1
|
Lu H, Peng Z, Zheng Z, Li C, Wang Y, Liang L, Chen Y, Zeng K. Blocking the ATR-SerRS-VEGFA pathway targets angiogenesis for UV-induced cutaneous squamous cell carcinoma. Mol Carcinog 2024; 63:1160-1173. [PMID: 38695641 DOI: 10.1002/mc.23716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, with an escalating incidence rate and a notable potential (up to 5%) for metastasis. Ultraviolet radiation (UVA and UVB) exposure is the primary risk factor for cSCC carcinogenesis, with literature suggesting ultraviolet radiation (UVR) promotes vascular endothelial growth factor A (VEGFA) expression. This study aims to investigate UVR-induced upregulation of VEGFA and explore combination therapeutic strategies. The skin squamous cell carcinoma cell line A431 was exposed to specific durations of ultraviolet radiation. The effect of emodin on ATR/SerRS/VEGFA pathway was observed. The cell masses were also transplanted subcutaneously into mice (n = 8). ATR inhibitor combined with emodin was used to observe the growth and angiogenesis of the xenografts. The results showed that UV treatment significantly enhanced the phosphorylation of SerRS and the expression level of VEGFA in A431 cells (p < 0.05). Treatment with emodin significantly inhibited this expression (p < 0.05), and the combination of emodin and ATR inhibitor further enhanced the inhibitory effect (p < 0.05). This phenomenon was further confirmed in the xenograft model, which showed that the combination of ATR inhibitor and emodin significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.05), thus showing an inhibitory effect on cSCC. This study innovatively reveals the molecular mechanism of UV-induced angiogenesis in cSCC and confirms SerRS as a novel target to inhibit cSCC angiogenesis and progression in vitro and in vivo studies.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhangsong Peng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohui Zheng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youyi Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liuping Liang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxiang Chen
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Dulic M, Godinic-Mikulcic V, Kekez M, Evic V, Rokov-Plavec J. Protein-Protein Interactions of Seryl-tRNA Synthetases with Emphasis on Human Counterparts and Their Connection to Health and Disease. Life (Basel) 2024; 14:124. [PMID: 38255739 PMCID: PMC10817482 DOI: 10.3390/life14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging.
Collapse
Affiliation(s)
| | | | | | | | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.D.); (V.G.-M.); (M.K.); (V.E.)
| |
Collapse
|
3
|
Wang S, Liu S, Zhu Y, Zhang B, Yang Y, Li L, Sun Y, Zhang L, Fan L, Hu X, Huang C. A novel and independent survival prognostic model for OSCC: the functions and prognostic values of RNA-binding proteins. Eur Arch Otorhinolaryngol 2024; 281:397-409. [PMID: 37656222 DOI: 10.1007/s00405-023-08200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients. METHODS Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO). RESULTS Nine RBPs' signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis. CONCLUSIONS Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.
Collapse
Affiliation(s)
- Shanshan Wang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shuang Liu
- Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yaomin Zhu
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Baorong Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yongtao Yang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Limei Li
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yingying Sun
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Long Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Xuegang Hu
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Chunyu Huang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
- Medical Affairs Department, University of Chinese Academy of Sciences-Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
4
|
Hu Q, Tong Z, Yalikong A, Ge LP, Shi Q, Du X, Wang P, Liu XY, Zhan W, Gao X, Sun D, Fu T, Ye D, Fan C, Liu J, Zhong YS, Jiang YZ, Gu H. DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance. Nat Chem 2024; 16:122-131. [PMID: 37710046 DOI: 10.1038/s41557-023-01328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Biomarker discovery is essential for the understanding, diagnosis, targeted therapy and prognosis assessment of malignant diseases. However, it remains a huge challenge due to the lack of sensitive methods to identify disease-specific rare molecules. Here we present MORAC, molecular recognition based on affinity and catalysis, which enables the effective identification of candidate biomarkers with low abundance. MORAC relies on a class of DNAzymes, each cleaving a sole RNA linkage embedded in their DNA chain upon specifically sensing a complex system with no prior knowledge of the system's molecular content. We show that signal amplification from catalysis ensures the DNAzymes high sensitivity (for target probing); meanwhile, a simple RNA-to-DNA mutation can shut down their RNA cleavage ability and turn them into a pure affinity tool (for target pulldown). Using MORAC, we identify previously unknown, low-abundance candidate biomarkers with clear clinical value, including apolipoprotein L6 in breast cancer and seryl-tRNA synthetase 1 in polyps preceding colon cancer.
Collapse
Affiliation(s)
- Qinqin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China
| | - Zongxuan Tong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ayimukedisi Yalikong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Ge
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Shi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Du
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wuqiang Zhan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Gao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Sun
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunhai Fan
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Jie Liu
- Department of Digestive Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun-Shi Zhong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongzhou Gu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Philibert R, Dogan TK, Knight S, Ahmad F, Lau S, Miles G, Knowlton KU, Dogan MV. Validation of an Integrated Genetic-Epigenetic Test for the Assessment of Coronary Heart Disease. J Am Heart Assoc 2023; 12:e030934. [PMID: 37982274 PMCID: PMC10727271 DOI: 10.1161/jaha.123.030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) is the leading cause of death in the world. Unfortunately, many of the key diagnostic tools for CHD are insensitive, invasive, and costly; require significant specialized infrastructure investments; and do not provide information to guide postdiagnosis therapy. In prior work using data from the Framingham Heart Study, we provided in silico evidence that integrated genetic-epigenetic tools may provide a new avenue for assessing CHD. METHODS AND RESULTS In this communication, we use an improved machine learning approach and data from 2 additional cohorts, totaling 449 cases and 2067 controls, to develop a better model for ascertaining symptomatic CHD. Using the DNA from the 2 new cohorts, we translate and validate the in silico findings into an artificial intelligence-guided, clinically implementable method that uses input from 6 methylation-sensitive digital polymerase chain reaction and 10 genotyping assays. Using this method, the overall average area under the curve, sensitivity, and specificity in the 3 test cohorts is 82%, 79%, and 76%, respectively. Analysis of targeted cytosine-phospho-guanine loci shows that they map to key risk pathways involved in atherosclerosis that suggest specific therapeutic approaches. CONCLUSIONS We conclude that this scalable integrated genetic-epigenetic approach is useful for the diagnosis of symptomatic CHD, performs favorably as compared with many existing methods, and may provide personalized insight to CHD therapy. Furthermore, given the dynamic nature of DNA methylation and the ease of methylation-sensitive digital polymerase chain reaction methodologies, these findings may pave a pathway for precision epigenetic approaches for monitoring CHD treatment response.
Collapse
Affiliation(s)
- Robert Philibert
- Cardio Diagnostics IncChicagoILUSA
- Department of PsychiatryUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIAUSA
| | | | - Stacey Knight
- Intermountain Heart Institute, Intermountain HealthcareSalt Lake CityUTUSA
- Department of Internal MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of IowaIowa CityIAUSA
| | - Stanley Lau
- Southern California Heart CentersSan GabrielCAUSA
| | - George Miles
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Kirk U. Knowlton
- Intermountain Heart Institute, Intermountain HealthcareSalt Lake CityUTUSA
| | - Meeshanthini V. Dogan
- Cardio Diagnostics IncChicagoILUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIAUSA
| |
Collapse
|
6
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
7
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Verdura E, Senger B, Raspall-Chaure M, Schlüter A, Launay N, Ruiz M, Casasnovas C, Rodriguez-Palmero A, Macaya A, Becker HD, Pujol A. Loss of seryl-tRNA synthetase ( SARS1) causes complex spastic paraplegia and cellular senescence. J Med Genet 2022; 59:1227-1233. [PMID: 36041817 PMCID: PMC9691831 DOI: 10.1136/jmg-2022-108529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miquel Raspall-Chaure
- Pediatric Neurology Research Group, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain,Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035, Barcelona, Catalonia, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Agustí Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Pediatrics, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain,Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035, Barcelona, Catalonia, Spain,Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Catalonia, Spain
| | | | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Zhang F, Zeng QY, Xu H, Xu AN, Liu DJ, Li NZ, Chen Y, Jin Y, Xu CH, Feng CZ, Zhang YL, Liu D, Liu N, Xie YY, Yu SH, Yuan H, Xue K, Shi JY, Liu TX, Xu PF, Zhao WL, Zhou Y, Wang L, Huang QH, Chen Z, Chen SJ, Zhou XL, Sun XJ. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discov 2021; 7:98. [PMID: 34697290 PMCID: PMC8547220 DOI: 10.1038/s41421-021-00332-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.
Collapse
Affiliation(s)
- Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Ning Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dian-Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Zhe Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chang-Zhou Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yin-Yin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yuan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yi Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xi Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Fei Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiu-Hua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Zou Y, Yang Y, Fu X, He X, Liu M, Zong T, Li X, Htet Aung L, Wang Z, Yu T. The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:372-387. [PMID: 34484863 PMCID: PMC8399643 DOI: 10.1016/j.omtn.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are widely found in organisms, which can activate amino acids and make them bind to tRNA through ester bond to form the corresponding aminoyl-tRNA. The classic function of ARS is to provide raw materials for protein biosynthesis. Recently, emerging evidence demonstrates that ARSs play critical roles in controlling inflammation, immune responses, and tumorigenesis as well as other important physiological and pathological processes. With the recent development of genome and exon sequencing technology, as well as the discovery of new clinical cases, ARSs have been reported to be closely associated with a variety of cardiovascular diseases (CVDs), particularly angiogenesis and cardiomyopathy. Intriguingly, aminoacylation was newly identified and reported to modify substrate proteins, thereby regulating protein activity and functions. Sensing the availability of intracellular amino acids is closely related to the regulation of a variety of cell physiology. In this review, we summarize the research progress on the mechanism of CVDs caused by abnormal ARS function and introduce the clinical phenotypes and characteristics of CVDs related to ARS dysfunction. We also highlight the potential roles of aminoacylation in CVDs. Finally, we discuss some of the limitations and challenges of present research. The current findings suggest the significant roles of ARSs involved in the progress of CVDs, which present the potential clinical values as novel diagnostic and therapeutic targets in CVD treatment.
Collapse
Affiliation(s)
- Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Lynn Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| |
Collapse
|
12
|
Yu B, Zhu HD, Shi XL, Chen PP, Sun XM, Xia GY, Fang M, Zhong YX, Tang XL, Zhang T, Pan HT. iTRAQ-based quantitative proteomic analysis of thoracic aortas from adult rats born to preeclamptic dams. Clin Proteomics 2021; 18:22. [PMID: 34418970 PMCID: PMC8379584 DOI: 10.1186/s12014-021-09327-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Preeclampsia and gestational hypertension can cause vascular function impairment in offspring. In our previous work, we described the protein expression profiles of umbilical artery tissues from patients with preeclampsia. Methods To gain insights into the mechanisms of vascular dysfunction in adult rats born to preeclamptic dams, we analyzed thoracic aorta tissues by using iTRAQ isobaric tags and 2D nano LC-MS/MS. Results By using the iTRAQ method, we analyzed 1825 proteins, of which 106 showed significantly different expression in the thoracic aortic. Ingenuity pathway analysis (IPA) showed that the majority of differentially expressed proteins (DEPs) were associated with cardiovascular function. Further analysis indicated that glucose-6-phosphate dehydrogenase (G6PD), which is inhibited by miR-423-5p and activated by TP53, had the strongest effect on cardiovascular function. The expression of G6PD was upregulated in thoracic aorta tissues, as confirmed by Western blotting. The expression of two other vascular function-related proteins, cysteine- and glycine-rich protein 2 (CSRP2) and tubulin alpha-4 A (TUBA4A), was upregulated, as demonstrated by mass spectrometry (MS). Conclusions Although the results require further functional validation, these data provide novel findings related to vascular function impairment in the adult offspring of preeclamptic mothers. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09327-9.
Collapse
Affiliation(s)
- Bin Yu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Hong-Dan Zhu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiao-Liang Shi
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Pan-Pan Chen
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiang-Mei Sun
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Gui-Yu Xia
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Min Fang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yong-Xing Zhong
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiao-Li Tang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| | - Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
13
|
Lee YR, Kim SH, Ben-Mahmoud A, Kim OH, Choi TI, Lee KH, Ku B, Eum J, Kee Y, Lee S, Cha J, Won D, Lee ST, Choi JR, Lee JS, Kim HD, Kim HG, Bonkowsky JL, Kang HC, Kim CH. Eif2b3 mutants recapitulate phenotypes of vanishing white matter disease and validate novel disease alleles in zebrafish. Hum Mol Genet 2021; 30:331-342. [PMID: 33517449 DOI: 10.1093/hmg/ddab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Leukodystrophy with vanishing white matter (VWM), also called Childhood Ataxia with Central Nervous System Hypomyelination, is caused by mutations in the subunits of the eukaryotic translation initiation factor, EIF2B1, EIF2B2, EIF2B3, EIF2B4 or EIF2B5. However, little is known regarding the underlying pathogenetic mechanisms, and there is no curative treatment for VWM. In this study, we established the first EIF2B3 animal model for VWM disease in vertebrates by CRISPR mutagenesis of the highly conserved zebrafish ortholog eif2b3. Using CRISPR, we generated two mutant alleles in zebrafish eif2b3, 10- and 16-bp deletions, respectively. The eif2b3 mutants showed defects in myelin development and glial cell differentiation, and increased expression of genes in the induced stress response pathway. Interestingly, we also found ectopic angiogenesis and increased VEGF expression. Ectopic angiogenesis in the eif2b3 mutants was reduced by the administration of VEGF receptor inhibitor SU5416. Using the eif2b3 mutant zebrafish model together with in silico protein modeling analysis, we demonstrated the pathogenicity of 18 reported mutations in EIF2B3, as well as of a novel variant identified in a 19-month-old female patient: c.503 T > C (p.Leu168Pro). In summary, our zebrafish mutant model of eif2b3 provides novel insights into VWM pathogenesis and offers rapid functional analysis of human EIF2B3 gene variants.
Collapse
Affiliation(s)
- Yu-Ri Lee
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Se Hee Kim
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Bonsu Ku
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Juneyong Eum
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Korea
| | - Yun Kee
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Jihoon Cha
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - DongJu Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Heung Dong Kim
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine and Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Hoon-Chul Kang
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Shi Y, Liu Z, Zhang Q, Vallee I, Mo Z, Kishi S, Yang XL. Phosphorylation of seryl-tRNA synthetase by ATM/ATR is essential for hypoxia-induced angiogenesis. PLoS Biol 2020; 18:e3000991. [PMID: 33351793 PMCID: PMC7755189 DOI: 10.1371/journal.pbio.3000991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Hypoxia-induced angiogenesis maintains tissue oxygen supply and protects against ischemia but also enhances tumor progression and malignancy. This is mediated through activation of transcription factors like hypoxia-inducible factor 1 (HIF-1) and c-Myc, yet the impact of hypoxia on negative regulators of angiogenesis is unknown. During vascular development, seryl-tRNA synthetase (SerRS) regulates angiogenesis through a novel mechanism by counteracting c-Myc and transcriptionally repressing vascular endothelial growth factor A (VEGFA) expression. Here, we reveal that the transcriptional repressor role of SerRS is inactivated under hypoxia through phosphorylation by ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and RAD3-related (ATR) at Ser101 and Ser241 to attenuate its DNA binding capacity. In zebrafish, SerRSS101D/S241D, a phosphorylation-mimicry mutant, cannot suppress VEGFA expression to support normal vascular development. Moreover, expression of SerRSS101A/S241A, a phosphorylation-deficient and constitutively active mutant, prevents hypoxia-induced binding of c-Myc and HIF-1 to the VEGFA promoter, and activation of VEGFA expression. Consistently, SerRSS101A/S241A strongly inhibits normal and tumor-derived angiogenesis in mice. Therefore, we reveal a key step regulating hypoxic angiogenesis and highlight the importance of nuclear SerRS in post-developmental angiogenesis regulation in addition to vascular development. The role of nuclear SerRS in inhibiting both c-Myc and HIF-1 may provide therapeutic opportunities to correct dysregulation of angiogenesis in pathological settings.
Collapse
Affiliation(s)
- Yi Shi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- School of Medicine, Nankai University, Tianjin, China
- * E-mail: (YS); (X-LY)
| | - Ze Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ingrid Vallee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zhongying Mo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Shuji Kishi
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (YS); (X-LY)
| |
Collapse
|
15
|
Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, Stanley V, Ghosh S, Wang Y, Kara M, Aslanger AD, Rosti RO, Houlden H, Salomons GS, Gleeson JG. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun 2020; 11:4038. [PMID: 32788587 PMCID: PMC7424529 DOI: 10.1038/s41467-020-17454-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Zhen Li
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - David Sievert
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Dillon Y Chen
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Shereen Ghosh
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Majdi Kara
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | | | - Rasim O Rosti
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
16
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of essential "housekeeping" enzymes ubiquitous in the three major domains of life. ARSs uniquely connect the essential minimal units of both major oligomer classes-the 3-nucleotide codons of oligonucleotides and the amino acids of proteins. They catalyze the esterification of amino acids to the 3'-end of cognate transfer RNAs (tRNAs) bearing the correct anticodon triplet to ensure accurate transfer of information from mRNA to protein according to the genetic code. As an essential translation factor responsible for the first biochemical reaction in protein biosynthesis, ARSs control protein production by catalyzing aminoacylation, and by editing of mischarged aminoacyl-tRNAs to maintain translational fidelity. In addition to their primary enzymatic activities, many ARSs have noncanonical functions unrelated to their catalytic activity in protein synthesis. Among the ARSs with "moonlighting" activities, several, including GluProRS (or EPRS), LeuRS, LysRS, SerRS, TyrRS, and TrpRS, exhibit cell signaling-related activities that sense environmental signals, regulate gene expression, and modulate cellular functions. ARS signaling functions generally depend on catalytically-inactive, appended domains not present in ancient enzyme forms, and are activated by stimulus-dependent post-translational modification. Activation often results in cellular re-localization and gain of new interacting partners. The newly formed ARS-bearing complexes conduct a host of signal transduction functions, including immune response, mTORC1 pathway signaling, and fibrogenic and angiogenic signaling, among others. Because noncanonical functions of ARSs in signal transduction are uncoupled from canonical aminoacylation functions, function-specific inhibitors can be developed, thus providing promising opportunities and therapeutic targets for treatment of human disease.
Collapse
Affiliation(s)
- Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine and Department of Biochemistry & Biophysics, The Center for RNA Biology, The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.
| | - Paul L Fox
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
17
|
Picchioni D, Antolin-Fontes A, Camacho N, Schmitz C, Pons-Pons A, Rodríguez-Escribà M, Machallekidou A, Güler MN, Siatra P, Carretero-Junquera M, Serrano A, Hovde SL, Knobel PA, Novoa EM, Solà-Vilarrubias M, Kaguni LS, Stracker TH, Ribas de Pouplana L. Mitochondrial Protein Synthesis and mtDNA Levels Coordinated through an Aminoacyl-tRNA Synthetase Subunit. Cell Rep 2020; 27:40-47.e5. [PMID: 30943413 DOI: 10.1016/j.celrep.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022] Open
Abstract
The aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a central reaction in biology. Multiple regulatory pathways use the aminoacylation status of cytosolic tRNAs to monitor and regulate metabolism. The existence of equivalent regulatory networks within the mitochondria is unknown. Here, we describe a functional network that couples protein synthesis to DNA replication in animal mitochondria. We show that a duplication of the gene coding for mitochondrial seryl-tRNA synthetase (SerRS2) generated in arthropods a paralog protein (SLIMP) that forms a heterodimeric complex with a SerRS2 monomer. This seryl-tRNA synthetase variant is essential for protein synthesis and mitochondrial respiration. In addition, SLIMP interacts with the substrate binding domain of the mitochondrial protease LON, thus stimulating proteolysis of the DNA-binding protein TFAM and preventing mitochondrial DNA (mtDNA) accumulation. Thus, mitochondrial translation is directly coupled to mtDNA levels by a network based upon a profound structural modification of an animal ARS.
Collapse
Affiliation(s)
- Daria Picchioni
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Albert Antolin-Fontes
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Claus Schmitz
- Structural MitoLab, Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Pons-Pons
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Antigoni Machallekidou
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Merve Nur Güler
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Panagiota Siatra
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Maria Carretero-Junquera
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Alba Serrano
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Stacy L Hovde
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain; Laboratory for Molecular Radiobiology, Clinic of Radiation Oncology, University of Zurich, 8057 Zurich, Switzerland
| | - Eva M Novoa
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain; Garvan Institute of Medical Research, 384 Victoria Street, 2010 Darlinghurst, NSW, Australia
| | - Maria Solà-Vilarrubias
- Structural MitoLab, Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA; Institute of Biosciences and Medical Technology, University of Tampere, 33014 Tampere, Finland
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain.
| |
Collapse
|
18
|
McFarland MR, Keller CD, Childers BM, Adeniyi SA, Corrigall H, Raguin A, Romano MC, Stansfield I. The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 amino acid starvation response despite homeostatic maintenance of charged tRNA levels. Nucleic Acids Res 2020; 48:3071-3088. [PMID: 32016368 PMCID: PMC7102972 DOI: 10.1093/nar/gkaa055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022] Open
Abstract
During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.
Collapse
Affiliation(s)
- Matthew R McFarland
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Corina D Keller
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Brandon M Childers
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Stephen A Adeniyi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Holly Corrigall
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Adélaïde Raguin
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - M Carmen Romano
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ian Stansfield
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
19
|
Targeting Angiogenesis by Blocking the ATM-SerRS-VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth. Cancers (Basel) 2019; 11:cancers11121847. [PMID: 31766690 PMCID: PMC6966470 DOI: 10.3390/cancers11121847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Retinoic acid (RA) has been widely used to protect skin from photo damage and skin carcinomas caused by solar ultraviolet (UV) irradiation, yet the mechanism remains elusive. Here, we report that all-trans retinoic acid (tRA) can directly induce the expression of a newly identified potent anti-angiogenic factor, seryl tRNA synthetase (SerRS), whose angiostatic role can, however, be inhibited by UV-activated ataxia telangiectasia mutated (ATM) kinase. In both a human epidermal cell line, HaCaT, and a mouse melanoma B16F10 cell line, we found that tRA could activate SerRS transcription through binding with the SerRS promoter. However, UV irradiation induced activation of ATM-phosphorylated SerRS, leading to the inactivation of SerRS as a transcriptional repressor of vascular endothelial growth factor A (VEGFA), which dampened the effect of tRA. When combined with ATM inhibitor KU-55933, tRA showed a greatly enhanced efficiency in inhibiting VEGFA expression and a much better protection of mouse skin from photo damage. Also, we found the combination greatly inhibited tumor angiogenesis and growth in mouse melanoma xenograft in vivo. Taken together, tRA combined with an ATM inhibitor can greatly enhance the anti-angiogenic activity of SerRS under UV irradiation and could be a better strategy in protecting skin from angiogenesis-associated skin damage and melanoma caused by UV radiation.
Collapse
|
20
|
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 2019; 294:5365-5385. [PMID: 30670594 DOI: 10.1074/jbc.rev118.002956] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are universal enzymes that catalyze the attachment of amino acids to the 3' ends of their cognate tRNAs. The resulting aminoacylated tRNAs are escorted to the ribosome where they enter protein synthesis. By specifically matching amino acids to defined anticodon sequences in tRNAs, ARSs are essential to the physical interpretation of the genetic code. In addition to their canonical role in protein synthesis, ARSs are also involved in RNA splicing, transcriptional regulation, translation, and other aspects of cellular homeostasis. Likewise, aminoacylated tRNAs serve as amino acid donors for biosynthetic processes distinct from protein synthesis, including lipid modification and antibiotic biosynthesis. Thanks to the wealth of details on ARS structures and functions and the growing appreciation of their additional roles regulating cellular homeostasis, opportunities for the development of clinically useful ARS inhibitors are emerging to manage microbial and parasite infections. Exploitation of these opportunities has been stimulated by the discovery of new inhibitor frameworks, the use of semi-synthetic approaches combining chemistry and genome engineering, and more powerful techniques for identifying leads from the screening of large chemical libraries. Here, we review the inhibition of ARSs by small molecules, including the various families of natural products, as well as inhibitors developed by either rational design or high-throughput screening as antibiotics and anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Christopher S Francklyn
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Patrick Mullen
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
21
|
Baek KI, Ding Y, Chang CC, Chang M, Sevag Packard RR, Hsu JJ, Fei P, Hsiai TK. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:105-115. [PMID: 29752956 PMCID: PMC6226366 DOI: 10.1016/j.pbiomolbio.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Ding
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Megan Chang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| |
Collapse
|
22
|
Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, Shen Y, Ding X, Lin J, Wu Y, Yan Z, Chen J, Li X, Song X, Niu Y, Liu J, Chen W, Ming Y, Du R, Chen C, Long B, Zhang Y, Tong X, Zhang S, Posey JE, Zhang B, Wu Z, Wythe JD, Liu P, Lupski JR, Yang X, Wu N. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 2018; 55:675-684. [PMID: 30120215 PMCID: PMC6161649 DOI: 10.1136/jmedgenet-2017-105224] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-β) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS Our study highlights the specific role of BMP/TGF-β and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiachen Lin
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cong Chen
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Ni R, Luo L. A noncanonical function of histidyl-tRNA synthetase: inhibition of vascular hyperbranching during zebrafish development. FEBS Open Bio 2018; 8:722-731. [PMID: 29744287 PMCID: PMC5929932 DOI: 10.1002/2211-5463.12420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 11/09/2022] Open
Abstract
Histidyl‐tRNA synthetase (Hars) catalyzes the ligation of histidine residues to cognate tRNA. Here, we demonstrate a noncanonical function of Hars in vascular development in zebrafish. We obtained a novel zebrafish cq34 mutant which exhibited hyperbranching of cranial and intersegmental blood vessels 48 h after fertilization. The gene responsible for this phenotype was identified as hars. We found the increased expression of cdh5 and vegfa in the harscq34 mutant. Knockdown of cdh5 in the mutant reduced disordered connections of the hindbrain capillaries. Inhibition of vascular endothelial growth factor signaling suppressed the abnormal vascular branching observed in the mutant. Moreover, the human HARSmRNA rescued the vascular defects in the cq34 mutant. Thus, the noncanonical function of Hars regulates vascular development, mainly by modulating expression of cdh5 and vegfa.
Collapse
Affiliation(s)
- Rui Ni
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education Laboratory of Molecular Developmental Biology School of Life Sciences Southwest University Chongqing China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education Laboratory of Molecular Developmental Biology School of Life Sciences Southwest University Chongqing China
| |
Collapse
|
24
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
25
|
Lei Y, Liu K, Hou L, Ding L, Li Y, Liu L. Small chaperons and autophagy protected neurons from necrotic cell death. Sci Rep 2017; 7:5650. [PMID: 28720827 PMCID: PMC5515951 DOI: 10.1038/s41598-017-05995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal necrosis occurs during early phase of ischemic insult. However, our knowledge of neuronal necrosis is still inadequate. To study the mechanism of neuronal necrosis, we previously established a Drosophila genetic model of neuronal necrosis by calcium overloading through expression of a constitutively opened cation channel mutant. Here, we performed further genetic screens and identified a suppressor of neuronal necrosis, CG17259, which encodes a seryl-tRNA synthetase. We found that loss-of-function (LOF) CG17259 activated eIF2α phosphorylation and subsequent up-regulation of chaperons (Hsp26 and Hsp27) and autophagy. Genetically, down-regulation of eIF2α phosphorylation, Hsp26/Hsp27 or autophagy reduced the protective effect of LOF CG17259, indicating they function downstream of CG17259. The protective effect of these protein degradation pathways indicated activation of a toxic protein during neuronal necrosis. Our data indicated that p53 was likely one such protein, because p53 was accumulated in the necrotic neurons and down-regulation of p53 rescued necrosis. In the SH-SY5Y human cells, tunicamycin (TM), a PERK activator, promoted transcription of hsp27; and necrosis induced by glutamate could be rescued by TM, associated with reduced p53 accumulation. In an ischemic stroke model in rats, p53 protein was also increased, and TM treatment could reduce the p53 accumulation and brain damage.
Collapse
Affiliation(s)
- Ye Lei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Kai Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lin Hou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lianggong Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yuhong Li
- Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China.
| |
Collapse
|
26
|
Shi Y, Wei N, Yang XL. Studying nuclear functions of aminoacyl tRNA synthetases. Methods 2016; 113:105-110. [PMID: 27664293 DOI: 10.1016/j.ymeth.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Aminoacyl tRNA synthetases (AARSs) are best known for their essential role in translation in the cytoplasm. The concept that AARSs also exist in the nucleus started to draw attention around the turn of the new millennium, when aminoacylated tRNAs were first found in the nuclei of Xenopus oocytes. It is now expected that all cytoplasmic AARSs are present in the nucleus. In addition to tRNA aminoacylation, nuclear AARSs were found to regulate a spectrum of biological processes and responses, with many AARSs functioning through regulation at the level of gene transcription. In this paper, we focus on describing methods that have been successfully implemented to study AARSs in transcriptional regulation. These include a cell fractionation assay to detect nuclear localization, an in vitro DNA-cellulose pull-down assay to determine DNA binding capacity, and a chromatin immunoprecipitation (ChIP)-DNA deep sequencing assay to identify DNA binding sites. Application of these methods would expand our understanding of AARS functions and reveal critical insights on the coordination of gene transcription and translation.
Collapse
Affiliation(s)
- Yi Shi
- Departments of Chemical Physiology and Cell & Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Na Wei
- Departments of Chemical Physiology and Cell & Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Departments of Chemical Physiology and Cell & Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Abstract
Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both within and outside the heart that may have translational relevance given the association of WARS2 with common human diseases. Blood supply to the heart is crucial for cardiac function. Here, the authors show that the mitochondrial tryptophanyl-tRNA synthetase, WARS2, drives blood vessel generation in zebrafish and rats and that inhibition of Wars2 diminishes blood vessel growth both within and outside in the heart, suggesting a new target for manipulating angiogenesis.
Collapse
|
28
|
Cao Z, Wang H, Mao X, Luo L. Noncanonical function of threonyl-tRNA synthetase regulates vascular development in zebrafish. Biochem Biophys Res Commun 2016; 473:67-72. [DOI: 10.1016/j.bbrc.2016.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 01/09/2023]
|
29
|
Malissovas N, Griffin LB, Antonellis A, Beis D. Dimerization is required for GARS-mediated neurotoxicity in dominant CMT disease. Hum Mol Genet 2016; 25:1528-42. [PMID: 27008886 DOI: 10.1093/hmg/ddw031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of peripheral neuropathies. Mutations in several aminoacyl-tRNA synthetase (ARS) genes have been implicated in inherited CMT disease. There are 12 reported CMT-causing mutations dispersed throughout the primary sequence of the human glycyl-tRNA synthetase (GARS). While there is strong genetic evidence linking GARS mutations to CMT disease, the molecular pathology underlying the neuromuscular and sensory phenotypes is still not fully understood. In particular, it is unclear whether the mutations result in a toxic gain of function, a partial loss of activity related to translation, or a combination of these mechanisms. We identified a zebrafish allele of gars (gars(s266)). Homozygous mutant embryos carry a C->A transversion, that changes a threonine to a lysine, in a residue next to a CMT-associated human mutation. We show that the neuromuscular phenotype observed in animals homozygous for T209K Gars (T130K in GARS) is due to a loss of dimerization of the mutated protein. Furthermore, we show that the loss of function, dimer-deficient and human disease-associated G319R Gars (G240R in GARS) mutant protein is unable to rescue the above phenotype. Finally, we demonstrate that another human disease-associated mutant G605R Gars (G526 in GARS) dimerizes with the remaining wild-type protein in animals heterozygous for the T209K Gars and reduces the function enough to elicit a neuromuscular phenotype. Our data indicate that dimerization is required for the dominant neurotoxicity of disease-associated GARS mutations and provide a rapid, tractable model for studying newly identified GARS variants for a role in human disease.
Collapse
Affiliation(s)
- Nikos Malissovas
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece, Medical School, University of Crete, Greece
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, Medical Scientist Training Program
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, Department of Human Genetics, and Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece,
| |
Collapse
|
30
|
Castranova D, Davis AE, Lo BD, Miller MF, Paukstelis PJ, Swift MR, Pham VN, Torres-Vázquez J, Bell K, Shaw KM, Kamei M, Weinstein BM. Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Arterioscler Thromb Vasc Biol 2016; 36:655-62. [PMID: 26821951 DOI: 10.1161/atvbaha.115.307087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/07/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants. CONCLUSIONS Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.
Collapse
Affiliation(s)
- Daniel Castranova
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Andrew E Davis
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Brigid D Lo
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Mayumi F Miller
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Paul J Paukstelis
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Matthew R Swift
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Van N Pham
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Jesús Torres-Vázquez
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Kameha Bell
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Kenna M Shaw
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Makoto Kamei
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Brant M Weinstein
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.).
| |
Collapse
|
31
|
Papakyriakou A, Kefalos P, Sarantis P, Tsiamantas C, Xanthopoulos KP, Vourloumis D, Beis D. A zebrafish in vivo phenotypic assay to identify 3-aminothiophene-2-carboxylic acid-based angiogenesis inhibitors. Assay Drug Dev Technol 2015; 12:527-35. [PMID: 25506802 DOI: 10.1089/adt.2014.606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Small molecules that inhibit angiogenesis are attractive drug candidates for cancer, retinopathies, and age-related macular degeneration. In vivo, phenotypic screening in zebrafish (Danio rerio) emerges as a powerful methodology to identify and optimize novel compounds with pharmacological activity. Zebrafish provides several advantages for in vivo phenotypic screens especially for angiogenesis, since it develops rapidly, externally, and does not rely on a functional cardiovascular system to survive for several days during development. In this study, we utilize a transgenic line that allows the noninvasive monitoring of angiogenesis at a cellular level. The inhibition of angiogenesis can be observed under a fluorescent stereoscope and quantified. To exemplify the versatility and robustness of the zebrafish screen, we have employed a series of 60 novel compounds that were designed based on a potent VEGFR2 inhibitor. Herein, we report their structure-based design, synthesis, and in vivo zebrafish screening for optimal activity, toxicity, and off-target effects, which revealed six reversible inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- 1 Laboratory of Chemical Biology of Natural Products and Designed Molecules, NCSR Demokritos , Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
32
|
Mirando AC, Fang P, Williams TF, Baldor LC, Howe AK, Ebert AM, Wilkinson B, Lounsbury KM, Guo M, Francklyn CS. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor. Sci Rep 2015; 5:13160. [PMID: 26271225 PMCID: PMC4536658 DOI: 10.1038/srep13160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.
Collapse
Affiliation(s)
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida
| | | | | | - Alan K Howe
- Department of Pharmacology, University of Vermont
| | | | - Barrie Wilkinson
- Isomerase Therapeutics Ltd, Science Village, Chesterford Research Park, Cambridge CB10 1XL, UK
| | | | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida
| | | |
Collapse
|
33
|
Schuermann A, Helker CSM, Herzog W. Metallothionein 2 regulates endothelial cell migration through transcriptional regulation of vegfc expression. Angiogenesis 2015. [PMID: 26198291 PMCID: PMC4596909 DOI: 10.1007/s10456-015-9473-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of developmental angiogenesis can help to identify regulatory networks, which also contribute to disease-related vascular growth. Vascular endothelial growth factors (Vegf) drive angiogenic processes such as sprouting, endothelial cell (EC) migration and proliferation. However, how Vegf expression is regulated during development is not well understood. By analyzing developmental zebrafish angiogenesis, we have identified Metallothionein 2 (Mt2) as a novel regulator of vegfc expression. While Metallothioneins (Mts) have been extensively analyzed for their capability of regulating homeostasis and metal detoxification, we demonstrate that Mt2 is required for EC migration, proliferation and angiogenic sprouting upstream of vegfc expression. We further demonstrate that another Mt family member cannot compensate Mt2 deficiency and therefore postulate that Mt2 regulates angiogenesis independent of its canonical Mt function. Our data not only reveal a non-canonical function of Mt2 in angiogenesis, but also propose Mt2 as a novel regulator of vegfc expression.
Collapse
Affiliation(s)
- Annika Schuermann
- University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Christian S M Helker
- University of Muenster, Muenster, Germany.,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wiebke Herzog
- University of Muenster, Muenster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany. .,Max-Planck-Institute for Molecular Biomedicine, Muenster, Germany.
| |
Collapse
|
34
|
Dutta S, Nandi N. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri. J Phys Chem B 2015; 119:10832-48. [PMID: 25794108 DOI: 10.1021/jp511585w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Saheb Dutta
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Nilashis Nandi
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
35
|
Smith J, Liu F, Beyer B, Morales K, Reilly A, Cole R, Herron BJ. Angiogenesis QTL on Mouse Chromosome 8 Colocalizes with Differential β-Defensin Expression. J Biomol Tech 2015; 26:45-53. [PMID: 25802489 DOI: 10.7171/jbt.15-2602-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification of genetic factors that modify complex traits is often complicated by gene-environment interactions that contribute to the observed phenotype. In model systems, the phenotypic outcomes quantified are typically traits that maximize observed variance, which in turn, should maximize the detection of quantitative trait loci (QTL) in subsequent mapping studies. However, when the observed trait is dependent on multiple interacting factors, it can complicate genetic analysis, reducing the likelihood that the modifying mutation will ultimately be found. Alternatively, by focusing on intermediate phenotypes of a larger condition, we can reduce a model's complexity, which will, in turn, limit the number of QTL that contribute to variance. We used a novel method to follow angiogenesis in mice that reduces environmental variance by measuring endothelial cell growth from culture of isolated skin biopsies that varies depending on the genetic source of the tissue. This method, in combination with a backcross breeding strategy, is intended to reduce genetic complexity and limit the phenotypic effects to fewer modifier loci. We determined that our approach was an efficient means to generate recombinant progeny and used this cohort to map a novel s.c. angiogenesis QTL to proximal mouse chromosome (Chr.) 8 with suggestive QTL on Chr. 2 and 7. Global mRNA expression analysis of samples from parental reference strains revealed β-defensins as potential candidate genes for future study.
Collapse
Affiliation(s)
- Jason Smith
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Fang Liu
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Barbara Beyer
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Krista Morales
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Andrew Reilly
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Richard Cole
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Bruce J Herron
- 1 Wadsworth Center, New York State Department of Health, Albany, New York, USA; and 2 Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| |
Collapse
|
36
|
Methyl donor deficiency in H9c2 cardiomyoblasts induces ER stress as an important part of the proteome response. Int J Biochem Cell Biol 2015; 59:62-72. [DOI: 10.1016/j.biocel.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/13/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022]
|
37
|
Regulation of angiogenesis by aminoacyl-tRNA synthetases. Int J Mol Sci 2014; 15:23725-48. [PMID: 25535072 PMCID: PMC4284789 DOI: 10.3390/ijms151223725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs) have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.
Collapse
|
38
|
Khan I, Chen Y, Dong T, Hong X, Takeuchi R, Mori H, Kihara D. Genome-scale identification and characterization of moonlighting proteins. Biol Direct 2014; 9:30. [PMID: 25497125 PMCID: PMC4307903 DOI: 10.1186/s13062-014-0030-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Moonlighting proteins perform two or more cellular functions, which are selected based on various contexts including the cell type they are expressed, their oligomerization status, and the binding of different ligands at different sites. To understand overall landscape of their functional diversity, it is important to establish methods that can identify moonlighting proteins in a systematic fashion. Here, we have developed a computational framework to find moonlighting proteins on a genome scale and identified multiple proteomic characteristics of these proteins. RESULTS First, we analyzed Gene Ontology (GO) annotations of known moonlighting proteins. We found that the GO annotations of moonlighting proteins can be clustered into multiple groups reflecting their diverse functions. Then, by considering the observed GO term separations, we identified 33 novel moonlighting proteins in Escherichia coli and confirmed them by literature review. Next, we analyzed moonlighting proteins in terms of protein-protein interaction, gene expression, phylogenetic profile, and genetic interaction networks. We found that moonlighting proteins physically interact with a higher number of distinct functional classes of proteins than non-moonlighting ones and also found that most of the physically interacting partners of moonlighting proteins share the latter's primary functions. Interestingly, we also found that moonlighting proteins tend to interact with other moonlighting proteins. In terms of gene expression and phylogenetically related proteins, a weak trend was observed that moonlighting proteins interact with more functionally diverse proteins. Structural characteristics of moonlighting proteins, i.e. intrinsic disordered regions and ligand binding sites were also investigated. CONCLUSION Additional functions of moonlighting proteins are difficult to identify by experiments and these proteins also pose a significant challenge for computational function annotation. Our method enables identification of novel moonlighting proteins from current functional annotations in public databases. Moreover, we showed that potential moonlighting proteins without sufficient functional annotations can be identified by analyzing available omics-scale data. Our findings open up new possibilities for investigating the multi-functional nature of proteins at the systems level and for exploring the complex functional interplay of proteins in a cell. REVIEWERS This article was reviewed by Michael Galperin, Eugine Koonin, and Nick Grishin.
Collapse
Affiliation(s)
- Ishita Khan
- />Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907 USA
| | - Yuqian Chen
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Tiange Dong
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Xioawei Hong
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Rikiya Takeuchi
- />Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192 Japan
| | - Hirotada Mori
- />Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192 Japan
| | - Daisuke Kihara
- />Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907 USA
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
39
|
Shi Y, Xu X, Zhang Q, Fu G, Mo Z, Wang GS, Kishi S, Yang XL. tRNA synthetase counteracts c-Myc to develop functional vasculature. eLife 2014; 3:e02349. [PMID: 24940000 PMCID: PMC4057782 DOI: 10.7554/elife.02349] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies suggested an essential role for seryl-tRNA synthetase (SerRS) in vascular development. This role is specific to SerRS among all tRNA synthetases and is independent of its well-known aminoacylation function in protein synthesis. A unique nucleus-directing domain, added at the invertebrate-to-vertebrate transition, confers this novel non-translational activity of SerRS. Previous studies showed that SerRS, in some unknown way, controls VEGFA expression to prevent vascular over-expansion. Using in vitro, cell and animal experiments, we show here that SerRS intervenes by antagonizing c-Myc, the major transcription factor promoting VEGFA expression, through a tandem mechanism. First, by direct head-to-head competition, nuclear-localized SerRS blocks c-Myc from binding to the VEGFA promoter. Second, DNA-bound SerRS recruits the SIRT2 histone deacetylase to erase prior c-Myc-promoted histone acetylation. Thus, vertebrate SerRS and c-Myc is a pair of ‘Yin-Yang’ transcriptional regulator for proper development of a functional vasculature. Our results also discover an anti-angiogenic activity for SIRT2. DOI:http://dx.doi.org/10.7554/eLife.02349.001 The network of blood vessels is one of the earliest structures to develop in a vertebrate embryo. A protein called Vascular Endothelial Growth Factor A (or VEGFA for short) is needed to promote the growth of these blood vessels, but too much VEGFA can cause blood vessels to grow too much and to grow abnormally. Like most of the DNA in the nucleus, the gene for VEGFA is tightly wrapped around proteins called histones and must be unwrapped before it can be expressed as a protein. For the VEGFA gene, this unwrapping process starts when a protein called c-Myc adds chemical tags to the histones. Recent research suggested that an enzyme called seryl-tRNA synthetase (or SerRS for short) also controls the expression of VEGFA. This came as a surprise because no other tRNA synthetase has a similar role during development. And although SerRS is known to enter the cell nucleus in vertebrates, researchers did not know what SerRS did in the nucleus to control the expression of VEGFA. Now, Shi et al. have discovered that SerRS controls blood vessel development in zebrafish embryos by counteracting the activity of c-Myc. It does this in two different ways: first, it directly blocks c-Myc from binding to and unpacking the DNA; and second, SerRS works with another enzyme to remove tags that are already on the histones. Shi et al. found that if the expression of this other enzyme (called SIRT2) was reduced in zebrafish, the fish expressed more VEGFA and their blood vessels grew too much. Since blood vessel growth is important in the development of cancers, the findings of Shi et al. could also lead to a better understanding of how tumors develop, as well as how blood vessels develop normally. DOI:http://dx.doi.org/10.7554/eLife.02349.002
Collapse
Affiliation(s)
- Yi Shi
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Xiaoling Xu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Qian Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Guangsen Fu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Zhongying Mo
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - George S Wang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Shuji Kishi
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, United States
| | - Xiang-Lei Yang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
40
|
He Y, Gong J, Wang Y, Qin Z, Jiang Y, Ma H, Jin G, Chen J, Hu Z, Guan X, Shen H. Potentially functional polymorphisms in aminoacyl-tRNA synthetases genes are associated with breast cancer risk in a Chinese population. Mol Carcinog 2014; 54:577-83. [DOI: 10.1002/mc.22128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/13/2013] [Accepted: 12/12/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Yisha He
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
| | - Jianhang Gong
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
| | - Yanru Wang
- Department of Medical Oncology; Jinling Hospital; Southern Medical University; 305 East Zhongshan Road, Nanjing Jiangsu Province P.R. China
| | - Zhenzhen Qin
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
- State Key Laboratory of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing P.R. China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
- State Key Laboratory of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing P.R. China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
- State Key Laboratory of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing P.R. China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
- State Key Laboratory of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing P.R. China
| | - Jiaping Chen
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
- State Key Laboratory of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology; Jinling Hospital; Southern Medical University; 305 East Zhongshan Road, Nanjing Jiangsu Province P.R. China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; School of Public Health; Nanjing Medical University; Nanjing Jiangsu P.R. China
- State Key Laboratory of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing P.R. China
| |
Collapse
|
41
|
Abstract
When compared to other conserved housekeeping protein families, such as ribosomal proteins, during the evolution of higher eukaryotes, aminoacyl-tRNA synthetases (aaRSs) show an apparent high propensity to add new sequences, and especially new domains. The stepwise emergence of those new domains is consistent with their involvement in a broad range of biological functions beyond protein synthesis, and correlates with the increasing biological complexity of higher organisms. These new domains have been extensively characterized based on their evolutionary origins and their sequence, structural, and functional features. While some of the domains are uniquely found in aaRSs and may have originated from nucleic acid binding motifs, others are common domain modules mediating protein-protein interactions that play a critical role in the assembly of the multi-synthetase complex (MSC). Interestingly, the MSC has emerged from a miniature complex in yeast to a large stable complex in humans. The human MSC consists of nine aaRSs (LysRS, ArgRS, GlnRS, AspRS, MetRS, IleRS, LeuRS, GluProRS, and bifunctional aaRs) and three scaffold proteins (AIMP1/p43, AIMP2/p38, and AIMP3/p18), and has a molecular weight of 1.5 million Dalton. The MSC has been proposed to have a functional dualism: facilitating protein synthesis and serving as a reservoir of non-canonical functions associated with its synthetase and non-synthetase components. Importantly, domain additions and functional expansions are not limited to the components of the MSC and are found in almost all aaRS proteins. From a structural perspective, multi-functionalities are represented by multiple conformational states. In fact, alternative conformations of aaRSs have been generated by various mechanisms from proteolysis to alternative splicing and posttranslational modifications, as well as by disease-causing mutations. Therefore, the metamorphosis between different conformational states is connected to the activation and regulation of the novel functions of aaRSs in higher eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33410, USA,
| | - Xiang-Lei Yang
- Department of Cancer Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA,
| |
Collapse
|
42
|
Xu X, Shi Y, Yang XL. Crystal structure of human Seryl-tRNA synthetase and Ser-SA complex reveals a molecular lever specific to higher eukaryotes. Structure 2013; 21:2078-86. [PMID: 24095058 DOI: 10.1016/j.str.2013.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023]
Abstract
Seryl-tRNA synthetase (SerRS), an essential enzyme for translation, also regulates vascular development. This "gain-of-function" has been linked to the UNE-S domain added to vertebrate SerRS during evolution. However, the significance of two insertions also specific to higher eukaryotic SerRS remains elusive. Here, we determined the crystal structure of human SerRS in complex with Ser-SA, an aminoacylation reaction intermediate analog, at 2.9 Å resolution. Despite a 70 Å distance, binding of Ser-SA in the catalytic domain dramatically leverages the position of Insertion I in the tRNA binding domain. Importantly, this leverage is specific to higher eukaryotes and not seen in bacterial, archaeal, and lower eukaryotic SerRSs. Deletion of Insertion I does not affect tRNA binding but instead reduce the catalytic efficiency of the synthetase. Thus, a long-range conformational and functional communication specific to higher eukaryotes is found in human SerRS, possibly to coordinate translation with vasculogenesis.
Collapse
Affiliation(s)
- Xiaoling Xu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | | | | |
Collapse
|
43
|
Helker CSM, Schuermann A, Karpanen T, Zeuschner D, Belting HG, Affolter M, Schulte-Merker S, Herzog W. The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 2013; 140:2776-86. [PMID: 23698350 DOI: 10.1242/dev.091876] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term ‘lumen ensheathment’. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.
Collapse
Affiliation(s)
| | | | - Terhi Karpanen
- Hubrecht Institute-KNAW and UMC, 3584 CT Utrecht, The Netherlands
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | | | - Markus Affolter
- Biozentrum der Universität Basel, CH-4056 Basel, Switzerland
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW and UMC, 3584 CT Utrecht, The Netherlands
- EZO, Wageningen University, NL-6700 AH Wageningen, The Netherlands
| | - Wiebke Herzog
- University of Muenster, 48149 Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| |
Collapse
|
44
|
Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 2013; 9:145-53. [PMID: 23416400 DOI: 10.1038/nchembio.1158] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/25/2022]
Abstract
Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid-binding site for another purpose.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
45
|
Yao P, Fox PL. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 2013; 5:332-43. [PMID: 23427196 PMCID: PMC3598075 DOI: 10.1002/emmm.201100626] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/30/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous 'house-keeping' enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
46
|
Yao P, Poruri K, Martinis SA, Fox PL. Non-catalytic Regulation of Gene Expression by Aminoacyl-tRNA Synthetases. Top Curr Chem (Cham) 2013; 344:167-87. [DOI: 10.1007/128_2013_422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|
48
|
Scher MS. Normal and abnormal cerebrovascular development. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:1021-42. [DOI: 10.1016/b978-0-444-52910-7.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
49
|
Smirnova EV, Lakunina VA, Tarassov I, Krasheninnikov IA, Kamenski PA. Noncanonical functions of aminoacyl-tRNA synthetases. BIOCHEMISTRY (MOSCOW) 2012; 77:15-25. [PMID: 22339629 DOI: 10.1134/s0006297912010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases, together with their main function of covalent binding of an amino acid to a corresponding tRNA, also perform many other functions. They take part in regulation of gene transcription, apoptosis, translation, and RNA splicing. Some of them function as cytokines or catalyze different reactions in living cells. Noncanonical functions can be mediated by additional domains of these proteins. On the other hand, some of the noncanonical functions are directly associated with the active center of the aminoacylation reaction. In this review we summarize recent data on the noncanonical functions of aminoacyl-tRNA synthetases and on the mechanisms of their action.
Collapse
Affiliation(s)
- E V Smirnova
- Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
50
|
|