Physiol (1985) 2018; 125:529-535. [DOI: 10.1152/japplphysiol.00304.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cycle echocardiography (CE) is recommended for noninvasive diagnosis of diastolic dysfunction but can be limited by respiratory and movement artifact. Isometric handgrip echocardiography (IHE) is also a robust diastolic discriminator, while avoiding the limitations associated with dynamic exercise. This study sought to compare these two diastolic stress testing approaches. Twelve elderly individuals were recruited from the community (age 71 ± 6 yr). Heart rate, arterial blood pressure, and left ventricular (LV) diastolic function (via echocardiography) were assessed at rest and in response to 3 min of IHE at 40% of their maximal voluntary contraction, followed by 3 min of CE at 20 W. Both IHE and CE caused a significant increase in heart rate and blood pressure, leading to similar increases in myocardial oxygen demand. Both stressors also evoked a similar rise in the ratio between early LV mitral inflow velocity to early lateral annular velocity, a surrogate measure of LV filling pressure. The underlying mechanisms leading to these changes, however, were inherently different. IHE increased mean arterial pressure, and impaired myocardial relaxation, to a greater extent than CE. In contrast, CE augmented cardiac index, and increased early mitral filling velocity, to a great extent than IHE. In conclusion, for the first time, these data highlight several important similarities and differences between IHE and CE. That IHE avoids respiratory and movement artifact, while still serving as a robust diastolic discriminator, supports IHE as a strong alternative to CE for diastolic stress testing. NEW & NOTEWORTHY This is the first study to compare the diastolic stress response between isometric handgrip exercise and conventional cycle exercise. The data suggest that isometric handgrip echocardiography is comparable to conventional cycle echocardiography, both in terms of its hemodynamic challenge and global diastolic stress response. That isometric handgrip echocardiography eliminates both respiratory and movement artifact and is low cost and incredibly portable supports its integration into routine echocardiography exams.
Collapse
Affiliation(s)
| | - Rhys Beaudry
- The University of Texas at Arlington, Arlington, Texas
| | | | - Satyam Sarma
- Institute for Exercise & Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
15
|
Karam CN, Warren CM, Henze M, Banke NH, Lewandowski ED, Solaro RJ. Peroxisome proliferator-activated receptor-α expression induces alterations in cardiac myofilaments in a pressure-overload model of hypertrophy. Am J Physiol Heart Circ Physiol 2017; 312:H681-H690. [PMID: 28130336 DOI: 10.1152/ajpheart.00469.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/22/2023]
Abstract
Although alterations in fatty acid (FA) metabolism have been shown to have a negative impact on contractility of the hypertrophied heart, the targets of action remain elusive. In this study we compared the function of skinned fiber bundles from transgenic (Tg) mice that overexpress a relatively low level of the peroxisome proliferator-activated receptor α (PPARα), and nontransgenic (NTg) littermates. The mice (NTg-T and Tg-T) were stressed by transverse aortic constriction (TAC) and compared with shams (NTg-S and Tg-S). There was an approximate 4-fold increase in PPARα expression in Tg-S compared with NTg-S, but Tg-T hearts showed the same PPARα expression as NTg-T. Expression of PPARα did not alter the hypertrophic response to TAC but did reduce ejection fraction (EF) in Tg-T hearts compared with other groups. The rate of actomyosin ATP hydrolysis was significantly higher in Tg-S skinned fiber bundles compared with all other groups. Tg-T hearts showed an increase in phosphorylation of specific sites on cardiac myosin binding protein-C (cMyBP-C) and β-myosin heavy chain isoform. These results advance our understanding of potential signaling to the myofilaments induced by altered FA metabolism under normal and pathological states. We demonstrate that chronic and transient PPARα activation during pathological stress alters myofilament response to Ca2+ through a mechanism that is possibly mediated by MyBP-C phosphorylation and myosin heavy chain isoforms.NEW & NOTEWORTHY Data presented here demonstrate novel signaling to sarcomeric proteins by chronic alterations in fatty acid metabolism induced by PPARα. The mechanism involves modifications of key myofilament regulatory proteins modifying cross-bridge dynamics with differential effects in controls and hearts stressed by pressure overload.
Collapse
Affiliation(s)
- Chehade N Karam
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Chad M Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Marcus Henze
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Natasha H Banke
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Douglas Lewandowski
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and.,Sanford Burnham Presbyterian Medical Discovery Institute, Orlando, Florida
| | - R John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
16
|
Jeong EM, Chung J, Liu H, Go Y, Gladstein S, Farzaneh-Far A, Lewandowski ED, Dudley SC. Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction. J Am Heart Assoc 2016; 5:e003046. [PMID: 27151515 PMCID: PMC4889180 DOI: 10.1161/jaha.115.003046] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/04/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with mitochondrial oxidative stress. We have shown that myocardial oxidative stress leads to diastolic dysfunction in a hypertensive mouse model. Therefore, we hypothesized that diabetes mellitus could cause diastolic dysfunction through mitochondrial oxidative stress and that a mitochondria-targeted antioxidant (MitoTEMPO) could prevent diastolic dysfunction in a diabetic mouse model. METHODS AND RESULTS C57BL/6J mice were fed either 60 kcal % fat diet (high-fat diet [HFD]) or normal chow (control) for 8 weeks with or without concurrent MitoTEMPO administration, followed by in vivo assessment of diastolic function and ex vivo studies. HFD mice developed impaired glucose tolerance compared with the control (serum glucose=495±45 mg/dL versus 236±30 mg/dL at 60 minutes after intraperitoneal glucose injection, P<0.05). Myocardial tagged cardiac magnetic resonance imaging showed significantly reduced diastolic circumferential strain (Ecc) rate in the HFD mice compared with controls (5.0±0.3 1/s versus 7.4±0.5 1/s, P<0.05), indicating diastolic dysfunction in the HFD mice. Systolic function was comparable in both groups (left ventricular ejection fraction=66.4±1.4% versus 66.7±1.2%, P>0.05). MitoTEMPO-treated HFD mice showed significant reduction in mitochondria reactive oxygen species, S-glutathionylation of cardiac myosin binding protein C, and diastolic dysfunction, comparable to the control. The fasting insulin levels of MitoTEMPO-treated HFD mice were also comparable to the controls (P>0.05). CONCLUSIONS MitoTEMPO treatment prevented insulin resistance and diastolic dysfunction, suggesting that mitochondrial oxidative stress may be involved in the pathophysiology of both conditions.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Cardiomyopathies/diagnostic imaging
- Cardiomyopathies/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diastole
- Diet, High-Fat
- Disease Models, Animal
- Glucose/metabolism
- Glucose Intolerance/metabolism
- Heart Failure, Diastolic/diagnostic imaging
- Heart Failure, Diastolic/metabolism
- Hemodynamics
- Insulin Resistance
- Magnetic Resonance Imaging
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Mitochondria, Heart/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Oxidative Stress
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Cardiovascular Research Center, Lifespan Rhode Island Hospital, Providence, RI The Warren Alpert Medical School, Brown University, Providence, RI Providence Veterans Affairs Medical Center, Providence, RI
| | - Jaehoon Chung
- Section of Cardiology, University of Illinois at Chicago, IL
| | - Hong Liu
- Cardiovascular Research Center, Lifespan Rhode Island Hospital, Providence, RI
| | - Yeongju Go
- The Warren Alpert Medical School, Brown University, Providence, RI
| | - Scott Gladstein
- Section of Cardiology, University of Illinois at Chicago, IL
| | | | - E Douglas Lewandowski
- Center for Cardiovascular Research, University of Illinois at Chicago, IL Department of Physiology and Biophysics, University of Illinois at Chicago, IL
| | - Samuel C Dudley
- Cardiovascular Research Center, Lifespan Rhode Island Hospital, Providence, RI The Warren Alpert Medical School, Brown University, Providence, RI Providence Veterans Affairs Medical Center, Providence, RI
| |
Collapse
|
17
|
Sahraoui A, Dewachter C, de Medina G, Naeije R, Aouichat Bouguerra S, Dewachter L. Myocardial Structural and Biological Anomalies Induced by High Fat Diet in Psammomys obesus Gerbils. PLoS One 2016; 11:e0148117. [PMID: 26840416 PMCID: PMC4740502 DOI: 10.1371/journal.pone.0148117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Psammomys obesus gerbils are particularly prone to develop diabetes and obesity after brief period of abundant food intake. A hypercaloric high fat diet has been shown to affect cardiac function. Here, we sought to determine whether a short period of high fat feeding might alter myocardial structure and expression of calcium handling proteins in this particular strain of gerbils. METHODS Twenty Psammomys obesus gerbils were randomly assigned to receive a normal plant diet (controls) or a high fat diet. At baseline and 16-week later, body weight, plasma biochemical parameters (including lipid and carbohydrate levels) were evaluated. Myocardial samples were collected for pathobiological evaluation. RESULTS Sixteen-week high fat dieting resulted in body weight gain and hyperlipidemia, while levels of carbohydrates remained unchanged. At myocardial level, high fat diet induced structural disorganization, including cardiomyocyte hypertrophy, lipid accumulation, interstitial and perivascular fibrosis and increased number of infiltrating neutrophils. Myocardial expressions of pro-apoptotic Bax-to-Bcl-2 ratio, pro-inflammatory cytokines [interleukin (IL)-1β and tumor necrosis factor (TNF)-α], intercellular (ICAM1) and vascular adhesion molecules (VCAM1) increased, while gene encoding cardiac muscle protein, the alpha myosin heavy polypeptide (MYH6), was downregulated. Myocardial expressions of sarco(endo)plasmic calcium-ATPase (SERCA2) and voltage-dependent calcium channel (Cacna1c) decreased, while protein kinase A (PKA) and calcium-calmodulin-dependent protein kinase (CaMK2D) expressions increased. Myocardial expressions of ryanodine receptor, phospholamban and sodium/calcium exchanger (Slc8a1) did not change. CONCLUSIONS We conclude that a relative short period of high fat diet in Psammomys obesus results in severe alterations of cardiac structure, activation of inflammatory and apoptotic processes, and altered expression of calcium-cycling determinants.
Collapse
Affiliation(s)
- Abdelhamid Sahraoui
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Geoffrey de Medina
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Souhila Aouichat Bouguerra
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Wei J, Nelson MD, Szczepaniak EW, Smith L, Mehta PK, Thomson LEJ, Berman DS, Li D, Bairey Merz CN, Szczepaniak LS. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am J Physiol Heart Circ Physiol 2016; 310:H14-9. [PMID: 26519031 PMCID: PMC4865076 DOI: 10.1152/ajpheart.00612.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022]
Abstract
Women with coronary microvascular dysfunction (CMD) and no obstructive coronary artery disease (CAD) have increased rates of heart failure with preserved ejection fraction (HFpEF). The mechanisms of HFpEF are not well understood. Ectopic fat deposition in the myocardium, termed myocardial steatosis, is frequently associated with diastolic dysfunction in other metabolic diseases. We investigated the prevalence of myocardial steatosis and diastolic dysfunction in women with CMD and subclinical HFpEF. In 13 women, including eight reference controls and five women with CMD and evidence of subclinical HFpEF (left ventricular end-diastolic pressure >12 mmHg), we measured myocardial triglyceride content (TG) and diastolic function, by proton magnetic resonance spectroscopy and magnetic resonance tissue tagging, respectively. When compared with reference controls, women with CMD had higher myocardial TG content (0.83 ± 0.12% vs. 0.43 ± 0.06%; P = 0.025) and lower diastolic circumferential strain rate (168 ± 12 vs. 217 ± 15%/s; P = 0.012), with myocardial TG content correlating inversely with diastolic circumferential strain rate (r = -0.779; P = 0.002). This study provides proof-of-concept that myocardial steatosis may play an important mechanistic role in the development of diastolic dysfunction in women with CMD and no obstructive CAD. Detailed longitudinal studies are warranted to explore specific treatment strategies targeting myocardial steatosis and its effect on diastolic function.
Collapse
Affiliation(s)
- Janet Wei
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California;
| | - Michael D Nelson
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Edward W Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Laura Smith
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Puja K Mehta
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Louise E J Thomson
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel S Berman
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| |
Collapse
|
19
|
Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 2015; 64:3573-87. [PMID: 26109417 PMCID: PMC4587639 DOI: 10.2337/db14-1107] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/14/2015] [Indexed: 11/13/2022]
Abstract
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Genaro A Ramirez-Correa
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| | - Quira Zeidan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nahyr S Lugo-Fagundo
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mingguo Xu
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Viviane Caceres
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Khalid Chakir
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anne M Murphy
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2015; 119:1233-42. [PMID: 26183480 DOI: 10.1152/japplphysiol.00374.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load, and cytokines associated with arterial hypertension, chronic kidney disease, diabetes, and other comorbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood, but may include extracellular matrix changes, vascular dysfunction, as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca(2+) turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound comorbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training, on the other hand, in clinical trials improved exercise tolerance and diastolic function, but did not reduce LVH. Thus current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF.
Collapse
Affiliation(s)
- Frank R Heinzel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany;
| | - Felix Hohendanner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Ge Jin
- Cardiology Department, The Second Affiliated Hospital & YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China; and Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Frank Edelmann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
21
|
Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015; 2015:656795. [PMID: 25973429 PMCID: PMC4417999 DOI: 10.1155/2015/656795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis, hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses. Also, novel experimental models based on genetic modifications of specific related genes have been discussed. The study of specific pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - B. Picatoste
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - A. Gómez-Hernández
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - J. Egido
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - J. Tuñón
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - Ó. Lorenzo
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
22
|
Ren J, Anversa P. The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol 2014; 93:409-17. [PMID: 25541285 DOI: 10.1016/j.bcp.2014.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome is a cluster of risk factors including obesity, dyslipidemia, hypertension, and insulin resistance. A number of theories have been speculated for the pathogenesis of metabolic syndrome including impaired glucose and lipid metabolism, lipotoxicity, oxidative stress, interrupted neurohormonal regulation and compromised intracellular Ca(2+) handling. Recent evidence has revealed that adults with severe growth hormone (GH) and insulin-like growth factor I (IGF-1) deficiency such as Laron syndrome display increased risk of stroke and cardiovascular diseases. IGF-1 signaling may regulate contractility, metabolism, hypertrophy, apoptosis, autophagy, stem cell regeneration and senescence in the heart to maintain cardiac homeostasis. An inverse relationship between plasma IGF-1 levels and prevalence of metabolic syndrome as well as associated cardiovascular complications has been identified, suggesting the clinical promises of IGF-1 analogues or IGF-1 receptor activation in the management of metabolic and cardiovascular diseases. However, the underlying pathophysiological mechanisms between IGF-1 and metabolic syndrome are still poorly understood. This mini-review will discuss the role of IGF-1 signaling cascade in the prevalence of metabolic syndrome in particular the susceptibility to overnutrition and sedentary life style-induced obesity, dyslipidemia, insulin resistance and other features of metabolic syndrome. Special attention will be dedicated in IGF-1-associated changes in cardiac responses in various metabolic syndrome components such as insulin resistance, obesity, hypertension and dyslipidemia. The potential risk of IGF-1 and IGF-1R stimulation such as tumorigenesis is discussed. Therapeutic promises of IGF-1 and IGF-1 analogues including mecasermin, mecasermin rinfabate and PEGylated IGF-1 will be discussed.
Collapse
Affiliation(s)
- Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Piero Anversa
- Departments of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Schooley JF, Namboodiri AMA, Cox RT, Bünger R, Flagg TP. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake. BMC PHYSIOLOGY 2014; 14:12. [PMID: 25488103 PMCID: PMC4274725 DOI: 10.1186/s12899-014-0012-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/24/2014] [Indexed: 02/02/2023]
Abstract
Background There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Results Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1–10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca2+ uptake. Moreover, pretreatment of cells with the mitochondrial Ca2+ uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Conclusions Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca2+ uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.
Collapse
Affiliation(s)
- James F Schooley
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Aryan M A Namboodiri
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University for the Health Sciences, Bethesda, 20814, MD, USA.
| | - Rolf Bünger
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Thomas P Flagg
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| |
Collapse
|
24
|
Mori J, Patel VB, Abo Alrob O, Basu R, Altamimi T, Desaulniers J, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY. Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail 2014; 7:327-39. [PMID: 24389129 DOI: 10.1161/circheartfailure.113.000672] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The angiotensin-converting enzyme 2 and angiotensin-(1-7) (Ang 1-7)/MasR (Mas receptor) axis are emerging as a key pathway that can modulate the development of diabetic cardiomyopathy. We studied the effects of Ang 1-7 on diabetic cardiomyopathy in db/db diabetic mice to elucidate the therapeutic effects and mechanism of action. METHODS AND RESULTS Ang 1-7 was administered to 5-month-old male db/db mice for 28 days via implanted micro-osmotic pumps. Ang 1-7 treatment ameliorated myocardial hypertrophy and fibrosis with normalization of diastolic dysfunction assessed by pressure-volume loop analysis and echocardiography. The functional improvement by Ang 1-7 was accompanied by a reduction in myocardial lipid accumulation and systemic fat mass and inflammation and increased insulin-stimulated myocardial glucose oxidation. Increased myocardial protein kinase C levels and loss of phosphorylation of extracellular signal-regulated kinase 1/2 were prevented by Ang 1-7. Furthermore, Ang 1-7 treatment decreased cardiac triacylglycerol and ceramide levels in db/db mice, concomitantly with an increase in myocardial adipose triglyceride lipase expression. Changes in adipose triglyceride lipase expression correlated with increased SIRT1 (silent mating type information regulation 2 homolog 1) levels and deacetylation of FOXO1 (forkhead box O1). CONCLUSIONS We identified a novel beneficial effect of Ang 1-7 on diabetic cardiomyopathy that involved a reduction in cardiac hypertrophy and lipotoxicity, adipose inflammation, and an upregulation of adipose triglyceride lipase. Ang 1-7 completely rescued the diastolic dysfunction in the db/db model. Ang 1-7 represents a promising therapy for diabetic cardiomyopathy associated with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics, Department of Pharmacology, Mazankowski Alberta Heart Institute, Department of Physiology, and Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy. PLoS One 2013; 8:e82979. [PMID: 24349409 PMCID: PMC3859602 DOI: 10.1371/journal.pone.0082979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM.
Collapse
|
26
|
Jenkins MJ, Pearson JT, Schwenke DO, Edgley AJ, Sonobe T, Fujii Y, Ishibashi-Ueda H, Kelly DJ, Yagi N, Shirai M. Myosin heads are displaced from actin filaments in the in situ beating rat heart in early diabetes. Biophys J 2013; 104:1065-72. [PMID: 23473489 DOI: 10.1016/j.bpj.2013.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic). Diffraction patterns were recorded during baseline and dobutamine infusions simultaneous with ventricular pressure-volumetry. From these diffraction patterns myosin mass transfer to actin filaments was assessed as the change in intensity ratio (I(1,0)/I(1,1)). In diabetic hearts cross-bridge disposition was most notably abnormal in the diastolic phase (p < 0.05) and to a lesser extent the systolic phase (p < 0.05). In diabetic rats only, there was a transmural gradient of contractile depression. Elevated diabetic end-diastolic intensity ratios were correlated with the suppression of diastolic function (p < 0.05). Furthermore, the expected increase in myosin head transfer by dobutamine was significantly blunted in diabetic animals (p < 0.05). Interfilament spacing did not differ between groups. We reveal that impaired cross-bridge disposition and radial transfer may thus underlie the early decline in ventricular function observed in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Mathew J Jenkins
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Botcherby EJ, Corbett A, Burton RAB, Smith CW, Bollensdorff C, Booth MJ, Kohl P, Wilson T, Bub G. Fast measurement of sarcomere length and cell orientation in Langendorff-perfused hearts using remote focusing microscopy. Circ Res 2013; 113:863-70. [PMID: 23899961 DOI: 10.1161/circresaha.113.301704] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Sarcomere length (SL) is a key indicator of cardiac mechanical function, but current imaging technologies are limited in their ability to unambiguously measure and characterize SL at the cell level in intact, living tissue. OBJECTIVE We developed a method for measuring SL and regional cell orientation using remote focusing microscopy, an emerging imaging modality that can capture light from arbitrary oblique planes within a sample. METHODS AND RESULTS We present a protocol that unambiguously and quickly determines cell orientation from user-selected areas in a field of view by imaging 2 oblique planes that share a common major axis with the cell. We demonstrate the effectiveness of the technique in establishing single-cell SL in Langendorff-perfused hearts loaded with the membrane dye di-4-ANEPPS. CONCLUSIONS Remote focusing microscopy can measure cell orientation in complex 2-photon data sets without capturing full z stacks. The technique allows rapid assessment of SL in healthy and diseased heart experimental preparations.
Collapse
|
28
|
Mullins PD, Bondarenko VE. A mathematical model of the mouse ventricular myocyte contraction. PLoS One 2013; 8:e63141. [PMID: 23671664 PMCID: PMC3650013 DOI: 10.1371/journal.pone.0063141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/29/2013] [Indexed: 12/05/2022] Open
Abstract
Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca2+ dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca2+ handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca2+ and troponin. The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model applicability for the experimental studies and model limitations were discussed.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Namekata I, Hamaguchi S, Wakasugi Y, Ohhara M, Hirota Y, Tanaka H. Ellagic acid and gingerol, activators of the sarco-endoplasmic reticulum Ca2+-ATPase, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia. Eur J Pharmacol 2013; 706:48-55. [DOI: 10.1016/j.ejphar.2013.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
30
|
Zalvidea S, André L, Loyer X, Cassan C, Sainte-Marie Y, Thireau J, Sjaastad I, Heymes C, Pasquié JL, Cazorla O, Aimond F, Richard S. ACE inhibition prevents diastolic Ca2+ overload and loss of myofilament Ca2+ sensitivity after myocardial infarction. Curr Mol Med 2012; 12:206-17. [PMID: 22280358 DOI: 10.2174/156652412798889045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 01/14/2023]
Abstract
Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16- PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function.
Collapse
Affiliation(s)
- S Zalvidea
- INSERM U-1046, Université Montpellier1 & Montpellier2, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patel VB, Bodiga S, Basu R, Das SK, Wang W, Wang Z, Lo J, Grant MB, Zhong J, Kassiri Z, Oudit GY. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res 2012; 110:1322-35. [PMID: 22474255 DOI: 10.1161/circresaha.112.268029] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. OBJECTIVE To define the role of ACE2 in diabetic cardiovascular complications. METHODS AND RESULTS We used the well-validated Akita mice, a model of human diabetes, and generated double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2(-/y)). Diabetic state was associated with increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system. CONCLUSIONS Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 2012; 110:841-50. [PMID: 22343711 PMCID: PMC3314887 DOI: 10.1161/circresaha.111.258251] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/09/2012] [Indexed: 01/19/2023]
Abstract
RATIONALE Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (I(Na)), reducing the net cytosolic Ca(2+) efflux. OBJECTIVE Oxidative stress in the DOCA-salt model may increase late I(Na), resulting in diastolic dysfunction amenable to treatment with ranolazine. METHODS AND RESULTS Echocardiography detected evidence of diastolic dysfunction in hypertensive mice that improved after treatment with ranolazine (E/E':sham, 31.9 ± 2.8, sham+ranolazine, 30.2 ± 1.9, DOCA-salt, 41.8 ± 2.6, and DOCA-salt+ranolazine, 31.9 ± 2.6; P=0.018). The end-diastolic pressure-volume relationship slope was elevated in DOCA-salt mice, improving to sham levels with treatment (sham, 0.16 ± 0.01 versus sham+ranolazine, 0.18 ± 0.01 versus DOCA-salt, 0.23 ± 0.2 versus DOCA-salt+ranolazine, 0.17 ± 0.0 1 mm Hg/L; P<0.005). DOCA-salt myocytes demonstrated impaired relaxation, τ, improving with ranolazine (DOCA-salt, 0.18 ± 0.02, DOCA-salt+ranolazine, 0.13 ± 0.01, sham, 0.11 ± 0.01, sham+ranolazine, 0.09 ± 0.02 seconds; P=0.0004). Neither late I(Na) nor the Ca(2+) transients were different from sham myocytes. Detergent extracted fiber bundles from DOCA-salt hearts demonstrated increased myofilament response to Ca(2+) with glutathionylation of myosin binding protein C. Treatment with ranolazine ameliorated the Ca(2+) response and cross-bridge kinetics. CONCLUSIONS Diastolic dysfunction could be reversed by ranolazine, probably resulting from a direct effect on myofilaments, indicating that cardiac oxidative stress may mediate diastolic dysfunction through altering the contractile apparatus.
Collapse
Affiliation(s)
- Joshua D. Lovelock
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Michelle M. Monasky
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Euy-Myoung Jeong
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| | - Harvey A. Lardin
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| | - Hong Liu
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| | - Bindiya G. Patel
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Domenico M. Taglieri
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Lianzhi Gu
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| | - Praveen Kumar
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| | - Narayan Pokhrel
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| | | | | | - Dan Sorescu
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - R. John Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Samuel C. Dudley
- Section of Cardiology, University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
33
|
Cheng Y, Li W, McElfresh TA, Chen X, Berthiaume JM, Castel L, Yu X, Van Wagoner DR, Chandler MP. Changes in myofilament proteins, but not Ca²⁺ regulation, are associated with a high-fat diet-induced improvement in contractile function in heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H1438-46. [PMID: 21765056 DOI: 10.1152/ajpheart.00440.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pathological conditions such as diabetes, insulin resistance, and obesity are characterized by elevated plasma and myocardial lipid levels and have been reported to exacerbate the progression of heart failure (HF). Alterations in cardiomyocyte Ca(2+) regulatory properties and myofilament proteins have also been implicated in contractile dysfunction in HF. However, our prior studies reported that high saturated fat (SAT) feeding improves in vivo myocardial contractile function, thereby exerting a cardioprotective effect in HF. Therefore, we hypothesized that SAT feeding improves contractile function by altering Ca(2+) regulatory properties and myofilament protein expression in HF. Male Wistar rats underwent coronary artery ligation (HF) or sham surgery (SH) and were fed normal chow (SHNC and HFNC groups) or a SAT diet (SHSAT and HFSAT groups) for 8 wk. Contractile properties were measured in vivo [echocardiography and left ventricular (LV) cannulation] and in isolated LV cardiomyocytes. In vivo measures of contractility (peak LV +dP/dt and -dP/dt) were depressed in the HFNC versus SHNC group but improved in the HFSAT group. Isolated cardiomyocytes from both HF groups were hypertrophied and had decreased percent cell shortening and a prolonged time to half-decay of the Ca(2+) transient versus the SH group; however, SAT feeding reduced in vivo myocyte hypertrophy in the HFSAT group only. The peak velocity of cell shortening was reduced in the HFNC group but not the HFSAT group and was positively correlated with in vivo contractile function (peak LV +dP/dt). The HFNC group demonstrated a myosin heavy chain (MHC) isoform switch from fast MHC-α to slow MHC-β, which was prevented in the HFSAT group. Alterations in Ca(2+) transients, L-type Ca(2+) currents, and protein expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase and phosphorylated phospholamban could not account for the changes in the in vivo contractile properties. In conclusion, the cardioprotective effects associated with SAT feeding in HF may occur at the level of the isolated cardiomyocyte, specifically involving changes in myofilament function but not sarcoplasmic reticulum Ca(2+) regulatory properties.
Collapse
Affiliation(s)
- Y Cheng
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reed AL, Tanaka A, Sorescu D, Liu H, Jeong EM, Sturdy M, Walp ER, Dudley SC, Sutliff RL. Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol 2011; 301:H824-31. [PMID: 21724869 DOI: 10.1152/ajpheart.00407.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diastolic heart failure is a major cause of mortality in the elderly population. It is often preceded by diastolic dysfunction, which is characterized by impaired active relaxation and increased stiffness. We tested the hypothesis that senescence-prone (SAMP8) mice would develop diastolic dysfunction compared with senescence-resistant controls (SAMR1). Pulsed-wave Doppler imaging of the ratio of blood flow velocity through the mitral valve during early (E) vs. late (A) diastole was reduced from 1.3 ± 0.03 in SAMR1 mice to 1.2 ± 0.03 in SAMP8 mice (P < 0.05). Tissue Doppler imaging of the early (E') and late (A') diastolic mitral annulus velocities found E' reduced from 25.7 ± 0.9 mm/s in SAMR1 to 21.1 ± 0.8 mm/s in SAMP8 mice and E'/A' similarly reduced from 1.1 ± 0.02 to 0.8 ± 0.03 in SAMR1 vs. SAMP8 mice, respectively (P < 0.05). Invasive hemodynamics revealed an increased slope of the end-diastolic pressure-volume relationship (0.5 ± 0.05 vs. 0.8 ± 0.14; P < 0.05), indicating increased left ventricular chamber stiffness. There were no differences in systolic function or mean arterial pressure; however, diastolic dysfunction was accompanied by increased fibrosis in the hearts of SAMP8 mice. In SAMR1 vs. SAMP8 mice, interstitial collagen area increased from 0.3 ± 0.04 to 0.8 ± 0.09% and perivascular collagen area increased from 1.0 ± 0.11 to 1.6 ± 0.14%. Transforming growth factor-β and connective tissue growth factor gene expression were increased in the hearts of SAMP8 mice (P < 0.05 for all data). In summary, SAMP8 mice show increased fibrosis and diastolic dysfunction similar to those seen in humans with aging and may represent a suitable model for future mechanistic studies.
Collapse
Affiliation(s)
- Alana L Reed
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
King NMP, Methawasin M, Nedrud J, Harrell N, Chung CS, Helmes M, Granzier H. Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells. ACTA ACUST UNITED AC 2011; 137:81-91. [PMID: 21187335 PMCID: PMC3010058 DOI: 10.1085/jgp.201010499] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A carbon fiber-based cell attachment and force measurement system was used to measure the diastolic stress-sarcomere length (SL) relation of mouse intact cardiomyocytes, before and after the addition of actomyosin inhibitors (2,3-butanedione monoxime [BDM] or blebbistatin). Stress was measured during the diastolic interval of twitching myocytes that were stretched at 100% base length/second. Diastolic stress increased close to linear from 0 at SL 1.85 µm to 4.2 mN/mm(2) at SL 2.1 µm. The actomyosin inhibitors BDM and blebbistatin significantly lowered diastolic stress by ∼1.5 mN/mm(2) (at SL 2.1 µm, ∼30% of total), suggesting that during diastole actomyosin interaction is not fully switched off. To test this further, calcium sensitivity of skinned myocytes was studied under conditions that simulate diastole: 37°C, presence of Dextran T500 to compress the myofilament lattice to the physiological level, and [Ca(2+)] from below to above 100 nM. Mean active stress was significantly increased at [Ca(2+)] > 55 nM (pCa 7.25) and was ∼0.7 mN/mm(2) at 100 nM [Ca(2+)] (pCa 7.0) and ∼1.3 mN/mm(2) at 175 nM Ca(2+) (pCa 6.75). Inhibiting active stress in intact cells attached to carbon fibers at their resting SL and stretching the cells while first measuring restoring stress (pushing outward) and then passive stress (pulling inward) made it possible to determine the passive cell's mechanical slack SL as ∼1.95 µm and the restoring stiffness and passive stiffness of the cells around the slack SL each as ∼17 mN/mm(2)/µm/SL. Comparison between the results of intact and skinned cells shows that titin is the main contributor to restoring stress and passive stress of intact cells, but that under physiological conditions, calcium sensitivity is sufficiently high for actomyosin interaction to contribute to diastolic stress. These findings are relevant for understanding diastolic function and for future studies of diastolic heart failure.
Collapse
Affiliation(s)
- Nicholas M P King
- Department of Physiology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA. granzier@email.arizona.edu
| | | | | | | | | | | | | |
Collapse
|
36
|
Ceylan-Isik AF, Sreejayan N, Ren J. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J Mol Cell Cardiol 2011; 50:107-16. [PMID: 21035453 PMCID: PMC3018539 DOI: 10.1016/j.yjmcc.2010.10.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated with TUDCA (50mg/kg/day, p.o.) or vehicle for 5 weeks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed. Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity and protein expression of intracellular Ca(2+) regulatory proteins were measured using (45)Ca(2+) uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lowered systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca(2+) properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decrease in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
37
|
Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010; 88:993-1001. [PMID: 20725711 DOI: 10.1007/s00109-010-0663-9] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 12/23/2022]
Abstract
The metabolic syndrome is a constellation of metabolic disorders including obesity, hypertension, and insulin resistance, components which are risk factors for the development of diabetes, hypertension, cardiovascular, and renal disease. Pathophysiological abnormalities that contribute to the development of the metabolic syndrome include impaired mitochondrial oxidative phosphorylation and mitochondrial biogenesis, dampened insulin metabolic signaling, endothelial dysfunction, and associated myocardial functional abnormalities. Recent evidence suggests that impaired myocardial mitochondrial biogenesis, fatty acid metabolism, and antioxidant defense mechanisms lead to diminished cardiac substrate flexibility, decreased cardiac energetic efficiency, and diastolic dysfunction. In addition, enhanced activation of the renin-angiotensin-aldosterone system and associated increases in oxidative stress can lead to mitochondrial apoptosis and degradation, altered bioenergetics, and accumulation of lipids in the heart. In addition to impairments in metabolic signaling and oxidative stress, genetic and environmental factors, aging, and hyperglycemia all contribute to reduced mitochondrial biogenesis and mitochondrial dysfunction. These mitochondrial abnormalities can predispose a metabolic cardiomyopathy characterized by diastolic dysfunction. Mitochondrial dysfunction and resulting lipid accumulation in skeletal muscle, liver, and pancreas also impede insulin metabolic signaling and glucose metabolism, ultimately leading to a further increase in mitochondrial dysfunction. Interventions to improve mitochondrial function have been shown to correct insulin metabolic signaling and other metabolic and cardiovascular abnormalities. This review explores mechanisms of mitochondrial dysfunction with a focus on impaired oxidative phosphorylation and mitochondrial biogenesis in the pathophysiology of metabolic heart disease.
Collapse
Affiliation(s)
- Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
38
|
What we know and do not know about sex and cardiac disease. J Biomed Biotechnol 2010; 2010:562051. [PMID: 20445744 PMCID: PMC2860154 DOI: 10.1155/2010/562051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/16/2010] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the single leading cause of death in both men and women. A large proportion of the population with CVD will die with a diagnosis of congestive heart failure (CHF). It is becoming increasingly recognized that sex differences exist in the etiology, development, and outcome of CHF. For example, compared to male counterparts, women that present with CHF are typically older and have systolic cardiac function that is not impaired. Despite a growing body of literature addressing the underlying mechanisms of sex dimorphisms in cardiac disease, there remain significant inconsistencies reported in these studies. Given that the development of CHF results from the complex integration of genetic and nongenetic cues, it is not surprising that the elucidation and subsequent identification of molecular mechanisms remains unclear. In this review, key aspects of sex differences in CVD and CHF will be highlighted with an emphasis on some of the unanswered questions regarding these differences. The contention is presented that it becomes critical to reference cellular mechanisms within the context of each sex to better understand these sex dimorphisms.
Collapse
|
39
|
Abstract
Diabetic cardiomyopathy increases the risk of heart failure in individuals with diabetes, independently of co-existing coronary artery disease and hypertension. The underlying mechanisms for this cardiac complication are incompletely understood. Research on rodent models of type 1 and type 2 diabetes, and the use of genetic engineering techniques in mice, have greatly advanced our understanding of the molecular mechanisms responsible for human diabetic cardiomyopathy. The adaptation of experimental techniques for the investigation of cardiac physiology in mice now allows comprehensive characterization of these models. The focus of the present review will be to discuss selected rodent models that have proven to be useful in studying the underlying mechanisms of human diabetic cardiomyopathy, and to provide an overview of the characteristics of these models for the growing number of investigators who seek to understand the pathology of diabetes-related heart disease.
Collapse
Affiliation(s)
- Heiko Bugger
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
40
|
Haim TE, Wang W, Flagg TP, Tones MA, Bahinski A, Numann RE, Nichols CG, Nerbonne JM. Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents. J Mol Cell Cardiol 2009; 48:395-405. [PMID: 19857498 DOI: 10.1016/j.yjmcc.2009.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/12/2009] [Accepted: 10/05/2009] [Indexed: 02/08/2023]
Abstract
There is considerable evidence to support a role for lipotoxicity in the development of diabetic cardiomyopathy, although the molecular links between enhanced saturated fatty acid uptake/metabolism and impaired cardiac function are poorly understood. In the present study, the effects of acute exposure to the saturated fatty acid, palmitate, on myocardial contractility and excitability were examined directly. Exposure of isolated (adult mouse) ventricular myocytes to palmitate, complexed to bovine serum albumin (palmitate:BSA) as in blood, rapidly reduced (by 54+/-4%) mean (+/-SEM) unloaded fractional cell shortening. The amplitudes of intracellular Ca(2+) transients decreased in parallel. Current-clamp recordings revealed that exposure to palmitate:BSA markedly shortened action potential durations at 20%, 50%, and 90% repolarization. These effects were reversible and were occluded when the K(+) in the recording pipettes was replaced with Cs(+), suggesting a direct effect on repolarizing K(+) currents. Indeed, voltage-clamp recordings revealed that palmitate:BSA reversibly and selectively increased peak outward voltage-gated K(+) (Kv) current amplitudes by 20+/-2%, whereas inwardly rectifying K(+) (Kir) currents and voltage-gated Ca(2+) currents were unaffected. Further analyses revealed that the individual Kv current components I(to,f), I(K,slow) and I(ss), were all increased (by 12+/-2%, 37+/-4%, and 34+/-4%, respectively) in cells exposed to palmitate:BSA. Consistent with effects on both components of I(K,slow) (I(K,slow1) and I(K,slow)(2)) the magnitude of the palmitate-induced increase was attenuated in ventricular myocytes isolated from animals in which the Kv1.5 (I(K,slow)(1)) or the Kv2.1 (I(K,slow)(2)) locus was disrupted and I(K,slow)(1) or I(K,slow2) is eliminated. Both the enhancement of I(K,slow) and the negative inotropic effect of palmitate:BSA were reduced in the presence of the Kv1.5 selective channel blocker, diphenyl phosphine oxide-1 (DPO-1).Taken together, these results suggest that elevations in circulating saturated free fatty acids, as occurs in diabetes, can directly augment repolarizing myocardial Kv currents and impair excitation-contraction coupling.
Collapse
Affiliation(s)
- Todd E Haim
- Pfizer Global Research and Development, Chesterfield, MO 63017, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol 2009; 297:H2096-108. [PMID: 19801494 DOI: 10.1152/ajpheart.00452.2009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetic cardiomyopathy is an important contributor to diastolic and systolic heart failure. We examined the nature and mechanism of the cardiomyopathy in Akita (Ins2(WT/C96Y)) mice, a model of genetic nonobese type 1 diabetes that recapitulates human type 1 diabetes. Cardiac function was evaluated in male Ins2WT/C96Y and their littermate control (Ins2WT/WT) mice using echocardiography and tissue Doppler imaging, in vivo hemodynamic measurements, as well as ex vivo working heart preparation. At 3 and 6 mo of age, Ins2WT/C96Y mice exhibited preserved cardiac systolic function compared with Ins2WT/WT mice, as evaluated by ejection fraction, fractional shortening, left ventricular (LV) end-systolic pressure and maximum rate of increase in LV pressure in vivo, cardiac work, cardiac power, and rate-pressure product ex vivo. Despite the unaltered systolic function, Ins2WT/C96Y mice exhibited significant and progressive diastolic dysfunction at 3 and 6 mo of age compared with Ins2WT/WT mice as assessed by tissue and pulse Doppler imaging (E-wave velocity, isovolumetric relaxation time) and by in vivo hemodynamic measurements (LV end-diastolic pressure, time constant of LV relaxation, and maximum rate of decrease in LV pressure). We found no evidence of myocardial hypertrophy or fibrosis in the Ins2WT/C96Y myocardium. Consistent with the lack of fibrosis, expression of procollagen-alpha type I, procollagen-alpha type III, and fibronectin were not increased in these hearts. Ins2WT/C96Y hearts showed significantly reduced sarcoplasmic reticulum Ca2+-ATPase 2a (cardiac sarcoplasmic reticulum Ca2+ pump) levels, elevated beta-myosin heavy chain isoform, increased long-chain fatty acids, and triacylglycerol with evidence of lipotoxicity, as indicated by a significant rise in ceramide, diacylglycerol, and lipid deposits in the myocardium. Consistent with metabolic perturbation, and a switch to fatty acid oxidation from glucose oxidation in Ins2WT/C96Y hearts, expression of mitochondrial long-chain acyl-CoA dehydrogenase and pyruvate dehydrogenase kinase isoform 4 were increased. Insulin treatment reversed the diastolic dysfunction, the elevated B-type natriuretic peptide and beta-myosin heavy chain, and the reduced sarcoplasmic reticulum Ca2+-ATPase 2a levels with abolition of cardiac lipotoxicity. We conclude that early type 1 diabetic cardiomyopathy is characterized by diastolic dysfunction associated with lipotoxic cardiomyopathy with preserved systolic function in the absence of interstitial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Ratnadeep Basu
- Department of Physiology, Rm 474, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Borbély A, van Heerebeek L, Paulus WJ. Transcriptional and posttranslational modifications of titin: implications for diastole. Circ Res 2009; 104:12-4. [PMID: 19118283 DOI: 10.1161/circresaha.108.191130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Borbély A, Falcao-Pires I, van Heerebeek L, Hamdani N, Edes I, Gavina C, Leite-Moreira AF, Bronzwaer JGF, Papp Z, van der Velden J, Stienen GJM, Paulus WJ. Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 2009; 104:780-6. [PMID: 19179657 DOI: 10.1161/circresaha.108.193326] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High diastolic stiffness of failing myocardium results from interstitial fibrosis and elevated resting tension (F(passive)) of cardiomyocytes. A shift in titin isoform expression from N2BA to N2B isoform, lower overall phosphorylation of titin, and a shift in titin phosphorylation from N2B to N2BA isoform can raise F(passive) of cardiomyocytes. In left ventricular biopsies of heart failure (HF) patients, aortic stenosis (AS) patients, and controls (CON), we therefore related F(passive) of isolated cardiomyocytes to expression of titin isoforms and to phosphorylation of titin and titin isoforms. Biopsies were procured by transvascular technique (44 HF, 3 CON), perioperatively (25 AS, 4 CON), or from explanted hearts (4 HF, 8 CON). None had coronary artery disease. Isolated, permeabilized cardiomyocytes were stretched to 2.2-microm sarcomere length to measure F(passive). Expression and phosphorylation of titin isoforms were analyzed using gel electrophoresis with ProQ Diamond and SYPRO Ruby stains and reported as ratio of titin (N2BA/N2B) or of phosphorylated titin (P-N2BA/P-N2B) isoforms. F(passive) was higher in HF (6.1+/-0.4 kN/m(2)) than in CON (2.3+/-0.3 kN/m(2); P<0.01) or in AS (2.2+/-0.2 kN/m(2); P<0.001). Titin isoform expression differed between HF (N2BA/N2B=0.73+/-0.06) and CON (N2BA/N2B=0.39+/-0.05; P<0.001) and was comparable in HF and AS (N2BA/N2B=0.59+/-0.06). Overall titin phosphorylation was also comparable in HF and AS, but relative phosphorylation of the stiff N2B titin isoform was significantly lower in HF (P-N2BA/P-N2B=0.77+/-0.05) than in AS (P-N2BA/P-N2B=0.54+/-0.05; P<0.01). Relative hypophosphorylation of the stiff N2B titin isoform is a novel mechanism responsible for raised F(passive) of human HF cardiomyocytes.
Collapse
Affiliation(s)
- Attila Borbély
- Laboratory of Physiology, VU University Medical Center Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|