1
|
Sadler RL, Greenman AC, Methawasin M, Fan J, Harris SP. The L348P point mutation in cardiac myosin binding protein-C alters transient responses to stretch, slows cardiac relaxation, and is embryonic lethal in homozygous CRISPR gene-edited mice. J Mol Cell Cardiol 2025; 203:35-46. [PMID: 40222553 DOI: 10.1016/j.yjmcc.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Mutations in cardiac myosin binding protein-C (cMyBP-C) are a common cause of hypertrophic cardiomyopathy (HCM), an inherited autosomal dominant disease affecting 1 in 250-500 people. We previously identified a single amino acid substitution (L348P) in the regulatory motif (M-domain) of cMyBP-C that slowed relaxation and caused diastolic dysfunction in transgenic mice. Here we attempted to increase expression of the mutant protein by creating a CRISPR gene-edited knock-in mouse model (L348P-CR) and breeding mice to homozygosity for the mutant allele. Results showed that L348P-CR homozygous mice died in utero, but that heterozygous knock-in mice developed contractile deficits and diastolic dysfunction comparable to transgenic mice. To overcome the lethal homozygous expression of the L348P mutation, we used our "cut-and-paste" approach to fully replace endogenous wild-type cMyBP-C with recombinant L348P cMyBP-C in permeabilized cardiomyocytes from SpyC3 mice. Results showed that replacement of wild-type cMyBP-C with recombinant L348P recapitulated mechanical effects seen in transgenic and L348P-CR mice, validating the utility of our cut-and-paste method for evaluating functional effects of cMyBP-C. We conclude that L348P-CR knock-in mice are a robust model of diastolic dysfunction due to a single point mutation in cMyBP-C and that the cut-and-paste approach offers a rapid and cost-effective approach for evaluating mutations in cMyBP-C, especially those that are lethal in traditional animal models.
Collapse
Affiliation(s)
- Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Angela C Greenman
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Julie Fan
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Samantha P Harris
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
2
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
3
|
van den Dolder FW, Warnaar VAJ, Onderwater YL, Baas AF, Kuster DWD, van der Velden J. Generation of induced pluripotent stem cell lines from five individuals from two families carrying a pathogenic Dutch MYBPC3 founder variant with variable degrees of hypertrophic cardiomyopathy. Stem Cell Res 2025; 86:103697. [PMID: 40250125 DOI: 10.1016/j.scr.2025.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/20/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is often caused by pathogenic or likely pathogenic variants, of which 30-50 % involve a variant in the gene encoding cardiac myosin-binding protein-C (MYBPC3). We generated human induced pluripotent stem cell lines from five individuals from two families carrying a pathogenic Dutch MYBPC3 founder variant: c.2373insG (n = 2) and c.2827C > T (n = 3), with highly variable disease expression. Peripheral blood mononuclear cells were reprogrammed using episomal plasmids. All cell lines express pluripotent markers, exhibit a normal karyotype, and could differentiate into derivatives of each germ layers in vitro. These cell lines can serve as disease model to investigate HCM pathogenesis.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Yeszamin L Onderwater
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Diederik W D Kuster
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Greer-Short A, Greenwood A, Leon EC, Qureshi TN, von Kraut K, Wong J, Tsui JH, Reid CA, Cheng Z, Easter E, Yang J, Ho J, Steltzer S, Budan A, Cho M, Chandrakumar R, Cisne-Thompson O, Feathers C, Chung TW, Rodriguez N, Jones S, Alleyne-Levy C, Liu J, Jing F, Prince WS, Lin J, Ivey KN, Tingley WG, Hoey T, Lombardi LM. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat Commun 2025; 16:2196. [PMID: 40038304 PMCID: PMC11880196 DOI: 10.1038/s41467-025-57481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects approximately 600,000 people in the United States. Loss-of-function mutations in Myosin Binding Protein C3, MYBPC3, are the most common genetic cause of HCM, with the majority of mutations resulting in haploinsufficiency. To restore cardiac MYBPC3, we use an adeno-associated virus (AAV9) vector and engineer an optimized expression cassette with a minimal promoter and cis-regulatory elements (TN-201) to enhance packaging efficiency and cardiomyocyte expression. Rather than simply preventing cardiac dysfunction preclinically, we demonstrate in a symptomatic MYBPC3-deficient murine model the ability of AAV gene therapy to reverse cardiac hypertrophy and systolic dysfunction, improve diastolic dysfunction, and prolong survival. Dose-ranging efficacy studies exhibit restoration of wild-type MYBPC3 protein levels and saturation of cardiac improvement at the clinically relevant dose of 3E13 vg/kg, outperforming a previously published construct. These findings suggest that TN-201 may offer therapeutic benefits in MYBPC3-associated cardiomyopathy, pending further validation in clinical settings.
Collapse
Affiliation(s)
| | | | - Elena C Leon
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Justin Wong
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Ze Cheng
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Jin Yang
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Ana Budan
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Marie Cho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Jun Liu
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Frank Jing
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - JianMin Lin
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Timothy Hoey
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | |
Collapse
|
5
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Moradi A, Khoshniyat S, Nzeako T, Khazeei Tabari MA, Olanisa OO, Tabbaa K, Alkowati H, Askarianfard M, Daoud D, Oyesanmi O, Rodriguez A, Lin Y. The Future of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 Gene Therapy in Cardiomyopathies: A Review of Its Therapeutic Potential and Emerging Applications. Cureus 2025; 17:e79372. [PMID: 40130092 PMCID: PMC11930791 DOI: 10.7759/cureus.79372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Cardiomyopathies, among the leading causes of heart failure and sudden cardiac death, are often driven by genetic mutations affecting the heart's structural proteins. Despite significant advancements in understanding the genetic basis of hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC), effective long-term therapies remain limited. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) gene editing offers a promising therapeutic strategy to address these genetic disorders at their root. CRISPR-Cas9 enables precise modification of pathogenic variants (PVs) in genes encoding sarcomeric and desmosomal proteins, which are frequently implicated in cardiomyopathies. By inducing site-specific double-stranded breaks in DNA, followed by repair through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), this system allows for targeted correction of mutations. In preclinical models, CRISPR-Cas9 has shown promise in correcting HCM-associated mutations in β-myosin heavy chain 7 (MYH7), preventing disease phenotypes such as ventricular hypertrophy and myocardial fibrosis. Similarly, gene editing has successfully rectified DCM-linked mutations in Titin (TTN) and LMNA, resulting in improved heart function and reduced pathological remodeling. For ARVC, CRISPR-Cas9 has demonstrated the ability to repair mutations in desmosomal genes such as plakophilin 2 (PKP2), thereby restoring normal cardiac function and cellular adhesion. Despite these successes, challenges remain, including mosaicism, delivery efficiency, and off-target effects. Nevertheless, CRISPR-Cas9 represents a transformative approach to treating genetic cardiomyopathies, potentially offering long-lasting cures by directly addressing their underlying genetic causes.
Collapse
Affiliation(s)
- Ali Moradi
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Sina Khoshniyat
- Biomedicine, School of Sciences, La Trobe University, Melbourne, AUS
| | | | | | | | - Kutiba Tabbaa
- Cardiology, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Hamza Alkowati
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | | | - Daoud Daoud
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Olu Oyesanmi
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Angelina Rodriguez
- Family Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Yizhi Lin
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| |
Collapse
|
7
|
Peñarroya A, Lorca R, Rodríguez Reguero JJ, Gómez J, Avanzas P, Tejedor JR, Fernandez AF, Fraga MF. Epigenetic Study of Cohort of Monozygotic Twins With Hypertrophic Cardiomyopathy Due to MYBPC3 (Cardiac Myosin-Binding Protein C). J Am Heart Assoc 2024; 13:e035777. [PMID: 39470061 PMCID: PMC11935665 DOI: 10.1161/jaha.124.035777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is an autosomal dominant cardiac disease. The mechanisms that determine its variable expressivity are poorly understood. Epigenetics could play a crucial role in bridging the gap between genotype and phenotype by orchestrating the interplay between the environment and the genome regulation. In this study we aimed to establish a possible correlation between the peripheral blood DNA methylation patterns and left ventricular hypertrophy severity in patients with hypertrophic cardiomyopathy, evaluating the potential impact of lifestyle variables and providing a biological context to the observed changes. METHODS AND RESULTS Methylation data were obtained from peripheral blood samples (Infinium MethylationEPIC BeadChip arrays). We employed multiple pair-matched models to extract genomic positions whose methylation correlates with the degree of left ventricular hypertrophy in 3 monozygotic twin pairs carrying the same founder pathogenic variant (MYBPC3 p.Gly263Ter). This model enables the isolation of the environmental influence, beyond age, on DNA methylation changes by removing the genetic background. Our results revealed a more anxious personality among more severely affected individuals. We identified 56 differentially methylated positions that exhibited moderate, proportional changes in methylation associated with left ventricular hypertrophy. These differentially methylated positions were enriched in regions regulated by repressor histone marks and tended to cluster at genes involved in left ventricular hypertrophy development, such as HOXA5, TRPC3, UCN3, or PLSCR2, suggesting that changes in peripheral blood may reflect myocardial alterations. CONCLUSIONS We present a unique pair-matched model, based on 3 monozygotic twin pairs carrying the same founder pathogenic variant and different phenotypes. This study provides further evidence of the pivotal role of epigenetics in hypertrophic cardiomyopathy variable expressivity.
Collapse
Affiliation(s)
- Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
| | - Rebeca Lorca
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs)MadridSpain
- Departamento de Biología FuncionalUniversidad de OviedoOviedoSpain
| | - José Julián Rodríguez Reguero
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
| | - Juan Gómez
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs)MadridSpain
| | - Pablo Avanzas
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs)MadridSpain
- Departamento de MedicinaUniversidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)OviedoSpain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER)MadridSpain
- Institute of Oncology of Asturias (IUOPA), University of OviedoOviedoAsturiasSpain
| | - Agustín F. Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER)MadridSpain
- Institute of Oncology of Asturias (IUOPA), University of OviedoOviedoAsturiasSpain
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER)MadridSpain
- Institute of Oncology of Asturias (IUOPA), University of OviedoOviedoAsturiasSpain
| |
Collapse
|
8
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
11
|
Grzeczka A, Graczyk S, Pasławski R, Pasławska U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Curr Issues Mol Biol 2024; 46:8752-8766. [PMID: 39194734 DOI: 10.3390/cimb46080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common cardiovascular condition in cats, affecting yth males and females of all ages. Some breeds, such as Ragdolls and Maine Coons, can develop HCM at a young age. The disease has a wide range of progression and severity, characterized by various pathological changes in the heart, including arteritis, fibrous tissue deposition, and myocardial cell hypertrophy. Left ventricular hypertrophy, which can restrict blood flow, is a common feature of HCM. The disease may persist into old age and eventually lead to heart failure and increased diastolic pressure. The basis of HCM in cats is thought to be genetic, although the exact mechanisms are not fully understood. Mutations in sarcomeric proteins, in particular myosin-binding protein C (MYBPC3), have been identified in cats with HCM. Two specific mutations, MYBPC3 [R818W] and MYBPC3 [A31P], have been classified as 'pathogenic'. Other variants in genes such as MYBPC3, TNNT2, ALMS1, and MYH7 are also associated with HCM. However, there are cases where cats without known genetic mutations still develop HCM, suggesting the presence of unknown genetic factors contributing to the disease. This work aims to summarise the new knowledge of HCM in cats and the alterations in cardiac tissue as a result of genetic variants.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Robert Pasławski
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Urszula Pasławska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
12
|
Ribeiro M, Jager J, Furtado M, Carvalho T, Cabral JMS, Brito D, Carmo-Fonseca M, Martins S, da Rocha ST. Generation of induced pluripotent stem cells from an individual with early onset and severe hypertrophic cardiomyopathy linked to MYBPC3: c.772G > A mutation. Hum Cell 2024; 37:1205-1214. [PMID: 38762696 PMCID: PMC11194200 DOI: 10.1007/s13577-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the MYPBC3 gene, which encodes the cardiac myosin-binding protein C (cMyBP-C). Most pathogenic variants in MYPBC3 are either nonsense mutations or result in frameshifts, suggesting that the primary disease mechanism involves reduced functional cMyBP-C protein levels within sarcomeres. However, a subset of MYPBC3 variants are missense mutations, and the molecular mechanisms underlying their pathogenicity remain elusive. Upon in vitro differentiation into cardiomyocytes, induced pluripotent stem cells (iPSCs) derived from HCM patients represent a valuable resource for disease modeling. In this study, we generated two iPSC lines from peripheral blood mononuclear cells (PBMCs) of a female with early onset and severe HCM linked to the MYBPC3: c.772G > A variant. Although this variant was initially classified as a missense mutation, recent studies indicate that it interferes with splicing and results in a frameshift. The generated iPSC lines exhibit a normal karyotype and display hallmark characteristics of pluripotency, including the ability to undergo trilineage differentiation. These novel iPSCs expand the existing repertoire of MYPBC3-mutated cell lines, broadening the spectrum of resources for exploring how diverse mutations induce HCM. They additionally offer a platform to study potential secondary genetic elements contributing to the pronounced disease severity observed in this individual.
Collapse
Affiliation(s)
- Marta Ribeiro
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joanna Jager
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Furtado
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Carvalho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Dulce Brito
- Heart and Vessels Department, Cardiology Division, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Martins
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
13
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
14
|
Burkart V, Kowalski K, Disch A, Hilfiker-Kleiner D, Lal S, Dos Remedios C, Perrot A, Zeug A, Ponimaskin E, Kosanke M, Dittrich-Breiholz O, Kraft T, Montag J. Nonsense mediated decay factor UPF3B is associated with cMyBP-C haploinsufficiency in hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 2023; 185:26-37. [PMID: 37797718 DOI: 10.1016/j.yjmcc.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Alina Disch
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Sean Lal
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Cristobal Dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Andreas Perrot
- Charité - Universitätsmedizin Berlin, Experimental & Clinical Research Center, Berlin, Germany
| | - Andre Zeug
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Nollet EE, Algül S, Goebel M, Schlossarek S, van der Wel NN, Jans JJ, van de Wiel MA, Knol JC, Pham TV, Piersma SR, de Goeij-de Haas R, Hermans J, van Klinken JB, van Weeghel M, Houtkooper RH, Carrier L, Jimenez CR, Kuster DW, van der Velden J. Western diet triggers cardiac dysfunction in heterozygous Mybpc3-targeted knock-in mice: A two-hit model of hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100050. [PMID: 39802622 PMCID: PMC11708371 DOI: 10.1016/j.jmccpl.2023.100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2025]
Abstract
Background and aim Phenotypic expression of hypertrophic cardiomyopathy (HCM) and disease course are associated with unfavorable metabolic health. We investigated if Western diet (WD) feeding is sufficient to trigger cardiac hypertrophy and dysfunction in heterozygous (HET) Mybpc3 c.772G>A knock-in mice. Methods and results Wild-type (WT) and HET mice (3-months-old) were fed a WD or normal chow (NC) for 8 weeks. Metabolomic analyses on serum revealed systemic metabolic derailment in WD-fed WT and HET mice. Strikingly, only WD-fed HET mice developed cardiac hypertrophy and dysfunction, which was not driven by aggravated cardiac myosin binding protein-C haploinsufficiency. WD reduced oxidative phosphorylation and increased toxic lipids in the heart irrespective of genotype. Cardiac proteomic analyses revealed higher abundance of proteins involved in fatty acid oxidation in WD-fed mice, however this increase was blunted in HET compared to WT mice. Accordingly, cardiac metabolomic and lipidomic analyses showed accumulation of acylcarnitines in WD-fed HET vs WT mice. Conclusion WD feeding triggered cardiac dysfunction and hypertrophy in otherwise phenotype-negative HET Mybpc3 c.772G>A mice. We propose that the presence of a HCM mutation predisposes the heart to metabolic inflexibility when subjected to systemic metabolic stress. Our study represents a novel approach to study the interplay between unfavorable metabolic health and mutation-induced defects in HCM disease development.
Collapse
Affiliation(s)
- Edgar E. Nollet
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Sila Algül
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | - Judith J.M. Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mark A. van de Wiel
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jaco C. Knol
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jill Hermans
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Riekelt H. Houtkooper
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism institute, Amsterdam, the Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Connie R. Jimenez
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Hilderink S, Schuldt M, Goebel M, Jansen VJ, Manders E, Moorman S, Dorsch LM, van Steenbeek FG, van der Velden J, Kuster DWD. Characterization of heterozygous and homozygous mouse models with the most common hypertrophic cardiomyopathy mutation MYBPC3 c.2373InsG in the Netherlands. J Mol Cell Cardiol 2023; 185:65-76. [PMID: 37844837 DOI: 10.1016/j.yjmcc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and β-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.
Collapse
Affiliation(s)
- Sarah Hilderink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Maike Schuldt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Valentijn J Jansen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Emmy Manders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Stan Moorman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Fujiwara Y, Miki K, Deguchi K, Naka Y, Sasaki M, Sakoda A, Narita M, Imaichi S, Sugo T, Funakoshi S, Nishimoto T, Imahashi K, Yoshida Y. ERRγ agonist under mechanical stretching manifests hypertrophic cardiomyopathy phenotypes of engineered cardiac tissue through maturation. Stem Cell Reports 2023; 18:2108-2122. [PMID: 37802074 PMCID: PMC10679535 DOI: 10.1016/j.stemcr.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Engineered cardiac tissue (ECT) using human induced pluripotent stem cell-derived cardiomyocytes is a promising tool for modeling heart disease. However, tissue immaturity makes robust disease modeling difficult. Here, we established a method for modeling hypertrophic cardiomyopathy (HCM) malignant (MYH7 R719Q) and nonmalignant (MYBPC3 G115∗) pathogenic sarcomere gene mutations by accelerating ECT maturation using an ERRγ agonist, T112, and mechanical stretching. ECTs treated with T112 under 10% elongation stimulation exhibited more organized and mature characteristics. Whereas matured ECTs with the MYH7 R719Q mutation showed broad HCM phenotypes, including hypertrophy, hypercontraction, diastolic dysfunction, myofibril misalignment, fibrotic change, and glycolytic activation, matured MYBPC3 G115∗ ECTs displayed limited phenotypes, which were primarily observed only under our new maturation protocol (i.e., hypertrophy). Altogether, ERRγ activation combined with mechanical stimulation enhanced ECT maturation, leading to a more accurate manifestation of HCM phenotypes, including non-cardiomyocyte activation, consistent with clinical observations.
Collapse
Affiliation(s)
- Yuya Fujiwara
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Kenji Miki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Center for Organ Engineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Kohei Deguchi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuki Naka
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Masako Sasaki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Ayaka Sakoda
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Megumi Narita
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan
| | - Sachiko Imaichi
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Shunsuke Funakoshi
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | | | - Kenichi Imahashi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshinori Yoshida
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan.
| |
Collapse
|
18
|
Thompson AD, Wagner MJ, Rodriguez J, Malhotra A, Vander Roest S, Lilienthal U, Shao H, Vignesh M, Weber K, Yob JM, Prosser BL, Helms AS, Gestwicki JE, Ginsburg D, Day SM. An Unbiased Screen Identified the Hsp70-BAG3 Complex as a Regulator of Myosin-Binding Protein C3. JACC Basic Transl Sci 2023; 8:1198-1211. [PMID: 37791314 PMCID: PMC10544073 DOI: 10.1016/j.jacbts.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 10/05/2023]
Abstract
Variants in the gene myosin-binding protein C3 (MYBPC3) account for approximately 50% of familial hypertrophic cardiomyopathy (HCM), leading to reduced levels of myosin-binding protein C3 (MyBP-C), the protein product made by gene MYBPC3. Elucidation of the pathways that regulate MyBP-C protein homeostasis could uncover new therapeutic strategies. Toward this goal, we screened a library of 2,426 bioactive compounds and identified JG98, an allosteric modulator of heat shock protein 70 that inhibits interaction with Bcl-2-associated athanogene (BAG) domain co-chaperones. JG98 reduces MyBP-C protein levels. Furthermore, genetic reduction of BAG3 phenocopies treatment with JG-98 by reducing MYBP-C protein levels.. Thus, an unbiased compound screen identified the heat shock protein 70-BAG3 complex as a regulator of MyBP-C stability.
Collapse
Affiliation(s)
- Andrea D. Thompson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcus J. Wagner
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliani Rodriguez
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alok Malhotra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulla Lilienthal
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathav Vignesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Keely Weber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaime M. Yob
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin L. Prosser
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam S. Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Kurzlechner LM, Kishnani S, Chowdhury S, Atkins SL, Moya-Mendez ME, Parker LE, Rosamilia MB, Tadros HJ, Pace LA, Patel V, Chahal CAA, Landstrom AP. DiscoVari: A Web-Based Precision Medicine Tool for Predicting Variant Pathogenicity in Cardiomyopathy- and Channelopathy-Associated Genes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:317-327. [PMID: 37409478 PMCID: PMC10527712 DOI: 10.1161/circgen.122.003911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND With genetic testing advancements, the burden of incidentally identified cardiac disease-associated gene variants is rising. These variants may carry a risk of sudden cardiac death, highlighting the need for accurate diagnostic interpretation. We sought to identify pathogenic hotspots in sudden cardiac death-associated genes using amino acid-level signal-to-noise (S:N) analysis and develop a web-based precision medicine tool, DiscoVari, to improve variant evaluation. METHODS The minor allele frequency of putatively pathogenic variants was derived from cohort-based cardiomyopathy and channelopathy studies in the literature. We normalized disease-associated minor allele frequencies to rare variants in an ostensibly healthy population (Genome Aggregation Database) to calculate amino acid-level S:N. Amino acids with S:N above the gene-specific threshold were defined as hotspots. DiscoVari was built using JavaScript ES6 and using open-source JavaScript library ReactJS, web development framework Next.js, and JavaScript runtime NodeJS. We validated the ability of DiscoVari to identify pathogenic variants using variants from ClinVar and individuals clinically evaluated at the Duke University Hospitals with cardiac genetic testing. RESULTS We developed DiscoVari as an internet-based tool for S:N-based variant hotspots. Upon validation, a higher proportion of ClinVar likely pathogenic/pathogenic variants localized to DiscoVari hotspots (43.1%) than likely benign/benign variants (17.8%; P<0.0001). Further, 75.3% of ClinVar variants reclassified to likely pathogenic/pathogenic were in hotspots, compared with 41.3% of those reclassified as variants of uncertain significance (P<0.0001) and 23.4% of those reclassified as likely benign/benign (P<0.0001). Of the clinical cohort variants, 73.1% of likely pathogenic/pathogenic were in hotspots, compared with 0.0% of likely benign/benign (P<0.01). CONCLUSIONS DiscoVari reliably identifies disease-susceptible amino acid residues to evaluate variants by searching amino acid-specific S:N ratios.
Collapse
Affiliation(s)
| | - Sujata Kishnani
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Shawon Chowdhury
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Sage L. Atkins
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | | | - Lauren E. Parker
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | | | - Hanna J. Tadros
- Dept of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - Leslie A. Pace
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Viraj Patel
- North West Thames Regional Genetics Service, St Mark’s Hospital, London, United Kingdom
| | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the Univ of Pennsylvania, Philadelphia, PA
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Andrew P. Landstrom
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| |
Collapse
|
20
|
Tudurachi BS, Zăvoi A, Leonte A, Țăpoi L, Ureche C, Bîrgoan SG, Chiuariu T, Anghel L, Radu R, Sascău RA, Stătescu C. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:10510. [PMID: 37445689 PMCID: PMC10341819 DOI: 10.3390/ijms241310510] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent genetically inherited cardiomyopathy that follows an autosomal dominant inheritance pattern. The majority of HCM cases can be attributed to mutation of the MYBPC3 gene, which encodes cMyBP-C, a crucial structural protein of the cardiac muscle. The manifestation of HCM's morphological, histological, and clinical symptoms is subject to the complex interplay of various determinants, including genetic mutation and environmental factors. Approximately half of MYBPC3 mutations give rise to truncated protein products, while the remaining mutations cause insertion/deletion, frameshift, or missense mutations of single amino acids. In addition, the onset of HCM may be attributed to disturbances in the protein and transcript quality control systems, namely, the ubiquitin-proteasome system and nonsense-mediated RNA dysfunctions. The aforementioned genetic modifications, which appear to be associated with unfavorable lifelong outcomes and are largely influenced by the type of mutation, exhibit a unique array of clinical manifestations ranging from asymptomatic to arrhythmic syncope and even sudden cardiac death. Although the current understanding of the MYBPC3 mutation does not comprehensively explain the varied phenotypic manifestations witnessed in patients with HCM, patients with pathogenic MYBPC3 mutations can exhibit an array of clinical manifestations ranging from asymptomatic to advanced heart failure and sudden cardiac death, leading to a higher rate of adverse clinical outcomes. This review focuses on MYBPC3 mutation and its characteristics as a prognostic determinant for disease onset and related clinical consequences in HCM.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Alexandra Zăvoi
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Andreea Leonte
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Laura Țăpoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Silviu Gabriel Bîrgoan
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Traian Chiuariu
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Larisa Anghel
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Rodica Radu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| |
Collapse
|
21
|
Sequeira V, Waddingham MT, Tsuchimochi H, Maack C, Pearson JT. Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100036. [PMID: 39801694 PMCID: PMC11708264 DOI: 10.1016/j.jmccpl.2023.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress. As a result, energy depletion and mechano-energetic uncoupling drive cardiac growth through signaling pathways such as ERK and/or potentially AMPK downregulation. Metabolic remodeling also occurs in HCM, characterized by decreased fatty acid oxidation and increased glucose uptake. In some instances, ketones may also feed the heart with energy and act as signaling molecules to reduce oxidative stress and hypertrophic signaling. In addition, arrhythmias are frequently triggered in HCM, resulting from the high Ca2+-buffering of the myofilaments and changes in the ATP/ADP ratio. Understanding the mechanisms driving the progression of HCM is critical to the development of effective therapeutic strategies. This paper presents evidence from both experimental and clinical studies that support the role of hypercontractility and cellular energy alterations in the progression of HCM towards heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Christoph Maack
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC. cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 2023; 155:e202213204. [PMID: 36893011 PMCID: PMC10038829 DOI: 10.1085/jgp.202213204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.
Collapse
Affiliation(s)
- Willem J. De Lange
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily T. Farrell
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan J. Hernandez
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alana Stempien
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline R. Kreitzer
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derek R. Jacobs
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dominique L. Petty
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard L. Moss
- Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendy C. Crone
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J. Carter Ralphe
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Pioner JM, Vitale G, Steczina S, Langione M, Margara F, Santini L, Giardini F, Lazzeri E, Piroddi N, Scellini B, Palandri C, Schuldt M, Spinelli V, Girolami F, Mazzarotto F, van der Velden J, Cerbai E, Tesi C, Olivotto I, Bueno-Orovio A, Sacconi L, Coppini R, Ferrantini C, Regnier M, Poggesi C. Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human MYBPC3 HCM. Circ Res 2023; 132:628-644. [PMID: 36744470 PMCID: PMC9977265 DOI: 10.1161/circresaha.122.321956] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND The pathogenesis of MYBPC3-associated hypertrophic cardiomyopathy (HCM) is still unresolved. In our HCM patient cohort, a large and well-characterized population carrying the MYBPC3:c772G>A variant (p.Glu258Lys, E258K) provides the unique opportunity to study the basic mechanisms of MYBPC3-HCM with a comprehensive translational approach. METHODS We collected clinical and genetic data from 93 HCM patients carrying the MYBPC3:c772G>A variant. Functional perturbations were investigated using different biophysical techniques in left ventricular samples from 4 patients who underwent myectomy for refractory outflow obstruction, compared with samples from non-failing non-hypertrophic surgical patients and healthy donors. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and engineered heart tissues (EHTs) were also investigated. RESULTS Haplotype analysis revealed MYBPC3:c772G>A as a founder mutation in Tuscany. In ventricular myocardium, the mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-EHTs revealed prolonged action potentials, slower Ca2+ transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations. CONCLUSIONS HCM-related MYBPC3:c772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- Department of Biology (J.M.P.), University of Florence, Italy
| | - Giulia Vitale
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Marianna Langione
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Francesca Margara
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Lorenzo Santini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesco Giardini
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Erica Lazzeri
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Nicoletta Piroddi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Beatrice Scellini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Chiara Palandri
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Maike Schuldt
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Valentina Spinelli
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesca Girolami
- Pediatric Cardiology (F. Girolami), IRCCS Meyer Children’s Hospital, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Italy (F. Mazzarotto)
- National Heart and Lung Institute, Imperial College London, London, United Kingdom (F. Mazzarotto)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Elisabetta Cerbai
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Chiara Tesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Iacopo Olivotto
- Cardiogenetics Unit (I.O.), IRCCS Meyer Children’s Hospital, Florence, Italy
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (I.O.)
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC), National Research Council, Florence, Italy (L. Sacconi)
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg (L. Sacconi)
| | - Raffaele Coppini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Cecilia Ferrantini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Corrado Poggesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| |
Collapse
|
24
|
Protein quality control systems in hypertrophic cardiomyopathy: pathogenesis and treatment potential. J Geriatr Cardiol 2022; 19:780-784. [PMID: 36338284 PMCID: PMC9618844 DOI: 10.11909/j.issn.1671-5411.2022.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
25
|
Snelders M, Koedijk IH, Schirmer J, Mulleners O, van Leeuwen J, de Wagenaar NP, Bartulos O, Voskamp P, Braam S, Guttenberg Z, Danser AJ, Majoor-Krakauer D, Meijering E, van der Pluijm I, Essers J. Contraction pressure analysis using optical imaging in normal and MYBPC3-mutated hiPSC-derived cardiomyocytes grown on matrices with tunable stiffness. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100068. [PMID: 36824378 PMCID: PMC9934435 DOI: 10.1016/j.bbiosy.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/09/2022] [Accepted: 10/15/2022] [Indexed: 12/04/2022] Open
Abstract
Current in vivo disease models and analysis methods for cardiac drug development have been insufficient in providing accurate and reliable predictions of drug efficacy and safety. Here, we propose a custom optical flow-based analysis method to quantitatively measure recordings of contracting cardiomyocytes on polydimethylsiloxane (PDMS), compatible with medium-throughput systems. Movement of the PDMS was examined by covalently bound fluorescent beads on the PDMS surface, differences caused by increased substrate stiffness were compared, and cells were stimulated with β-agonist. We further validated the system using cardiomyocytes treated with endothelin-1 and compared their contractions against control and cells incubated with receptor antagonist bosentan. After validation we examined two MYBPC3-mutant patient-derived cell lines. Recordings showed that higher substrate stiffness resulted in higher contractile pressure, while beating frequency remained similar to control. β-agonist stimulation resulted in both higher beating frequency as well as higher pressure values during contraction and relaxation. Cells treated with endothelin-1 showed an increased beating frequency, but a lower contraction pressure. Cells treated with both endothelin-1 and bosentan remained at control level of beating frequency and pressure. Lastly, both MYBPC3-mutant lines showed a higher beating frequency and lower contraction pressure. Our validated method is capable of automatically quantifying contraction of hiPSC-derived cardiomyocytes on a PDMS substrate of known shear modulus, returning an absolute value. Our method could have major benefits in a medium-throughput setting.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Iris H. Koedijk
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Otto Mulleners
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Nathalie P. de Wagenaar
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | - A.H. Jan Danser
- Department of Internal Medicine - Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands,Department of Radiotherapy, Erasmus MC, Rotterdam, the Netherlands,Corresponding author: Erasmus Medical Center, Wytemaweg 80, Rotterdam 3015CN, The Netherlands
| |
Collapse
|
26
|
Wood NB, Kelly CM, O’Leary TS, Martin JL, Previs MJ. Cardiac Myosin Filaments are Maintained by Stochastic Protein Replacement. Mol Cell Proteomics 2022; 21:100274. [PMID: 35921914 PMCID: PMC9528119 DOI: 10.1016/j.mcpro.2022.100274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Myosin and myosin-binding protein C are exquisitely organized into giant filamentous macromolecular complexes within cardiac muscle sarcomeres, yet these proteins must be continually replaced to maintain contractile fidelity. The overall hypothesis that myosin filament structure is dynamic and allows for the stochastic replacement of individual components was tested in vivo, using a combination of mass spectrometry- and fluorescence-based proteomic techniques. Adult mice were fed a diet that marked all newly synthesized proteins with a stable isotope-labeled amino acid. The abundance of unlabeled and labeled proteins was quantified by high-resolution mass spectrometry over an 8-week period. The rates of change in the abundance of these proteins were well described by analytical models in which protein synthesis defined stoichiometry and protein degradation was governed by the stochastic selection of individual molecules. To test whether the whole myosin filaments or the individual components were selected for replacement, cardiac muscle was chemically skinned to remove the cellular membrane and myosin filaments were solubilized with ionic solutions. The composition of the filamentous and soluble fractions was quantified by mass spectrometry, and filament depolymerization was visualized by real-time fluorescence microscopy. Myosin molecules were preferentially extracted from ends of the filaments in the presence of the ionic solutions, and there was only a slight bias in the abundance of unlabeled molecules toward the innermost region on the myosin filaments. These data demonstrate for the first time that the newly synthesized myosin and myosin-binding protein C molecules are randomly mixed into preexisting thick filaments in vivo and the rate of mixing may not be equivalent along the length of the thick filament. These data collectively support a new model of cardiac myosin filament structure, with the filaments being dynamic macromolecular assemblies that allow for replacement of their components, rather than rigid bodies.
Collapse
Affiliation(s)
- Neil B. Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Colleen M. Kelly
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Jody L. Martin
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA,For correspondence: Michael J. Previs, Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Room 108, Burlington, Vermont 05405
| |
Collapse
|
27
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
28
|
Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous Distribution of Genetic Mutations in Myosin Binding Protein-C Paralogs. Front Genet 2022; 13:896117. [PMID: 35832193 PMCID: PMC9272480 DOI: 10.3389/fgene.2022.896117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) is a sarcomeric protein which regulates the force of contraction in striated muscles. Mutations in the MYBPC family of genes, including slow skeletal (MYBPC1), fast skeletal (MYBPC2) and cardiac (MYBPC3), can result in cardiac and skeletal myopathies. Nonetheless, their evolutionary pattern, pathogenicity and impact on MyBP-C protein structure remain to be elucidated. Therefore, the present study aimed to systematically assess the evolutionarily conserved and epigenetic patterns of MYBPC family mutations. Leveraging a machine learning (ML) approach, the Genome Aggregation Database (gnomAD) provided variants in MYBPC1, MYBPC2, and MYBPC3 genes. This was followed by an analysis with Ensembl’s variant effect predictor (VEP), resulting in the identification of 8,618, 3,871, and 3,071 variants in MYBPC1, MYBPC2, and MYBPC3, respectively. Missense variants comprised 61%–66% of total variants in which the third nucleotide positions in the codons were highly altered. Arginine was the most mutated amino acid, important because most disease-causing mutations in MyBP-C proteins are arginine in origin. Domains C5 and C6 of MyBP-C were found to be hotspots for most mutations in the MyBP-C family of proteins. A high percentage of truncated mutations in cMyBP-C cause cardiomyopathies. Arginine and glutamate were the top hits in fMyBP-C and cMyBP-C, respectively, and tryptophan and tyrosine were the most common among the three paralogs changing to premature stop codons and causing protein truncations at the carboxyl terminus. A heterogeneous epigenetic pattern was identified among the three MYBP-C paralogs. Overall, it was shown that databases using computational approaches can facilitate diagnosis and drug discovery to treat muscle disorders caused by MYBPC mutations.
Collapse
Affiliation(s)
- Darshini A. Desai
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Vinay J. Rao
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Perundurai S. Dhandapany
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sakthivel Sadayappan,
| |
Collapse
|
29
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
30
|
Rowlands CF, Taylor A, Rice G, Whiffin N, Hall HN, Newman WG, Black GCM, O'Keefe RT, Hubbard S, Douglas AGL, Baralle D, Briggs TA, Ellingford JM. MRSD: A quantitative approach for assessing suitability of RNA-seq in the investigation of mis-splicing in Mendelian disease. Am J Hum Genet 2022; 109:210-222. [PMID: 35065709 PMCID: PMC8874219 DOI: 10.1016/j.ajhg.2021.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.
Collapse
Affiliation(s)
- Charlie F Rowlands
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Algy Taylor
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Gillian Rice
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hildegard Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - William G Newman
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Graeme C M Black
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Simon Hubbard
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO16 5YA, UK; Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Diana Baralle
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO16 5YA, UK; Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Tracy A Briggs
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
31
|
Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci 2022; 7:70-83. [PMID: 35128211 PMCID: PMC8807730 DOI: 10.1016/j.jacbts.2021.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/05/2022]
Abstract
The primary etiology of a diverse range of cardiomyopathies is now understood to be genetic, creating a new paradigm for targeting treatments on the basis of the underlying molecular cause. This review provides a genetic and etiologic context for the traditional clinical classifications of cardiomyopathy, including molecular subtypes that may exhibit differential responses to existing or emerging treatments. The authors describe several emerging cardiomyopathy treatments, including gene therapy, direct targeting of myofilament function, protein quality control, metabolism, and others. The authors discuss advantages and disadvantages of these approaches and indicate areas of high potential for short- and longer term efficacy.
Collapse
Key Words
- AAV, adeno-associated virus
- ACM, arrhythmogenic cardiomyopathy
- ARVC, arrhythmogenic right ventricular cardiomyopathy
- ATPase, adenosine triphosphatase
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- DNA, DNA
- DSP, desmoplakin
- FDA, U.S. Food and Drug Administration
- GRT, gene replacement therapy
- GST, gene silencing therapy
- HCM, hypertrophic cardiomyopathy
- HR, homologous recombination
- LNP, lipid nanoparticle
- LVOT, left ventricular outflow tract
- RNA, RNA
- TTR, transthyretin
- arrhythmogenic cardiomyopathy
- dilated cardiomyopathy
- genetics
- hypertrophic cardiomyopathy
- therapeutics
Collapse
Affiliation(s)
- Adam S. Helms
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea D. Thompson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
de Boer RA, Heymans S, Backs J, Carrier L, Coats AJS, Dimmeler S, Eschenhagen T, Filippatos G, Gepstein L, Hulot JS, Knöll R, Kupatt C, Linke WA, Seidman CE, Tocchetti CG, van der Velden J, Walsh R, Seferovic PM, Thum T. Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: From molecular mechanisms to therapeutic targets. Eur J Heart Fail 2021; 24:406-420. [PMID: 34969177 PMCID: PMC9305112 DOI: 10.1002/ejhf.2414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
Genetic cardiomyopathies are disorders of the cardiac muscle, most often explained by pathogenic mutations in genes encoding sarcomere, cytoskeleton, or ion channel proteins. Clinical phenotypes such as heart failure and arrhythmia are classically treated with generic drugs, but aetiology‐specific and targeted treatments are lacking. As a result, cardiomyopathies still present a major burden to society, and affect many young and older patients. The Translational Committee of the Heart Failure Association (HFA) and the Working Group of Myocardial Function of the European Society of Cardiology (ESC) organized a workshop to discuss recent advances in molecular and physiological studies of various forms of cardiomyopathies. The study of cardiomyopathies has intensified after several new study setups became available, such as induced pluripotent stem cells, three‐dimensional printing of cells, use of scaffolds and engineered heart tissue, with convincing human validation studies. Furthermore, our knowledge on the consequences of mutated proteins has deepened, with relevance for cellular homeostasis, protein quality control and toxicity, often specific to particular cardiomyopathies, with precise effects explaining the aberrations. This has opened up new avenues to treat cardiomyopathies, using contemporary techniques from the molecular toolbox, such as gene editing and repair using CRISPR‐Cas9 techniques, antisense therapies, novel designer drugs, and RNA therapies. In this article, we discuss the connection between biology and diverse clinical presentation, as well as promising new medications and therapeutic avenues, which may be instrumental to come to precision medicine of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center (MUMC+), PO Box 5800, 6202, AZ, Maastricht, the Netherlands.,Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Lior Gepstein
- Department of Cardiology, Rambam Health Care Campus, Haaliya Street, 31096, Haifa, Israel
| | - Jean-Sebastien Hulot
- Université de Paris, INSERM, PARCC, F-75006, Paris, France.,CIC1418 and DMU CARTE, AP- HP, Hôpital Européen Georges-Pompidou, F-75015, Paris, France
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Kupatt
- Department of Cardiology, University Clinic rechts der Isar, Technical University of Munich, Germany and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Muenster, Robert-Koch-Str. 27B, 48149, Muenster, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - C Gabriele Tocchetti
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| | - Petar M Seferovic
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
33
|
Qiu H, Sun Y, Pan Z, Zhou J, Wang H, Wang X, Cai D, Fu G, Gong T, Jiang C, Liang P. Inhibition of HSC70 alleviates hypertrophic cardiomyopathy pathology in human induced pluripotent stem cell‐derived cardiomyocytes with a MYBPC3 mutation. Clin Transl Med 2021; 11:e647. [PMID: 34965010 PMCID: PMC8715830 DOI: 10.1002/ctm2.647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hangyuan Qiu
- Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yaxun Sun
- Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
| | - Ziwei Pan
- Key Laboratory of Combined Multi‐Organ Transplantation Ministry of Public Health The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Jingjun Zhou
- Key Laboratory of Combined Multi‐Organ Transplantation Ministry of Public Health The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Hongkun Wang
- Key Laboratory of Combined Multi‐Organ Transplantation Ministry of Public Health The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi‐Organ Transplantation Ministry of Public Health The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Dongsheng Cai
- Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
| | - Guosheng Fu
- Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
| | - Tingyu Gong
- Key Laboratory of Combined Multi‐Organ Transplantation Ministry of Public Health The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Chenyang Jiang
- Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
| | - Ping Liang
- Key Laboratory of Combined Multi‐Organ Transplantation Ministry of Public Health The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| |
Collapse
|
34
|
Miyake W, Minemoto M, Hayama H, Yamamoto M, Okazaki T, Takano K, Mori K, Okazaki A, Arakawa R, Hara H, Takeuchi F, Hiroi Y, Kato N. Case Report of Left Ventricular Noncompaction Cardiomyopathy Characterized by Undulating Phenotypes in Adult Patients. Int Heart J 2021; 62:1420-1429. [PMID: 34853230 DOI: 10.1536/ihj.21-283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Left ventricular noncompaction cardiomyopathy (LVNC) is a heart muscle disorder morphologically characterized by reticulated trabeculations and intertrabecular recesses in the left ventricular (LV) cavity. LVNC is a genetically and phenotypically heterogeneous condition, which has been increasingly recognized with the accumulation of evidence provided by genotype-phenotype correlation analyses. Here, we report 2 sporadic adult cases of LVNC; both developed acute heart failure as an initial clinical manifestation and harbored causal sarcomere gene mutations. One case was a 57-year-old male with digenic heterozygote mutations, p.R1344Q in myosin heavy chain 7 (MYH7) and p.R144W in troponin T2, cardiac type (TNNT2), who showed morphological characteristics of LVNC in the lateral to apical regions of the LV together with a comorbidity of non-transmural myocardial infarction, resulting from a coronary artery stenosis. After the removal of ischemic insult and standard heart failure treatment, LVNC became less clear, and LV function gradually improved. The other case was a 36-year-old male with a heterozygote mutation, p.E334K in myosin binding protein C3 (MYBPC3), who exhibited cardiogenic shock on admission with morphological characteristics of LVNC being most prominent in the apical segment of the LV. The dosage of beta-blocker was deliberately increased in an outpatient clinic over 6 months following hospitalization, which remarkably improved the LV ejection fraction from 21% to 54.3%. Via a combination of imaging and histopathological and genetic tests, we have found that these cases are not compatible with a persistent phenotype of primary cardiomyopathy, but their morphological features are changeable in response to treatment. Thus, we point out phenotypic plasticity or undulation as a noticeable element of LVNC in this case report.
Collapse
Affiliation(s)
- Wataru Miyake
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Mayu Minemoto
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Hiromasa Hayama
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Masaya Yamamoto
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Toru Okazaki
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Kozue Takano
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine.,Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Atsuko Okazaki
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine
| | - Reiko Arakawa
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine.,Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Hisao Hara
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Fumihiko Takeuchi
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine.,Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | - Yukio Hiroi
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Norihiro Kato
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine.,Medical Genomics Center, Research Institute, National Center for Global Health and Medicine.,Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| |
Collapse
|
35
|
Wang Y, Xiong W, Zhao S, Li B, Chang ACY. Generation of two induced pluripotent stem cell lines, SHIPMi001-A from a patient with hypertrophic cardiomyopathy caused by MYBPC3 gene mutation and SHIPMi002-A from a healthy male individual. Stem Cell Res 2021; 57:102594. [PMID: 34785479 DOI: 10.1016/j.scr.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Hypertrophic cardiomyopathy is a hereditary disease with high incidence of sudden death and heart failure. Myosin-binding protein C3 (MYBPC3) is the most commonly mutation gene. Here, we report the establishment of two human induced pluripotent stem cell (iPSC) lines: one from a patient carrying a heterozygous c.1377delC mutation in MYBPC3 (c.1377delC: p.L460Wfs) and one from a healthy donor. The generated iPSC lines showed comparable pluripotent genes, demonstrated the capacity to differentiate into derivatives of all three germ layers and normal karyotypes. These lines are valuable for the mechanism research and drug development of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Weiyao Xiong
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuangxia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| |
Collapse
|
36
|
Schwäbe FV, Peter EK, Taft MH, Manstein DJ. Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC3Δ25bp/D389V. Int J Mol Sci 2021; 22:ijms222111949. [PMID: 34769381 PMCID: PMC8584774 DOI: 10.3390/ijms222111949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Mutations in the gene encoding cardiac myosin-binding protein-C (MyBPC), a thick filament assembly protein that stabilizes sarcomeric structure and regulates cardiac function, are a common cause for the development of hypertrophic cardiomyopathy. About 10% of carriers of the Δ25bp variant of MYBPC3, which is common in individuals from South Asia, are also carriers of the D389V variant on the same allele. Compared with noncarriers and those with MYBPC3Δ25bp alone, indicators for the development of hypertrophic cardiomyopathy occur with increased frequency in MYBPC3Δ25bp/D389V carriers. Residue D389 lies in the IgI-like C2 domain that is part of the N-terminal region of MyBPC. To probe the effects of mutation D389V on structure, thermostability, and protein–protein interactions, we produced and characterized wild-type and mutant constructs corresponding to the isolated 10 kDa C2 domain and a 52 kDa N-terminal fragment that includes subdomains C0 to C2. Our results show marked reductions in the melting temperatures of D389V mutant constructs. Interactions of construct C0–C2 D389V with the cardiac isoforms of myosin-2 and actin remain unchanged. Molecular dynamics simulations reveal changes in the stiffness and conformer dynamics of domain C2 caused by mutation D389V. Our results suggest a pathomechanism for the development of HCM based on the toxic buildup of misfolded protein in young MYBPC3Δ25bp/D389V carriers that is supplanted and enhanced by C-zone haploinsufficiency at older ages.
Collapse
Affiliation(s)
- Frederic V. Schwäbe
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
| | - Emanuel K. Peter
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
| | - Manuel H. Taft
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
| | - Dietmar J. Manstein
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
37
|
He M, Qiu J, Bai Y, Wang Y, Hu M, Chen G. Non-pharmaceutical Interventions for Hypertrophic Cardiomyopathy: A Mini Review. Front Cardiovasc Med 2021; 8:695247. [PMID: 34722651 PMCID: PMC8553933 DOI: 10.3389/fcvm.2021.695247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiovascular disease, and 70% of patients have left ventricular outflow tract obstruction. Ventricular septal myectomy has been the gold standard treatment for most patients with refractory symptoms. Due to higher mortality associated with medical facilities with less experience, alcohol septal ablation has been accepted as an alternative to conventional surgical myectomy. It offers lower all-cause in-hospital complications and mortality, which could be potentially more preferable for patients with serious comorbidities. In recent years, radiofrequency ablation, providing another option with reproducibility and a low risk of permanent atrioventricular block, has become an effective invasive treatment to relieve left ventricular outflow tract obstruction. Moreover, substantial progress has been made in gene therapy for hypertrophic cardiomyopathy. The principal objective of this review is to present recent advances in non-pharmaceutical interventions in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Miaomiao He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front Cardiovasc Med 2021; 8:722340. [PMID: 34760939 PMCID: PMC8572854 DOI: 10.3389/fcvm.2021.722340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a very common inherited cardiovascular disease (CAD) and the incidence is about 1/500 of the common population. It is caused by more than 1,400 mutations in 11 or more genes encoding the proteins of the cardiac sarcomere. HCM presents a heterogeneous clinical profile and complex pathophysiology and HCM is the most important cause of sudden cardiac death (SCD) in young people. HCM also contributes to functional disability from heart failure and stroke (caused by atrial fibrillation). Current treatments for HCM (medication, myectomy, and alcohol septal ablation) are geared toward slowing down the disease progression and symptom relief and implanted cardiac defibrillator (ICD) to prevent SCD. HCM is, however, entering a period of tight translational research that holds promise for the major advances in disease-specific therapy. Main insights into the genetic landscape of HCM have improved our understanding of molecular pathogenesis and pointed the potential targets for the development of therapeutic agents. We reviewed the critical discoveries about the treatments, mechanism of HCM, and their implications for future research.
Collapse
Affiliation(s)
- Zeyi Cheng
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Fang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglei Huang
- School of Medicine, Lanzhou University, Lanzhou, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mahboob Alam
- Division of Cardiovascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Crocini C, Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys Rev 2021; 13:637-652. [PMID: 34745372 PMCID: PMC8553709 DOI: 10.1007/s12551-021-00840-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- BioFrontiers Institute & Department of Molecular and Cellular Development, University of Colorado Boulder, Boulder, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
40
|
Patel PN, Ito K, Willcox JAL, Haghighi A, Jang MY, Gorham JM, DePalma SR, Lam L, McDonough B, Johnson R, Lakdawala NK, Roberts A, Barton PJR, Cook SA, Fatkin D, Seidman CE, Seidman JG. Contribution of Noncanonical Splice Variants to TTN Truncating Variant Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003389. [PMID: 34461741 DOI: 10.1161/circgen.121.003389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain. METHODS Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay. RESULTS Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%-95%) but poor sensitivity (15%-50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and -3 acceptor positions. CONCLUSIONS Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.
Collapse
Affiliation(s)
- Parth N Patel
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA
| | - Kaoru Ito
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (K.I.)
| | - Jon A L Willcox
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Alireza Haghighi
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA.,Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA (A.H.)
| | - Min Young Jang
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA
| | - Joshua M Gorham
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Steven R DePalma
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Lien Lam
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Barbara McDonough
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (R.J., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (R.J., D.F.)
| | - Neal K Lakdawala
- Division of Cardiovascular Medicine, Brigham and Women's Hospital (N.K.L., C.E.S.)
| | - Amy Roberts
- Department of Cardiology, Boston Children's Hospital, MA (A.R.)
| | - Paul J R Barton
- National Heart and Lung Institute (P.J.R.B., S.A.C.).,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, United Kingdom (P.J.R.B.)
| | - Stuart A Cook
- National Heart and Lung Institute (P.J.R.B., S.A.C.).,MRC London Institute of Medical Sciences, Imperial College London (S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (S.A.C.).,National Heart Research Institute Singapore, National Heart Centre Singapore (S.A.C.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (R.J., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (R.J., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Christine E Seidman
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute (C.E.S.), Harvard Medical School, Boston, MA.,Division of Cardiovascular Medicine, Brigham and Women's Hospital (N.K.L., C.E.S.)
| | - J G Seidman
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Suay-Corredera C, Pricolo MR, Herrero-Galán E, Velázquez-Carreras D, Sánchez-Ortiz D, García-Giustiniani D, Delgado J, Galano-Frutos JJ, García-Cebollada H, Vilches S, Domínguez F, Molina MS, Barriales-Villa R, Frisso G, Sancho J, Serrano L, García-Pavía P, Monserrat L, Alegre-Cebollada J. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J Biol Chem 2021; 297:100854. [PMID: 34097875 PMCID: PMC8260873 DOI: 10.1016/j.jbc.2021.100854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Variants in MYBPC3, the gene encoding cardiac myosin-binding protein C (cMyBP-C), are the leading cause of HCM. However, the pathogenicity status of hundreds of MYBPC3 variants found in patients remains unknown, as a consequence of our incomplete understanding of the pathomechanisms triggered by HCM-causing variants. Here, we examined 44 nontruncating MYBPC3 variants that we classified as HCM-linked or nonpathogenic according to cosegregation and population genetics criteria. We found that around half of the HCM-linked variants showed alterations in RNA splicing or protein stability, both of which can lead to cMyBP-C haploinsufficiency. These protein haploinsufficiency drivers associated with HCM pathogenicity with 100% and 94% specificity, respectively. Furthermore, we uncovered that 11% of nontruncating MYBPC3 variants currently classified as of uncertain significance in ClinVar induced one of these molecular phenotypes. Our strategy, which can be applied to other conditions induced by protein loss of function, supports the idea that cMyBP-C haploinsufficiency is a fundamental pathomechanism in HCM.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan José Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Helena García-Cebollada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Sabater Molina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Hospital C. Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Cardiopatías Familiares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, scarl, Naples, Italy
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|
43
|
Riepe TV, Khan M, Roosing S, Cremers FPM, 't Hoen PAC. Benchmarking deep learning splice prediction tools using functional splice assays. Hum Mutat 2021; 42:799-810. [PMID: 33942434 PMCID: PMC8360004 DOI: 10.1002/humu.24212] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/16/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022]
Abstract
Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical splice sites (NCSS) and deep intronic (DI) regions are difficult to predict. Multiple splice prediction tools have been developed for this purpose, with the latest tools employing deep learning algorithms. We benchmarked established and deep learning splice prediction tools on published gold standard sets of 71 NCSS and 81 DI variants in the ABCA4 gene and 61 NCSS variants in the MYBPC3 gene with functional assessment in midigene and minigene splice assays. The selection of splice prediction tools included CADD, DSSP, GeneSplicer, MaxEntScan, MMSplice, NNSPLICE, SPIDEX, SpliceAI, SpliceRover, and SpliceSiteFinder-like. The best-performing splice prediction tool for the different variants was SpliceRover for ABCA4 NCSS variants, SpliceAI for ABCA4 DI variants, and the Alamut 3/4 consensus approach (GeneSplicer, MaxEntScacn, NNSPLICE and SpliceSiteFinder-like) for NCSS variants in MYBPC3 based on the area under the receiver operator curve. Overall, the performance in a real-time clinical setting is much more modest than reported by the developers of the tools.
Collapse
Affiliation(s)
- Tabea V. Riepe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Mubeen Khan
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Susanne Roosing
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - Peter A. C. 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
44
|
Suay-Corredera C, Pricolo MR, Velázquez-Carreras D, Pathak D, Nandwani N, Pimenta-Lopes C, Sánchez-Ortiz D, Urrutia-Irazabal I, Vilches S, Dominguez F, Frisso G, Monserrat L, García-Pavía P, de Sancho D, Spudich JA, Ruppel KM, Herrero-Galán E, Alegre-Cebollada J. Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy. ACS NANO 2021; 15:10203-10216. [PMID: 34060810 PMCID: PMC8514129 DOI: 10.1021/acsnano.1c02242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
| | | | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - David Sánchez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, scarl, 80145, Naples, Italy
| | | | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | |
Collapse
|
45
|
Pathogenic Intronic Splice-Affecting Variants in MYBPC3 in Three Patients with Hypertrophic Cardiomyopathy. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic variants in MYBPC3 are one of the most common causes of hypertrophic cardiomyopathy (HCM). While variants in MYBPC3 affecting canonical splice site dinucleotides are a well-characterised cause of HCM, only recently has work begun to investigate the pathogenicity of more deeply intronic variants. Here, we present three patients with HCM and intronic splice-affecting MYBPC3 variants and analyse the impact of variants on splicing using in vitro minigene assays. We show that the three variants, a novel c.927-8G>A variant and the previously reported c.1624+4A>T and c.3815-10T>G variants, result in MYBPC3 splicing errors. Analysis of blood-derived patient RNA for the c.3815-10T>G variant revealed only wild type spliced product, indicating that mis-spliced transcripts from the mutant allele are degraded. These data indicate that the c.927-8G>A variant of uncertain significance and likely benign c.3815-10T>G should be reclassified as likely pathogenic. Furthermore, we find shortcomings in commonly applied bioinformatics strategies to prioritise variants impacting MYBPC3 splicing and re-emphasise the need for functional assessment of variants of uncertain significance in diagnostic testing.
Collapse
|
46
|
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the myocardium characterized by a hypertrophic left ventricle with a preserved or increased ejection fraction. Cardiac hypertrophy is often asymmetrical, which is associated with left ventricular outflow tract obstruction. Myocyte hypertrophy, disarray, and myocardial fibrosis constitute the histological features of HCM. HCM is a relatively benign disease but an important cause of sudden cardiac death in the young and heart failure in the elderly. Pathogenic variants (PVs) in genes encoding protein constituents of the sarcomeres are the main causes of HCM. PVs exhibit a gradient of effect sizes, as reflected in their penetrance and variable phenotypic expression of HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin binding protein C, respectively, are the two most common causal genes and responsible for ≈40% of all HCM cases but a higher percentage of HCM in large families. PVs in genes encoding protein components of the thin filaments are responsible for ≈5% of the HCM cases. Whereas pathogenicity of the genetic variants in large families has been firmly established, ascertainment causality of the PVs in small families and sporadic cases is challenging. In the latter category, PVs are best considered as probabilistic determinants of HCM. Deciphering the genetic basis of HCM has enabled routine genetic testing and has partially elucidated the underpinning mechanism of HCM as increased number of the myosin molecules that are strongly bound to actin. The discoveries have led to the development of mavacamten that targets binding of the myosin molecule to actin filaments and imparts beneficial clinical effects. In the coming years, the yield of the genetic testing is expected to be improved and the so-called missing causal gene be identified. The advances are also expected to enable development of additional specific therapies and editing of the mutations in HCM.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston
| |
Collapse
|
47
|
Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation. Genet Med 2021; 23:1281-1287. [PMID: 33782553 PMCID: PMC8257482 DOI: 10.1038/s41436-021-01134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk. Methods Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. Results We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. Conclusion STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity.
Collapse
|
48
|
Schmid M, Toepfer CN. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol Open 2021; 10:bio057646. [PMID: 33589442 PMCID: PMC7904003 DOI: 10.1242/bio.057646] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fundamental basis of muscle contraction 'the sliding filament model' (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) and the 'swinging, tilting crossbridge-sliding filament mechanism' (Huxley, 1969; Huxley and Brown, 1967) nucleated a field of research that has unearthed the complex and fascinating role of myosin structure in the regulation of contraction. A recently discovered energy conserving state of myosin termed the super relaxed state (SRX) has been observed in filamentous myosins and is central to modulating force production and energy use within the sarcomere. Modulation of myosin function through SRX is a rapidly developing theme in therapeutic development for both cardiovascular disease and infectious disease. Some 70 years after the first discoveries concerning muscular function, modulation of myosin SRX may bring the first myosin targeted small molecule to the clinic, for treating hypertrophic cardiomyopathy (Olivotto et al., 2020). An often monogenic disease HCM afflicts 1 in 500 individuals, and can cause heart failure and sudden cardiac death. Even as we near therapeutic translation, there remain many questions about the governance of muscle function in human health and disease. With this review, we provide a broad overview of contemporary understanding of myosin SRX, and explore the complexities of targeting this myosin state in human disease.This article has an associated Future Leaders to Watch interview with the authors of the paper.
Collapse
Affiliation(s)
- Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
49
|
Marian AJ. Clinical Interpretation and Management of Genetic Variants. ACTA ACUST UNITED AC 2020; 5:1029-1042. [PMID: 33145465 PMCID: PMC7591931 DOI: 10.1016/j.jacbts.2020.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023]
Abstract
The human genome contains approximately 4 million variants, whose population frequencies vary according to the ethnic backgrounds. Genetic diversity of humans in part determines interindividual variability in susceptibility to diseases, response to therapy, and the clinical outcomes. Genetic variants exert a gradient of biological and clinical effect sizes. In general, variants with the largest effect sizes are responsible for the single-gene disorders, whereas those with moderate and modest effect sizes are responsible for oligogenic and polygenic diseases, respectively. A phenotype is the consequence of nonlinear stochastic interactions among multiple genetic and nongenetic determinants. Discerning pathogenicity of the genetic variants, identified through genetic testing, in the clinical phenotype is challenging and requires complementary expertise in human molecular genetics and clinical medicine.
Genetic variants are major determinants of susceptibility to disease, response to therapy, and clinical outcomes. Advances in the short-read sequencing technologies, despite some shortcomings, have enabled identification of the vast majority of the genetic variants in each genome. The major challenge is in identifying the pathogenic variants in cardiovascular diseases. The yield of the genetic testing has been limited because of technological shortcomings and our incomplete understanding of the genetic basis of cardiovascular disorders. To advance the field, a shift to long-read sequencing platforms is necessary. In addition, to discern the pathogenic variants, genetic diseases should be considered as a continuum and the genetic variants as probabilistic factors with a gradient of effect sizes. Moreover, disease-specific physician-scientists with expertise in the clinical medicine and molecular genetics are best equipped to discern functional and clinical significance of the genetic variants. The changes would be expected to enhance clinical utilities of the genetic discoveries.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas
| |
Collapse
|
50
|
Tucholski T, Cai W, Gregorich ZR, Bayne EF, Mitchell SD, McIlwain SJ, de Lange WJ, Wrobbel M, Karp H, Hite Z, Vikhorev PG, Marston SB, Lal S, Li A, Dos Remedios C, Kohmoto T, Hermsen J, Ralphe JC, Kamp TJ, Moss RL, Ge Y. Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proc Natl Acad Sci U S A 2020; 117:24691-24700. [PMID: 32968017 PMCID: PMC7547245 DOI: 10.1073/pnas.2006764117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry-based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction (n = 16) compared to nonfailing donor hearts (n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Stanford D Mitchell
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705
| | - Max Wrobbel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Hannah Karp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zachary Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Petr G Vikhorev
- National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Steven B Marston
- National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Sean Lal
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006,Australia
| | - Amy Li
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006,Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cristobal Dos Remedios
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006,Australia
- Department of Molecular Cardiology & Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Takushi Kohmoto
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Joshua Hermsen
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|