1
|
Rai B, Yildiz M, Frizzell J, Quesada O, Henry TD. Patient-centric no-option refractory angina management: establishing comprehensive angina relief (CARE) clinics. Expert Rev Cardiovasc Ther 2025:1-17. [PMID: 40193284 DOI: 10.1080/14779072.2025.2488859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/11/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION Refractory angina (RA) is a debilitating condition characterized by persistent angina despite optimized medical therapy and limited options for further revascularization, leading to diminished quality of life and increased healthcare utilization. The RA patient population is rapidly expanding with significant unmet needs. Specialty clinics should be developed to focus on the long-term efficacy and safety of clinically available and novel treatment strategies, emphasizing quality of life. AREAS COVERED Patient-focused Comprehensive Angina Relief (CARE) clinics can enhance care and outcomes by providing individualized management for complex RA. This review summarizes peer-reviewed articles from PubMed and trial data from ClinicalTrials.gov. We discuss the epidemiology and pathophysiology of RA, introduce standardized tools for evaluating angina and psychosocial factors, and address symptom management. We also review treatment options such as risk factor modification, medication, and complex revascularization. Additionally, we explore emerging therapies, including coronary sinus occlusion, regenerative therapy, and neuromodulation for 'no-option' RA. EXPERT OPINION In the next five years, patients with refractory chest pain with or without coronary artery disease will increasingly be referred to specialty clinics for follow-up. Conducting more randomized control clinical trials with larger population subsets will bring novel therapies to the forefront.
Collapse
Affiliation(s)
- Balaj Rai
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | - Mehmet Yildiz
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | - Jarrod Frizzell
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | - Odayme Quesada
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
- The Women's Heart Center at The Christ Hospital, Cincinnati, OH, USA
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| |
Collapse
|
2
|
Saino O, Ogawa Y, Yasui K, Fuchizaki A, Akamatsu R, Irie Y, Tanaka M, Kimura T, Taguchi A. Integrin β2 Plays a Significant Role in Therapeutic Angiogenesis Through Hematopoietic Stem Cell Transplantation. Life (Basel) 2025; 15:195. [PMID: 40003604 PMCID: PMC11856074 DOI: 10.3390/life15020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The efficacy of hematopoietic stem cell (HSC) therapy for cerebral infarction has been previously demonstrated. However, the lack of response in some patients has hindered its widespread use. To establish HSC therapy as a standard treatment, it is important to examine the causes of non-responsiveness. In this study, we aimed to identify the specifications of transplanted cells based on their therapeutic mechanisms to predict treatment success. We found that HSC therapy activates injured cerebral endothelial cells via gap junctions because cell adhesion between HSCs and the endothelium plays an essential role in cellular communication via gap junctions. The expression of the adhesion molecule integrin β2 (CD18) in CD34-positive (CD34+) cells was identified as critical for the therapeutic effect on cerebral infarction in a murine model. Cells with low CD18 expression exhibited a weaker therapeutic effect than cells with high CD18 expression, even when the same number of HSCs was administered. The expression of CD18 in CD34+ cells can be used as a specification marker for transplanted HSCs and is useful for identifying non-responders. Furthermore, quantification of CD18 expression is crucial for evaluating the cellular potential of cell-based therapies for diseases where therapeutic effects are mediated through cell adhesion.
Collapse
Affiliation(s)
- Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2, Minatojima-Minamimachi, Chou-Ku, Kobe 650-0047, Hyogo, Japan; (O.S.)
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2, Minatojima-Minamimachi, Chou-Ku, Kobe 650-0047, Hyogo, Japan; (O.S.)
| | - Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, 7-5-17, Asagi Saito, Ibaraki 567-0085, Osaka, Japan
| | - Akihiro Fuchizaki
- Japanese Red Cross Kinki Block Blood Center, 7-5-17, Asagi Saito, Ibaraki 567-0085, Osaka, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2, Minatojima-Minamimachi, Chou-Ku, Kobe 650-0047, Hyogo, Japan; (O.S.)
| | - Yoriko Irie
- Japanese Red Cross Kinki Block Blood Center, 7-5-17, Asagi Saito, Ibaraki 567-0085, Osaka, Japan
| | - Mitsunobu Tanaka
- Department of Preventive Medicine and Public Health, National Defense Medical College, 3-2, Namiki, Tokorozawa 359-8513, Saitama, Japan
| | - Takafumi Kimura
- Japanese Red Cross Kinki Block Blood Center, 7-5-17, Asagi Saito, Ibaraki 567-0085, Osaka, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2, Minatojima-Minamimachi, Chou-Ku, Kobe 650-0047, Hyogo, Japan; (O.S.)
| |
Collapse
|
3
|
Nandula SR, Jain A, Sen S. Cardio-renal effect of dapagliflozin and dapagliflozin- saxagliptin combination on CD34 + ve hematopoietic stem cells (HSCs) and podocyte specific markers in type 2 diabetes (T2DM) subjects: a randomized trial. Stem Cell Res Ther 2025; 16:28. [PMID: 39865301 PMCID: PMC11770927 DOI: 10.1186/s13287-025-04130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
INTRODUCTION Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo. HYPOTHESIS We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial. METHODS This is a pilot study evaluating low dose Dapagliflozin 10 mg or low dose Dapa + low dose Saxagliptin combination. 15 subjects were enrolled in 16 weeks, double-blind, three-arm, randomized placebo matched trial, with 10mg Dapa + Saxa placebo (n = 4), 10 mg Dapa + 5 mg Saxa (n = 5) Combo, And Dapa placebo + Saxa placebo (n = 6), Placebo groups. T2DM subjects (age 30-70 yrs) with HbA1c of 7-10%, were included. CD34 + HSC number, migration, mRNA expression along with biochemistry and urine exosomes were measured. Data were collected at week 0, 8, and 16. For statistics, a mixed model regression analysis was used. RESULTS Significant HbA1c (p = 0.0357) reduction was noted in Combo group versus Dapa alone and Placebo. hsCRP levels (P = 0.0317) and IL-6, two important inflammatory molecules, were significantly reduced in both Dapa and Combo vs. Placebo. Leptin levels decreased significantly in both Dapa alone (p = 0.035) and Combo group(p = 0.015), vs. Placebo, however the Adiponectin levels were higher in Dapa alone group. Dapagliflozin alone reduced lipid parameters significantly particularly triglyceride (TG) when compared to placebo, with resultant visit 3 values at 99.5 ± 7.2 vs. 129 ± 12.3 and LDL/HDL ratio values were similar at 2.18 ± 0.08 vs. 2.13 ± 0.15. CD34 + cell migration improved significantly in both Dapa alone (p = 0.05) and Combo group (p = 0.05) vs. Placebo. CONCLUSIONS Several parameters showed significant improvement with both Dapa alone and Combo compared to placebo. However, when all outcome measures were taken into account, other than glycemic control the Combo didn't seem to offer any further benefit, over Dapa alone. Therefore, contrary to our initial hypothesis we do not believe the more expensive Dapa + Saxa combination offers any specific cardiovascular benefit compared to Dapagliflozin alone. However it is noteworthy that both Dapa and its combination with Saxagliptin showed significant improvement compared to placebo in T2DM, particularly when progenitor cell based numbers and function were analyzed and taken into account. TRIAL REGISTRATION The trial was registered with Clinical Trials.gov number NCT03660683, last updated 06052023.
Collapse
Affiliation(s)
- Seshagiri Rao Nandula
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA
- Department of Medicine, George Washington University, Washington, DC, USA
- Department of Biochemistry, George Washington University, Washington, DC, USA
| | - Arad Jain
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA
- Department of Medicine, George Washington University, Washington, DC, USA
- Department of Biochemistry, George Washington University, Washington, DC, USA
| | - Sabyasachi Sen
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA.
- Department of Medicine, George Washington University, Washington, DC, USA.
- Department of Biochemistry, George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Daskalova E, Pencheva M, Delchev S, Vladimirova-Kitova L, Kitov S, Markov S, Baruh D, Denev P. Black Chokeberry ( Aronia melanocarpa) Juice Supplementation Affects Age-Related Myocardial Remodeling in Rats. Life (Basel) 2024; 15:23. [PMID: 39859963 PMCID: PMC11766457 DOI: 10.3390/life15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of Aronia melanocarpa fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts. METHODS Healthy male Wistar rats (n = 24) were divided into three groups: (1) young controls (CY)-age 2 months; (2) old controls (CO)-age 27 months; (3) AMJ group-27-month-old animals, supplemented with Aronia melanocarpa juice (AMJ) at a dose of 10 mL∙kg-1 for 105 days. After this period, the hearts of the animals were fixed, embedded in paraffin, and immunohistochemical and morphometric analyses were performed. RESULTS A higher vascular and capillary density was found in the hearts of the AMJ group, as compared to CO. The mean number of CD34+ cells in the myocardium increased by 18.6% in the AMJ group, as compared to CO (p < 0.05). Furthermore, the angiotensin converting enzyme 2 (ACE2) immunoexpression in the myocardium increased by 37% (p < 0.05) and the Proto-oncogene Mas receptor (MAS1) immunoexpression increased by 6% (p < 0.05) in the AMJ group, as compared to CO. CONCLUSIONS As a result of the application of AMJ, noticeable neovascularization was found, which indicates improved myocardial nourishment. The present study demonstrates for the first time that polyphenol-rich AMJ can positively influence age-related microvascular myocardial remodeling in rats, thus outlining its potential as a preventive agent for healthy cardiac aging.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University, 4000 Plovdiv, Bulgaria
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - Lyudmila Vladimirova-Kitova
- I-st Department of Internal Diseases, Cardiology Section Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria; (L.V.-K.); (S.K.)
| | - Spas Kitov
- I-st Department of Internal Diseases, Cardiology Section Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria; (L.V.-K.); (S.K.)
| | - Stoyan Markov
- Department of Otorhinolaryngology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - David Baruh
- Department of Software Engineering, Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Lin HS, Sung PH, Huang SH, Lin WC, Chiang JY, Ma MC, Chen YL, Chen KH, Lee FY, Ko SF, Yip HK. Long term outcomes of intracarotid arterial transfusion of circulatory-derived autologous CD34 + cells for acute ischemic stroke patients-A randomized, open-label, controlled phase II clinical trial. Stem Cell Res Ther 2024; 15:443. [PMID: 39568005 PMCID: PMC11577584 DOI: 10.1186/s13287-024-04021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND This phase II randomized controlled trial tested whether the intracarotid arterial administration (ICAA) of autologous CD34 + cells to patients within 14 ± 7 days after acute ischemic stroke (IS) could be safe and further improve short- and long-term outcomes. METHODS Between January 2018 and March 2022, 28 consecutive patients were equally randomly allocated to the cell-treated group (CD34 + cells/3.0 × 107/patient) or the control group (receiving optimal medical therapy). CD34 + cells were transfused into the ipsilateral brain infarct zone of cell-treated patients via the ICAA in the catheterization room. RESULTS The results demonstrated 100% safety and success rates for the procedure, and no long-term tumorigenesis was observed in cell-treated patients. In cell-treated patients, the angiogenesis capacity of circulating endothelial progenitor cells (EPCs)/Matrigel was significantly greater after treatment than before treatment with granulocyte colony-stimulating factor (all p < 0.001). Blood samples from the right internal jugular vein of the cell-treated patients presented significantly greater levels of the stromal cell-derived factor 1α/EPC at 5, 10 and 30 min compared with 0 min (all p < 0.005). The National Institute of Health Stroke Scale scores were similar upon presentation, but a greater response was observed by Days 30 and 90 in the cell-treated group than in the control group. Tc-99 m brain perfusion was significantly greater at 180 days in the cell-treated group than in the control group (p = 0.046). The combined long-term end points (defined as death/recurrent stroke/or severe disability) were notably lower in the control group compared with the cell-treated group (14.3% vs. 50.0%, p = 0.103). CONCLUSION Intracarotid transfusion of autologous CD34 + cells is safe and might improve long-term outcomes in patients with acute IS. Trial registration ISRCTN, ISRCTN15677760. Registered 23 April 2018- Retrospectively registered, https://doi.org/10.1186/ISRCTN15677760.
Collapse
Affiliation(s)
- Hung-Sheng Lin
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ming-Chun Ma
- Department of Internal Medicine, Division of Hema-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Fan-Yen Lee
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Tartaglia JT, Eisenberg CA, DeMarco JC, Puccio G, Tartaglia CE, Hamby CV. Mobilization of Endogenous CD34+/CD133+ Endothelial Progenitor Cells by Enhanced External Counter Pulsation for Treatment of Refractory Angina. Int J Mol Sci 2024; 25:10030. [PMID: 39337516 PMCID: PMC11432706 DOI: 10.3390/ijms251810030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Adult stem cell therapy via intramyocardial injection of autologous CD34+ stem cells has been shown to improve exercise capacity and reduce angina frequency and mortality in patients with refractory angina (RA). However, the cost of such therapy is a limitation to its adoption in clinical practice. Our goal was to determine whether the less costly, less invasive, and widely accessible, FDA-approved alternative treatment for RA patients, known as enhanced external counterpulsation (EECP), mobilizes endogenous CD34+ stem cells and whether such mobilization is associated with the clinical benefits seen with intramyocardial injection. We monitored changes in circulating levels of CD34+/CD133+ and CD34+/KDR+ cells in RA patients undergoing EECP therapy and in a comparator cohort of RA patients undergoing an exercise regimen known as cardiac rehabilitation. Changes in exercise capacity in both cohorts were monitored by measuring treadmill times (TT), double product (DP) scores, and Canadian Cardiovascular Society (CCS) angina scores between pre- and post-treatment treadmill stress tests. Circulating levels of CD34+/CD133+ cells increased in patients undergoing EECP and were significant (β = -2.38, p = 0.012) predictors of improved exercise capacity in these patients. CD34+/CD133+ cells isolated from RA patients could differentiate into endothelial cells, and their numbers increased during EECP therapy. Our results support the hypothesis that mobilized CD34+/CD133+ cells repair vascular damage and increase collateral circulation in RA patients. They further support clinical interventions that can mobilize adult CD34+ stem cells as therapy for patients with RA and other vascular diseases.
Collapse
Affiliation(s)
- Joseph T. Tartaglia
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.T.T.); (C.A.E.)
| | - Carol A. Eisenberg
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.T.T.); (C.A.E.)
| | | | | | | | - Carl V. Hamby
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Paz Y, Grosman-Rimon L, Levy Y, Shinfeld A. The Coronary Sinus Reducer Stent for the Treatment of Refractory Angina Pectoris: From the Conception of Innovation to Clinical Application. Cardiol Rev 2024; 32:448-452. [PMID: 36728718 DOI: 10.1097/crd.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Neovasc Coronary Sinus Reducer Stent (CSRS) was developed for the treatment of patients who continue to suffer from disabling symptoms despite optimal medical therapy. This patient population with refractory angina symptoms is expected to grow, since life expectancy of individuals with atherosclerotic coronary artery disease is increasing. In this paper, we discussed the development of a novel device the CSRS and the upside-down strategy to rebuild a retrograde coronary pressure that was attenuated by the atherosclerotic disease.
Collapse
Affiliation(s)
- Yoav Paz
- From the General Intensive Care Unit, Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Yair Levy
- Department of Internal Medicine, Meir Medical Center, Kfar Saba, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amihay Shinfeld
- Department of Cardiac Surgery, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Ramaseshan R, Perera D, Reid A, Andiapen M, Ariti C, Kelham M, Jones DA, Mathur A. REGENERATE-COBRA: A phase II randomized sham-controlled trial assessing the safety and efficacy of intracoronary administration of autologous bone marrow-derived cells in patients with refractory angina. Am Heart J 2024; 275:96-104. [PMID: 38862073 DOI: 10.1016/j.ahj.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
AIMS The REGENERATE-COBRA trial (NCT05711849) will assess the safety and efficacy of an intracoronary infusion of autologous bone marrow-derived mononuclear cells in refractory angina patients with no revascularization options who are symptomatic despite optimal medical and device therapy. METHODS REGENERATE-COBRA is a single site, blinded, randomized, sham-controlled, Phase II clinical trial enrolling 110 refractory angina patients with no revascularization options who are symptomatic despite optimal medical and device therapy. Patients will be randomized to either autologous bone marrow derived-mononuclear cells or a sham procedure. Patients in the cell-treated arm will undergo a bone marrow aspiration and an intracoronary infusion of autologous bone marrow derived-mononuclear cells. Patients in the control arm will undergo a sham bone marrow aspiration and a sham intracoronary infusion. The trial's primary endpoint is an improvement in Canadian Cardiovascular Society (CCS) angina class by 2 classes between baseline and 6 months. Secondary endpoints include change in: CCS class at 12 months, myocardial ischemic burden (as measured by perfusion imaging) at 6 months, quality of life at 6 and 12 months (as measured by EQ-5D-5L, EQ-5D-VAS and Seattle Angina Questionnaire), angina frequency at 6 and 12 months, total exercise time (as measured by a modified Bruce protocol) and major adverse cardiovascular events at 6 and 12 months. CONCLUSIONS This is the first trial to assess the safety and efficacy of an intracoronary infusion of autologous bone marrow-derived unfractionated mononuclear cells in symptomatic refractory angina patients who have exhausted conventional therapeutic options.
Collapse
Affiliation(s)
- Rohini Ramaseshan
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Dhanuka Perera
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alice Reid
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London
| | | | - Cono Ariti
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Oxon Epidemiology, Madrid, Spain
| | - Matthew Kelham
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniel A Jones
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anthony Mathur
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London.
| |
Collapse
|
9
|
Ahmed ZT, Zain Al-Abeden MS, Al Abdin MG, Muqresh MA, Al Jowf GI, Eijssen LMT, Haider KH. Dose-response relationship of MSCs as living Bio-drugs in HFrEF patients: a systematic review and meta-analysis of RCTs. Stem Cell Res Ther 2024; 15:165. [PMID: 38867306 PMCID: PMC11170815 DOI: 10.1186/s13287-024-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have emerged as living biodrugs for myocardial repair and regeneration. Recent randomized controlled trials (RCTs) have reported that MSC-based therapy is safe and effective in heart failure patients; however, its dose-response relationship has yet to be established. We aimed to determine the optimal MSC dose for treating HF patients with reduced ejection fraction (EF) (HFrEF). METHODS The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane Handbook guidelines were followed. Four databases and registries, i.e., PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other websites, were searched for RCTs. Eleven RCTs with 1098 participants (treatment group, n = 606; control group, n = 492) were selected based on our inclusion/exclusion criteria. Two independent assessors extracted the data and performed quality assessments. The data from all eligible studies were plotted for death, major adverse cardiac events (MACE), left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and 6-minute walk distance (6-MWD) as safety, efficacy, and performance parameters. For dose-escalation assessment, studies were categorized as low-dose (< 100 million cells) or high-dose (≥ 100 million cells). RESULTS MSC-based treatment is safe across low and high doses, with nonsignificant effects. However, low-dose treatment had a more significant protective effect than high-dose treatment. Subgroup analysis revealed the superiority of low-dose treatment in improving LVEF by 3.01% (95% CI; 0.65-5.38%) compared with high-dose treatment (-0.48%; 95% CI; -2.14-1.18). MSC treatment significantly improved the 6-MWD by 26.74 m (95% CI; 3.74-49.74 m) in the low-dose treatment group and by 36.73 m (95% CI; 6.74-66.72 m) in the high-dose treatment group. The exclusion of studies using ADRCs resulted in better safety and a significant improvement in LVEF from low- and high-dose MSC treatment. CONCLUSION Low-dose MSC treatment was safe and superior to high-dose treatment in restoring efficacy and functional outcomes in heart failure patients, and further analysis in a larger patient group is warranted.
Collapse
Affiliation(s)
- Ziyad T Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairiyah, 52726, Saudi Arabia
| | | | | | - Mohamad Ayham Muqresh
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairiyah, 52726, Saudi Arabia
| | - Ghazi I Al Jowf
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, 6200 MD, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Lars M T Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics- BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200 MD, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | | |
Collapse
|
10
|
Hosoda C, Mitani S, Sakata A, Kasuda S, Onodera Y, Takabayashi Y, Shima M, Tatsumi K. MEK inhibitor PD0325901 upregulates CD34 expression in endothelial cells via inhibition of ERK phosphorylation. Regen Ther 2024; 26:654-662. [PMID: 39281105 PMCID: PMC11401103 DOI: 10.1016/j.reth.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction CD34-positive endothelial progenitor cells (EPCs) promote angiogenesis and are a promising tool for regenerative cell therapy of ischemic diseases. However, the number and quality of CD34-positive cells decrease owing to various external and internal factors; thus, an efficient method is needed to establish CD34-positive EPCs. The generation of functional cells by reprogramming, that is, manipulating cell fate via gene transfer and/or treatment with chemical compounds, has recently been reported. Therefore, we aimed to generate CD34-positive cells by the reprogramming of endothelial cells (ECs). Methods Based on previous reports, seven candidate chemical compounds were selected to reprogram human umbilical vein ECs (HUVECs) to CD34-positive cells. Following stimulation with the chemical compounds, the expression of CD34 was evaluated using quantitative PCR, flow cytometry, and immunocytochemistry. Results HUVECs treated with the compounds exhibited increased CD34 expression. We cultured cells in alternate media lacking one of the seven compounds and found no CD34 expression in cells treated with PD0325901-free media, suggesting that PD0325901-a MEK inhibitor-mainly contributed to the increase in CD34 expression. We found that 98% of cells were CD34-positive after PD0325901 treatment alone for 7 d. Western blotting revealed that the phosphorylation of ERK was suppressed in PD0325901-treated cells. No upregulation of CD34 was observed in fibroblast cell lines, even after PD0325901 treatment. These results suggested that PD0325901 induces CD34-positive cells by inhibiting ERK phosphorylation in ECs. Conclusions CD34 expression was strongly induced in ECs by treatment with the MEK inhibitor PD0325901 in vitro. Our study provides a useful reference for the establishment of CD34-positive EPCs and will contribute to the development of regenerative therapies, especially for ischemic diseases.
Collapse
Affiliation(s)
- Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shogo Kasuda
- Department of Legal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoko Takabayashi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Midori Shima
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
11
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
12
|
Nakamura K, Henry TD, Traverse JH, Latter DA, Mokadam NA, Answini GA, Williams AR, Sun BC, Burke CR, Bakaeen FG, DiCarli MF, Chaitman BR, Peterson MW, Byrnes DG, Ohman EM, Pepine CJ, Crystal RG, Rosengart TK, Kowalewski E, Koch GG, Dittrich HC, Povsic TJ. Angiogenic Gene Therapy for Refractory Angina: Results of the EXACT Phase 2 Trial. Circ Cardiovasc Interv 2024; 17:e014054. [PMID: 38696284 PMCID: PMC11097950 DOI: 10.1161/circinterventions.124.014054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND XC001 is a novel adenoviral-5 vector designed to express multiple isoforms of VEGF (vascular endothelial growth factor) and more safely and potently induce angiogenesis. The EXACT trial (Epicardial Delivery of XC001 Gene Therapy for Refractory Angina Coronary Treatment) assessed the safety and preliminary efficacy of XC001 in patients with no option refractory angina. METHODS In this single-arm, multicenter, open-label trial, 32 patients with no option refractory angina received a single treatment of XC001 (1×1011 viral particles) via transepicardial delivery. RESULTS There were no severe adverse events attributed to the study drug. Twenty expected severe adverse events in 13 patients were related to the surgical procedure. Total exercise duration increased from a mean±SD of 359.9±105.55 seconds at baseline to 448.2±168.45 (3 months), 449.2±175.9 (6 months), and 477.6±174.7 (12 months; +88.3 [95% CI, 37.1-139.5], +84.5 [95% CI, 34.1-134.9], and +115.5 [95% CI, 59.1-171.9]). Total myocardial perfusion deficit on positron emission tomography imaging decreased by 10.2% (95% CI, -3.1% to 23.5%), 14.3% (95% CI, 2.8%-25.7%), and 10.2% (95% CI, -0.8% to -21.2%). Angina frequency decreased from a mean±SD 12.2±12.5 episodes to 5.2±7.2 (3 months), 5.1±7.8 (6 months), and 2.7±4.8 (12 months), with an average decrease of 7.7 (95% CI, 4.1-11.3), 6.6 (95% CI, 3.5-9.7), and 8.8 (4.6-13.0) episodes at 3, 6, and 12 months. Angina class improved in 81% of participants at 6 months. CONCLUSIONS XC001 administered via transepicardial delivery is safe and generally well tolerated. Exploratory improvements in total exercise duration, ischemic burden, and subjective measures support a biologic effect sustained to 12 months, warranting further investigation. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04125732.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cardiology, Department of Medicine (K.N.), University of Washington, Seattle
| | - Timothy D. Henry
- The Carl and Edith Lindner Center of Research and Education, The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, MN (J.H.T., B.C.S.)
| | - David A. Latter
- Department of Cardiovascular Surgery, St. Michael’s Hospital, University of Toronto, ON, Canada (D.A.L.)
| | - Nahush A. Mokadam
- Department of Cardiac Surgery, Ohio State University Wexner Medical Center, Columbus (N.A.M.)
| | | | - Adam R. Williams
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC (A.R.W.)
| | - Benjamin C. Sun
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, MN (J.H.T., B.C.S.)
| | - Christopher R. Burke
- Division of Cardiothoracic Surgery, Department of Surgery (C.R.B.), University of Washington, Seattle
| | - Faisal G. Bakaeen
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, OH (F.G.B.)
| | - Marcelo F. DiCarli
- Departments of Radiology and Medicine, Brigham and Women’s Hospital, Boston, MA (M.F.D.)
| | - Bernard R. Chaitman
- Core ECG/MI Classification Laboratory, St. Louis University School of Medicine, MO (B.R.C.)
| | | | - Dawn G. Byrnes
- XyloCor Therapeutics, Malvern, PA (M.W.P., D.G.B., H.C.D.)
| | - E. Magnus Ohman
- Duke Clinical Research Institute and Duke Medicine, Durham, NC (E.M.O., T.J.P.)
| | - Carl J. Pepine
- Department of Cardiovascular Medicine, University of Florida, Gainesville (C.J.P.)
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY (R.G.C.)
| | - Todd K. Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (T.K.R.)
| | - Elaine Kowalewski
- Department of Biostatistics, University of North Carolina, Chapel Hill (E.K., G.G.K.)
| | - Gary G. Koch
- Department of Biostatistics, University of North Carolina, Chapel Hill (E.K., G.G.K.)
| | | | - Thomas J. Povsic
- Duke Clinical Research Institute and Duke Medicine, Durham, NC (E.M.O., T.J.P.)
| |
Collapse
|
13
|
Carvalho AB, Kasai-Brunswick TH, Campos de Carvalho AC. Advanced cell and gene therapies in cardiology. EBioMedicine 2024; 103:105125. [PMID: 38640834 PMCID: PMC11052923 DOI: 10.1016/j.ebiom.2024.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.
Collapse
Affiliation(s)
- Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Thej C, Roy R, Cheng Z, Garikipati VNS, Truongcao MM, Joladarashi D, Mallaredy V, Cimini M, Gonzalez C, Magadum A, Ghosh J, Benedict C, Koch WJ, Kishore R. Epigenetic mechanisms regulate sex differences in cardiac reparative functions of bone marrow progenitor cells. NPJ Regen Med 2024; 9:17. [PMID: 38684697 PMCID: PMC11058271 DOI: 10.1038/s41536-024-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Historically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men. Mechanisms governing sex-specific cardiac reparative activity in BMSCs, with and without the influence of sex hormones, remain unexplored. To discover these mechanisms, Male (M), female (F), and ovariectomized female (OVX) mice-derived EPCs were subjected to a series of molecular and epigenetic analyses followed by in vivo functional assessments of cardiac repair. F-EPCs and OVX EPCs show a lower inflammatory profile and promote enhanced cardiac reparative activity after intra-cardiac injections in a male mouse model of myocardial infarction (MI). Epigenetic sequencing revealed a marked difference in the occupancy of the gene repressive H3K9me3 mark, particularly at transcription start sites of key angiogenic and proinflammatory genes in M-EPCs compared with F-EPCs and OVX-EPCs. Our study unveiled that functional sex differences in EPCs are, in part, mediated by differential epigenetic regulation of the proinflammatory and anti-angiogenic gene CCL3, orchestrated by the control of H3K9me3 by histone methyltransferase, G9a/Ehmt2. Our research highlights the importance of considering the sex of donor cells for progenitor-based tissue repair.
Collapse
Affiliation(s)
- Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rajika Roy
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zhongjian Cheng
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | | | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Walter J Koch
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Sheu JJ, Yeh JN, Sung PH, Chiang JY, Chen YL, Wang YT, Yip HK, Guo J. ITRI Biofilm Prevented Thoracic Adhesion in Pigs That Received Myocardial Ischemic Induction Treated by Myocardial Implantation of EPCs and ECSW Treatment. Cell Transplant 2024; 33:9636897241253144. [PMID: 38798036 PMCID: PMC11129566 DOI: 10.1177/09636897241253144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
This study tested the hypothesis that ITRI Biofilm prevents adhesion of the chest cavity. Combined extracorporeal shock wave (ECSW) + bone marrow-derived autologous endothelial progenitor cell (EPC) therapy was superior to monotherapy for improving heart function (left ventricular ejection fraction [LVEF]) in minipigs with ischemic cardiomyopathy (IC) induced by an ameroid constrictor applied to the mid-left anterior descending artery. The minipigs (n = 30) were equally designed into group 1 (sham-operated control), group 2 (IC), group 3 (IC + EPCs/by directly implanted into the left ventricular [LV] myocardium; 3 [+]/3[-] ITRI Biofilm), group 4 (IC + ECSW; 3 [+]/[3] - ITRI Biofilm), and group 5 (IC + EPCs-ECSW; 3 [+]/[3] - ITRI Biofilm). EPC/ECSW therapy was administered by day 90, and the animals were euthanized, followed by heart harvesting by day 180. In vitro studies demonstrated that cell viability/angiogenesis/cell migratory abilities/mitochondrial concentrations were upregulated in EPCs treated with ECSW compared with those in EPCs only (all Ps < 0.001). The LVEF was highest in group 1/lowest in group 2/significantly higher in group 5 than in groups 3/4 (all Ps < 0.0001) by day 180, but there was no difference in groups 3/4. The adhesion score was remarkably lower in patients who received ITRI Biofilm treatment than in those who did not (all Ps <0.01). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptotic (mitochondrial-Bax/caspase3/PARP)/fibrotic (TGF-β/Smad3)/DNA/mitochondria-damaged (γ-H2AX/cytosolic-cytochrome-C/p-DRP1), and heart failure/pressure-overload (BNP [brain natriuretic peptide]/β-MHC [beta myosin heavy chain]) biomarkers displayed a contradictory manner of LVEF among the groups (all Ps < 0.0001). The protein expression of endothelial biomarkers (CD31/vWF)/small-vessel density revealed a similar LVEF within the groups (all Ps < 0.0001). ITRI Biofilm treatment prevented chest cavity adhesion and was superior in restoring IC-related LV dysfunction when combined with EPC/ECSW therapy compared with EPC/ECSW therapy alone.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Jui-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pei-Hsun Sung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung
| | - Yi-Ling Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yi-Ting Wang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Hon-Kan Yip
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Department of Nursing, Asia University, Taichung
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Hénon P, Bischoff N, Dallemand R. Transforming Perspectives in Cardiac Cell Therapy: Hypothesis and Commentary Following Updated Results of a Pilot Study Investigating Very Long-Term Clinical Outcomes in Severe AMI Patients Following Trans-Epicardial Injection of Peripheral Blood CD34 + Cells. Stem Cell Rev Rep 2024; 20:247-257. [PMID: 37861968 PMCID: PMC10799833 DOI: 10.1007/s12015-023-10643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Ischemic heart attack is the leading cause of death worldwide. Ten percent of cases will die within an hour. Of the survivors, around 30% will have suffered a severe infarction which will lead to the irreparable destruction of 1 to 2 billion myocardial cells, causing an irreversible secondary heart failure with a poor prognosis in the short. The heart is a totally differentiated organ with a very low capacity for self-regeneration. No current treatment can prevent this fatal outcome, but only slow it down. For these reasons, cell therapy has generated enormous hope, but achieved somewhat disappointing results, depending on the type/source of cells which were used. From the end of 2002, our group conducted a Pilot study using immuno-selected autologous peripheral-blood (PB) CD34+ cells in a small cohort of patients who had experienced a heart attack with poor prognosis. Three of these patients were immediately considered for heart transplant but lacked a readily available donor. CD34+ cells were trans-epicardially delivered at the end of a coronary artery by-pass graft (CABG) operation without reperfusing the ischemic area, which was performed on a compassionate basis. All but one patient showed a marked and sustained improvement in their cardiac function parameters from the baseline values, associated with both cardiac tissue repair and revascularization, as demonstrated by PetScan examination. The patients' outcomes have been recently updated. Six out of seven patients have survived in good enough conditions for at least 12 years after cell therapy, including those three initially recommended for heart transplant and who have avoided it. Presently, five out of seven patients are still alive with an average follow-up of 17 years (range 16-20 years), which is very unusual after CABG for patients with such a poor initially prognosis.
Collapse
Affiliation(s)
- Philippe Hénon
- Institut de Recherche en Hématologie Et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100, Mulhouse, France.
- CellProthera SAS, 12 Rue du Parc, 68100, Mulhouse, France.
| | - Nicolas Bischoff
- Département de Chirurgie Cardio-Thoracique, Groupe Hospitalier Régional Mulhouse Sud-Alsace, 20 Rue du Docteur Laënnec, 68100, Mulhouse, France
| | - Robert Dallemand
- Département de Chirurgie Cardio-Thoracique, Groupe Hospitalier Régional Mulhouse Sud-Alsace, 20 Rue du Docteur Laënnec, 68100, Mulhouse, France
| |
Collapse
|
17
|
Paz Y, Levy Y, Grosman-Rimon L, Shinfeld A. Nonpharmacological interventions for 'no-option' refractory angina patients. J Cardiovasc Med (Hagerstown) 2024; 25:13-22. [PMID: 37942734 DOI: 10.2459/jcm.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Refractory angina pectoris (RAP) defined as chronic anginal chest pain because of coronary artery disease (CAD) is a major problem. The increase in the number of patients with RAP in recent years is because of the increasing aging population and improved survival rates among patients with CAD. Management of patients with RAP is often extremely challenging. In this review, we present several interventional approaches for RAP, including device therapies, lifestyle intervention, and cell therapies. Some of these treatments are currently used in the management of RAP, whereas other treatments are under investigation.
Collapse
Affiliation(s)
- Yoav Paz
- General Intensive Care Unit, Sourasky Medical Center, Tel Aviv, Israel, affiliated with Sackler Faculty of Medicine, Tel Aviv University
| | - Yair Levy
- Department of Medicine, Meir Hospital, Kfar-Saba, Israel
| | - Liza Grosman-Rimon
- School of Graduate Studies, Levinsky-Wingate Academic College, Wingate Institute, Netanya, Israel
| | - Amihay Shinfeld
- Department of Cardiac Surgery, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| |
Collapse
|
18
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
19
|
Chen Y, Ge Y, Chao T, Huan N, Liu W, Chu G, Wang C. Refractory angina pectoris: a 20-year (2003-2022) bibliometric analysis. Front Cardiovasc Med 2023; 10:1228201. [PMID: 37692051 PMCID: PMC10484221 DOI: 10.3389/fcvm.2023.1228201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background The increasing number of patients with refractory angina pectoris, combined with the aging population and improved survival rates among coronary heart disease patients, presents a significant challenge in contemporary cardiovascular medicine. The treatment of refractory angina has been an ongoing area of exploration, yet a comprehensive analysis of the existing literature on this topic is currently lacking. Therefore, this study aims to provide the first bibliometric analysis of publications related to refractory angina. Methods A systematic search was conducted in the Web of Science database to identify articles related to refractory angina published between 2003 and 2022. The inclusion criteria were limited to articles and reviews written in English. CiteSpace software was utilized to conduct a collaborative network analysis of countries/regions, institutions and authors, co-occurrence analysis of keywords, and co-citation analysis of authors and references. Results A total of 1,386 publications were identified, with an annual publication volume exhibiting fluctuation over time. American and European countries and institutions demonstrated a leading position in terms of research output. Henry TD emerged as the most prolific researcher in the field, while Mannheimer C received the highest number of citations. The primary research hotspot within this field focused on the treatment of refractory angina, with recent emphasis on emerging treatments such as stem cell therapy and the coronary sinus reducer. A significant number of clinical trials have been conducted, with a continuous focus on patient benefits, quality of life, and survival prognosis. Conclusion Significant progress has been made in the field of refractory angina pectoris in recent years. Novel treatment methods, including spinal cord stimulation, enhanced external counterpulsation, stem cell therapy, and the coronary sinus reducer, hold promising therapeutic prospects. However, further high-quality evidence-based research is essential to support these emerging interventions. Additionally, the development of comprehensive evidence-based guidelines for refractory angina treatment is crucial. Such guidelines would provide clinicians with a framework to navigate the complexities of treatment choices and optimize patient care in this challenging condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chenglong Wang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Salybekov AA, Hassanpour M, Kobayashi S, Asahara T. Therapeutic application of regeneration-associated cells: a novel source of regenerative medicine. Stem Cell Res Ther 2023; 14:191. [PMID: 37533070 PMCID: PMC10394824 DOI: 10.1186/s13287-023-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Chronic diseases with comorbidities or associated risk factors may impair the function of regenerative cells and the regenerative microenvironment. Following this consideration, the vasculogenic conditioning culture (VCC) method was developed to boost the regenerative microenvironment to achieve regeneration-associated cells (RACs), which contain vasculogenic endothelial progenitor cells (EPCs) and anti-inflammatory/anti-immunity cells. Preclinical and clinical studies demonstrate that RAC transplantation is a safe and convenient cell population for promoting ischemic tissue recovery based on its strong vasculogenicity and functionality. The outputs of the scientific reports reviewed in the present study shed light on the fact that RAC transplantation is efficient in curing various diseases. Here, we compactly highlight the universal features of RACs and the latest progress in their translation toward clinics.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.
| | - Mehdi Hassanpour
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
21
|
Povsic TJ, Henry TD, Traverse JH, Anderson RD, Answini GA, Sun BC, Arnaoutakis GJ, Boudoulas KD, Williams AR, Dittrich HC, Tarka EA, Latter DA, Ohman EM, Peterson MW, Byrnes D, Pepine CJ, DiCarli MF, Crystal RG, Rosengart TK, Mokadam NA. EXACT Trial: Results of the Phase 1 Dose-Escalation Study. Circ Cardiovasc Interv 2023; 16:e012997. [PMID: 37503661 DOI: 10.1161/circinterventions.123.012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND New therapies are needed for patients with refractory angina. Encoberminogene rezmadenovec (XC001), a novel adenoviral-5 vector coding for all 3 major isoforms of VEGF (vascular endothelial growth factor), demonstrated enhanced local angiogenesis in preclinical models; however, the maximal tolerated dose and safety of direct epicardial administration remain unknown. METHODS In the phase 1 portion of this multicenter, open-label, single-arm, dose-escalation study, patients with refractory angina received increasing doses of encoberminogene rezmadenovec (1×109, 1×1010, 4×1010, and 1×1011 viral particles) to evaluate its safety, tolerability, and preliminary efficacy. Patients had class II to IV angina on maximally tolerated medical therapy, demonstrable ischemia on stress testing, and were angina-limited on exercise treadmill testing. Patients underwent minithoracotomy with epicardial delivery of 15 0.1-mL injections of encoberminogene rezmadenovec. The primary outcome was safety via adverse event monitoring over 6 months. Efficacy assessments included difference from baseline to months 3, 6 (primary), and 12 in total exercise duration, myocardial perfusion deficit using positron emission tomography, angina class, angina frequency, and quality of life. RESULTS From June 2, 2020 to June 25, 2021, 12 patients were enrolled into 4 dosing cohorts with 1×1011 viral particle as the highest planned dose. Seventeen serious adverse events were reported in 7 patients; none were related to study drug. Six serious adverse events in 4 patients were related to the thoracotomy, 3 non-serious adverse events were possibly related to study drug. The 2 lowest doses did not demonstrate improvements in total exercise duration, myocardial perfusion deficit, or angina frequency; however, there appeared to be improvements in all parameters with the 2 higher doses. CONCLUSIONS Epicardial delivery of encoberminogene rezmadenovec via minithoracotomy is feasible, and up to 1×1011 viral particle appears well tolerated. A dose response was observed across 4 dosing cohorts in total exercise duration, myocardial perfusion deficit, and angina class. The highest dose (1×1011 viral particle) was carried forward into phase 2. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04125732.
Collapse
Affiliation(s)
- Thomas J Povsic
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - R David Anderson
- University of Florida Heart and Vascular Center, Gainesville (R.D.A.)
| | - Geoffrey A Answini
- Division of Cardiovascular Surgery, Christ Hospital, Cincinnati, OH (G.A.A.)
| | - Benjamin C Sun
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - George J Arnaoutakis
- Department of Surgery, University of Florida Heart and Vascular Center, Gainesville (G.J.A.)
| | | | - Adam R Williams
- Department of Cardiovascular Surgery, Duke University Medical Center, Durham, NC (A.R.W.)
| | | | | | - David A Latter
- Department of Cardiovascular Surgery, St Michael's Hospital, University of Toronto, Ontario, Canada (D.A.L.)
| | - E Magnus Ohman
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | | | - Dawn Byrnes
- XyloCor Therapeutics, Malvern, PA (H.C.D., D.B., M.W.P.)
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville (C.J.P.)
| | - Marcelo F DiCarli
- Departments of Radiology and Medicine, Brigham and Women's Hospital, Boston, MA (M.F.D.)
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York (R.G.C.)
| | - Todd K Rosengart
- Department of Surgery, Baylor College of Medicine, Houston, TX (T.K.R.)
| | - Nahush A Mokadam
- Division of Cardiac Surgery, The Ohio State Wexner Medical Center, Columbus (N.A.M.)
| |
Collapse
|
22
|
Du L, Sun X, Gong H, Wang T, Jiang L, Huang C, Xu X, Li Z, Xu H, Ma L, Li W, Chen T, Xu Q. Single cell and lineage tracing studies reveal the impact of CD34 + cells on myocardial fibrosis during heart failure. Stem Cell Res Ther 2023; 14:33. [PMID: 36805782 PMCID: PMC9942332 DOI: 10.1186/s13287-023-03256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND CD34+ cells have been used to treat the patients with heart failure, but the outcome is variable. It is of great significance to scrutinize the fate and the mechanism of CD34+ cell differentiation in vivo during heart failure and explore its intervention strategy. METHODS We performed single-cell RNA sequencing (scRNA-seq) of the total non-cardiomyocytes and enriched Cd34-tdTomato+ lineage cells in the murine (male Cd34-CreERT2; Rosa26-tdTomato mice) pressure overload model (transverse aortic constriction, TAC), and total non-cardiomyocytes from human adult hearts. Then, in order to determine the origin of CD34+ cell that plays a role in myocardial fibrosis, bone marrow transplantation model was performed. Furthermore, to further clarify the role of CD34 + cells in myocardial remodeling in response to TAC injury, we generated Cd34-CreERT2; Rosa26-eGFP-DTA (Cre/DTA) mice. RESULTS By analyzing the transcriptomes of 59,505 single cells from the mouse heart and 22,537 single cells from the human heart, we illustrated the dynamics of cell landscape during the progression of heart hypertrophy, including CD34+ cells, fibroblasts, endothelial and immune cells. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone-marrow-derived CD34+ cells give rise to fibroblasts and endothelial cells, while bone-marrow-derived CD34+ cell turned into immune cells only in response to pressure overload. Interestingly, partial depletion of CD34+ cells alleviated the severity of myocardial fibrosis with a significant improvement of cardiac function in Cd34-CreERT2; Rosa26-eGFP-DTA model. Similar changes of non-cardiomyocyte composition and cellular heterogeneity of heart failure were also observed in human patient with heart failure. Furthermore, immunostaining showed a double labeling of CD34 and fibroblast markers in human heart tissue. Mechanistically, our single-cell pseudotime analysis of scRNA-seq data and in vitro cell culture study revealed that Wnt-β-catenin and TGFβ1/Smad pathways are critical in regulating CD34+ cell differentiation toward fibroblasts. CONCLUSIONS Our study provides a cellular landscape of CD34+ cell-derived cells in the hypertrophy heart of human and animal models, indicating that non-bone-marrow-derived CD34+ cells differentiating into fibroblasts largely account for cardiac fibrosis. These findings may provide novel insights for the pathogenesis of cardiac fibrosis and have further potential therapeutic implications for the heart failure.
Collapse
Affiliation(s)
- Luping Du
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Xiaotong Sun
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Hui Gong
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Ting Wang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Liujun Jiang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengchen Huang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Xiaodong Xu
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Zhoubin Li
- grid.13402.340000 0004 1759 700XDepartment of Lung Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Hongfei Xu
- grid.13402.340000 0004 1759 700XDepartment of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Liang Ma
- grid.13402.340000 0004 1759 700XDepartment of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Weidong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Ting Chen
- Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| | - Qingbo Xu
- Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
23
|
Hassanpour M, Salybekov AA, Kobayashi S, Asahara T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front Cell Dev Biol 2023; 11:1128134. [PMID: 37138792 PMCID: PMC10150654 DOI: 10.3389/fcell.2023.1128134] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
CD34 is a cell surface antigen expressed in numerous stem/progenitor cells including hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs), which are known to be rich sources of EPCs. Therefore, regenerative therapy using CD34+ cells has attracted interest for application in patients with various vascular, ischemic, and inflammatory diseases. CD34+ cells have recently been reported to improve therapeutic angiogenesis in a variety of diseases. Mechanistically, CD34+ cells are involved in both direct incorporation into the expanding vasculature and paracrine activity through angiogenesis, anti-inflammatory, immunomodulatory, and anti-apoptosis/fibrosis roles, which support the developing microvasculature. Preclinical, pilot, and clinical trials have well documented a track record of safety, practicality, and validity of CD34+ cell therapy in various diseases. However, the clinical application of CD34+ cell therapy has triggered scientific debates and controversies in last decade. This review covers all preexisting scientific literature and prepares an overview of the comprehensive biology of CD34+ cells as well as the preclinical/clinical details of CD34+ cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Amankeldi A. Salybekov
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Shuzo Kobayashi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- *Correspondence: Takayuki Asahara,
| |
Collapse
|
24
|
The Long Telling Story of "Endothelial Progenitor Cells": Where Are We at Now? Cells 2022; 12:cells12010112. [PMID: 36611906 PMCID: PMC9819021 DOI: 10.3390/cells12010112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Endothelial progenitor cells (EPCs): The name embodies years of research and clinical expectations, but where are we now? Do these cells really represent the El Dorado of regenerative medicine? Here, past and recent literature about this eclectic, still unknown and therefore fascinating cell population will be discussed. This review will take the reader through a temporal journey that, from the first discovery, will pass through years of research devoted to attempts at their definition and understanding their biology in health and disease, ending with the most recent evidence about their pathobiological role in cardiovascular disease and their recent applications in regenerative medicine.
Collapse
|
25
|
Fujita Y, Kawamoto A. Therapeutic Angiogenesis Using Autologous CD34-Positive Cells for Vascular Diseases. Ann Vasc Dis 2022; 15:241-252. [PMID: 36644256 PMCID: PMC9816028 DOI: 10.3400/avd.ra.22-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
CD34 is a cell surface marker, which is expressed in various somatic stem/progenitor cells such as bone marrow (BM)-derived hematopoietic stem cells and endothelial progenitor cells (EPCs), skeletal muscle satellite cells, epithelial hair follicle stem cells, and adipose tissue mesenchymal stem cells. CD34+ cells in BM and peripheral blood are known as a rich source of EPCs. Thus, vascular regeneration therapy using granulocyte colony stimulating factor (G-CSF) mobilized- or BM CD34+ cells has been carried out in patients with various vascular diseases such as chronic severe lower limb ischemia, acute myocardial infarction, refractory angina, ischemic cardiomyopathy, and dilated cardiomyopathy as well as ischemic stroke. Pilot and randomized clinical trials demonstrated the safety, feasibility, and effectiveness of the CD34+ cell therapy in peripheral arterial, cardiovascular, and cerebrovascular diseases. This review provides an overview of the preclinical and clinical reports of CD34+ cell therapy for vascular regeneration.
Collapse
Affiliation(s)
- Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan,Corresponding author: Atsuhiko Kawamoto, MD, PhD. Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Tel: +81-78-304-5772, Fax: +81-78-304-5263, E-mail:
| |
Collapse
|
26
|
Vithani V, Sutariya B, Montenegro DM, Chukwu M, Ehsan P, Aburumman RN, Muthanna SI, Menon SR, Penumetcha SS. A Systematic Review of CD34+ Stem Cell Therapy as an Innovative and Efficient Treatment for the Management of Refractory Angina. Cureus 2022; 14:e32665. [PMID: 36660500 PMCID: PMC9844930 DOI: 10.7759/cureus.32665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
Despite optimal medical treatment, many individuals suffering from severe coronary artery disease are not suitable candidates for further revascularization. Therapeutic angiogenesis has attracted continuous interest to increase myocardial perfusion. Cell therapy using autologous stem cells expressing Cluster of Differentiation 34 plus (CD34+) offers a special therapeutic choice for individuals with refractory angina, seeing as CD34+ stem cells can restore microcirculation. We searched PubMed, PubMed Central (PMC), and Google Scholar to find the relevant articles to write this systematic review about the role of CD34+ stem cell therapy in the management of refractory angina. Additionally, we provided a brief explanation of CD34+ cells and their mechanism of action. Along with the positive finding of other trials, a recent open-label, single-center intracoronary CD34+ cell therapy for the treatment of coronary endothelial dysfunction in patients with angina and nonobstructive coronary arteries (IMPROvE-CED) clinical trial published in 2022 concluded improvement in coronary blood flow, a significant reduction in daily as-needed sublingual nitroglycerin use and improvement in Canadian Cardiovascular Society (CCS) angina class were observed after autologous CD34+ cell treatment. In conclusion, refractory angina management and overall prognosis may be revolutionized once this treatment is approved.
Collapse
Affiliation(s)
- Vruti Vithani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Government Medical College, Surat, IND
| | - Bansi Sutariya
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Government Medical College, Surat, IND
| | - Diana M Montenegro
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Chukwu
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Surgery, Pilgrim Hospital, Boston, GBR
| | - Paghunda Ehsan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Rawia N Aburumman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Mu'tah University, Amman, JOR
| | - Shivani Ishwarya Muthanna
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | | | - Sai Sri Penumetcha
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
27
|
Pu X, Zhu P, Zhou X, He Y, Wu H, Du L, Gong H, Sun X, Chen T, Zhu J, Xu Q, Zhang H. CD34 + cell atlas of main organs implicates its impact on fibrosis. Cell Mol Life Sci 2022; 79:576. [PMID: 36315271 PMCID: PMC11803001 DOI: 10.1007/s00018-022-04606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
RATIONALE CD34+ cells are believed being progenitors that may be used to treat cardiovascular disease. However, the exact identity and the role of CD34+ cells in physiological and pathological conditions remain unclear. METHODS We performed single-cell RNA sequencing analysis to provide a cell atlas of normal tissue/organ and pathological conditions. Furthermore, a genetic lineage tracing mouse model was used to investigate the role of CD34+ cells in angiogenesis and organ fibrosis. RESULTS Single-cell RNA sequencing analysis revealed a heterogeneous population of CD34+ cells in both physiological and pathological conditions. Using a genetic lineage tracing mouse model, we showed that CD34+ cells not only acquired endothelial cell fate involved in angiogenesis, but also, CD34+ cells expressing Pi16 may transform into myofibroblast and thus participate in organ fibrosis. CONCLUSION A heterogeneous CD34+ cells serve as a contributor not only to endothelial regeneration but also a wound healing response that may provide therapeutic insights into fibrosis.
Collapse
Affiliation(s)
- Xiangyuan Pu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Xuhao Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Wu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Xiaotong Sun
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China.
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China.
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci 2022; 23:ijms23147697. [PMID: 35887039 PMCID: PMC9318195 DOI: 10.3390/ijms23147697] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The challenges and issues surrounding the use of EPCs and the current paradigm being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. It has been observed that controversies have emerged regarding the isolation techniques and classification and origin of EPCs. This manuscript attempts to highlight the concept of EPCs in a sequential manner, from the initial discovery to the present (origin, sources of EPCs, isolation, and identification techniques). Human and murine EPC marker diversity is also discussed. Additionally, this manuscript is aimed at summarizing our current and future prospects regarding the crosstalk of EPCs with the biology of hematopoietic cells and culture techniques in the context of regeneration-associated cells (RACs).
Collapse
|
29
|
Lantz R, Quesada O, Mattingly G, Henry TD. Contemporary Management of Refractory Angina. Interv Cardiol Clin 2022; 11:279-292. [PMID: 35710283 PMCID: PMC9275781 DOI: 10.1016/j.iccl.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Refractory angina (RA) is defined as chest pain caused by coronary ischemia in patients on maximal medical therapy and is not amenable to revascularization despite advanced coronary artery disease (CAD). The long-term prognosis has improved with optimal medical therapy including risk factor modification. Still, patients are left with major impairment in quality of life and have high resource utilization with limited treatment options. We review the novel invasive and noninvasive therapies under investigation for RA.
Collapse
Affiliation(s)
- Rebekah Lantz
- The Lindner Research Center at the Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA
| | - Odayme Quesada
- Women's Heart Program at The Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA. https://twitter.com/Odayme
| | - Georgia Mattingly
- The Lindner Research Center at the Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA.
| |
Collapse
|
30
|
Palma C, David C, Fernandes RM, Pinto FJ, Costa J, Ferreira JJ, Caldeira D. The sham effect of invasive interventions in chronic coronary syndromes: a systematic review and meta-analysis. BMC Cardiovasc Disord 2022; 22:223. [PMID: 35568808 PMCID: PMC9107755 DOI: 10.1186/s12872-022-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Some patients with chronic coronary syndromes undergo invasive procedures but the efficacy of such interventions remains to be robustly established by randomised sham-controlled trials (RCTs). PURPOSE To determine the sham effect in patients with chronic coronary syndromes enrolled in RCTs by performing a systematic review and meta-analysis. METHODS In April 2022, we performed a literature search for published patient-blind RCTs (CENTRAL, MEDLINE®, PsycINFO, and reference lists) with sham procedures, reporting the pre-post effects in the invasive sham arm among patients with Canadian cardiovascular society (CCS) angina or angina equivalents. RESULTS 16 RCTs were included with 546 patients in the sham arm. Pooled results showed that sham interventions were associated with: improvement of 7% (95% CI 2-11%; I2 = 0%) in exercise time; decrease of 0.78 (95% CI - 1.10 to - 0.47; I2 = 75%) in CCS angina class; decrease of 53% (95% CI 24-71%; I2 = 96%) and 25% (95% CI 20-29%; I2 = 0%) in anginal episodes and nitroglycerine (NTG) use, respectively. Pooled results also showed an improvement in the physical functioning, angina frequency, treatment satisfaction, and disease perception domains of the Seattle Angina Questionnaire (SAQ). CONCLUSION Sham interventions in patients with chronic coronary syndromes were associated with a significant decrease in anginal episodes, NTG use, and CCS angina class and increased SAQ quality of life and exercise time. These results highlight the need for previous non sham-controlled trials to be interpreted with caution, and the importance of new invasive interventions to be evaluated versus a sham procedure.
Collapse
Affiliation(s)
- Catarina Palma
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio David
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculty of Medicine, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo M Fernandes
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculty of Medicine, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Pediatrics, Santa Maria Hospital, Centro Hospitalar Univesitário Lisboa Norte (CHULN), Centro Académico de Medicina de Lisboa (CAML), Lisbon, Portugal
| | - Fausto J Pinto
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Cardiology Department, Hospital Santa Maria, Centro Hospitalar Univesitário Lisboa Norte (CHULN), Centro Académico de Medicina de Lisboa (CAML), Lisbon, Portugal
| | - João Costa
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculty of Medicine, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim J Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculty of Medicine, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Daniel Caldeira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Cardiology Department, Hospital Santa Maria, Centro Hospitalar Univesitário Lisboa Norte (CHULN), Centro Académico de Medicina de Lisboa (CAML), Lisbon, Portugal.
| |
Collapse
|
31
|
Assuncao-Jr AN, Rochitte CE, Kwong RY, Wolff Gowdak LH, Krieger JE, Jerosch-Herold M. Bone Marrow Cells Improve Coronary Flow Reserve in Ischemic Nonrevascularized Myocardium: A MiHeart/IHD Quantitative Perfusion CMR Substudy. JACC Cardiovasc Imaging 2022; 15:812-824. [PMID: 35512954 DOI: 10.1016/j.jcmg.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study investigated whether intramyocardial bone marrow-derived hematopoietic progenitor cells (BMCs) increase coronary flow reserve (CFR) in ischemic myocardial regions where direct revascularization was unsuitable. BACKGROUND Patients with diffuse coronary artery disease frequently undergo incomplete myocardial revascularization, which increases their risk for future adverse cardiovascular outcomes. The residual regional ischemia related to both untreated epicardial lesions and small vessel disease usually contributes to the disease burden. METHODS The MiHeart/IHD study randomized patients with diffuse coronary artery disease undergoing incomplete coronary artery bypass grafting to receive BMCs or placebo in ischemic myocardial regions. After the procedure, 78 patients underwent cardiovascular magnetic resonance (CMR) at 1, 6, and 12 months and were included in this cardiac magnetic resonance substudy with perfusion quantification. Segments were classified as target (injected), adjacent (surrounding the injection site), and remote from injection site. RESULTS Of 1,248 segments, 269 were target (22%), 397 (32%) adjacent, and 582 (46%) remote. The target had significantly lower CFR at baseline (1.40 ± 0.79 vs 1.64 ± 0.89 in adjacent and 1.79 ± 0.79 in remote; both P < 0.05). BMCs significantly increased CFR in target and adjacent segments at 6 and 12 months compared with placebo. In target regions, there was a progressive treatment effect (27.1% at 6 months, P = 0.037, 42.2% at 12 months, P = 0.001). In the adjacent segments, CFR increased by 21.8% (P = 0.023) at 6 months, which persisted until 12 months (22.6%; P = 0.022). Remote segments in both the BMC and placebo groups experienced similar improvements in CFR (not significant at 12 months compared with baseline). CONCLUSIONS BMCs, injected in severely ischemic regions unsuitable for direct revascularization, led to the largest CFR improvements, which progressed up to 12 months, compared with smaller but persistent CFR changes in adjacent and no improvement in remote segments.
Collapse
Affiliation(s)
| | | | - Raymond Y Kwong
- Division of Cardiovascular Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - José Eduardo Krieger
- Heart Institute (InCor), University of São Paulo Medical School, Säo Paulo, Brazil.
| | - Michael Jerosch-Herold
- Division of Cardiovascular Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Alloreactivity of Allogeneic Mesenchymal Stem/Stromal Cells and Other Cellular Therapies: A Concise Review. Stem Cells Int 2022; 2022:9589600. [PMID: 35308830 PMCID: PMC8926542 DOI: 10.1155/2022/9589600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular therapies, deemed live medicine, have brought a wave of new generation biological therapies to treat previously untreatable diseases such as cancers and degenerative diseases like osteoarthritis. These cellular therapies have gained significant recognition in clinical research. The area has been further strengthened with the approval of Chimeric Antigen Receptor added on T cells (CAR-T) therapies by the regulatory authorities USA's Food and Drugs Administration (FDA), European Medical Agency (EMA), the Australian Therapeutic Goods Administration (TGA), and in many countries in 2017 to treat hematological cancers. Another milestone was achieved when allogeneic Mesenchymal Stem Cell- (MSC-) based therapy was approved by the EMA to treat Chrohn's disease in 2018. Allogeneic donor-derived MSC therapies in particular hold great promise and real hope because of their ‘off-the shelf' availability and accessibility for patients in need of urgent treatment. So far, thousands of clinical trials have explored the safety and efficacy of both autologous and allogeneic cell therapies, deeming them safe, however with varying degrees of efficacy. In the current pandemic, clinical trials have begun in many parts of the world to treat severe cases of COVID with MSCs. However, the risk of tissue rejection and the development of undesirable effects due to alloreactivity of allogeneic cells are currently not adequately addressed. Therefore, this warrants careful investigation and detailed reporting of such events by clinical researchers. This review aims at discussing the current landscape of approved allogeneic MSCs along with a few other cellular therapies. We explore any possible reactivity reported to inform the readers of any safety concern and on the efficacy of such therapies.
Collapse
|
33
|
Katayama M, Gades NM, Singh VP, Devick KL, Zarbatany D, Vaitkus VV, Belohlavek DL, Fortuin FD, Belohlavek M. Doppler-Guided Acoustically Active Injection Catheter: Transendocardial Delivery Assessed by an Efficacy Testing Animal Model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:749-762. [PMID: 33938031 PMCID: PMC11585318 DOI: 10.1002/jum.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Percutaneous transendocardial injections of therapeutic agents into the myocardium may not always be effective. We used an animal model for assessing the efficacy of the injections using linoleic acid as a testing agent. Efficacious delivery into the myocardium of a beating heart was indicated by rapidly developed local myocardial necrosis and wall motion abnormalities using echocardiography. We employed this experimental model to test our innovative technology, an acoustically active injection catheter. The Doppler ultrasound-guided acoustically active injection catheter effectively delivers the substance to the myocardium but needs further technical improvements to minimize an unwanted systemic distribution of the agent.
Collapse
Affiliation(s)
- Minako Katayama
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Katrina L Devick
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona, USA
| | - David Zarbatany
- Independent Engineering Consultant, Laguna Niguel, California, USA
| | - Veronica V Vaitkus
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| | - David L Belohlavek
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| | - F David Fortuin
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marek Belohlavek
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
34
|
Henry TD, Bairey Merz CN, Wei J, Corban MT, Quesada O, Joung S, Kotynski CL, Wang J, Lewis M, Schumacher AM, Bartel RL, Takagi H, Shah V, Lee A, Sietsema WK, Losordo DW, Lerman A. Autologous CD34+ Stem Cell Therapy Increases Coronary Flow Reserve and Reduces Angina in Patients With Coronary Microvascular Dysfunction. Circ Cardiovasc Interv 2022; 15:e010802. [PMID: 35067072 PMCID: PMC8843403 DOI: 10.1161/circinterventions.121.010802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Coronary microvascular dysfunction results in angina and adverse outcomes in patients with evidence of ischemia and nonobstructive coronary artery disease; however, no specific therapy exists. CD34+ cell therapy increases microvasculature in preclinical models and improves symptoms, exercise tolerance, and mortality in refractory angina patients with obstructive coronary artery disease. The objective of this research was to evaluate the safety, tolerability, and efficacy of intracoronary CD34+ cell therapy in patients with coronary microvascular dysfunction. METHODS We conducted a 2-center, 20-participant trial of autologous CD34+ cell therapy (protocol CLBS16-P01; NCT03508609) in patients with ischemia and nonobstructive coronary artery disease with persistent angina and coronary flow reserve ≤2.5. Efficacy measures included coronary flow reserve, angina frequency, Canadian Cardiovascular Society angina class, Seattle Angina Questionnaire, SF-36, and modified Bruce exercise treadmill test obtained at baseline and 6 months after treatment. Autologous CD34+ cells (CLBS16) were mobilized by administration of granulocyte-colony stimulating factor 5µg/kg/day for 5 days and collected by leukapheresis. Participants received a single intracoronary left anterior descending infusion of isolated CD34+ cells in medium that enhances cell function. RESULTS Coronary flow reserve improved from 2.08±0.32 at baseline to 2.68±0.79 at 6 months after treatment (P<0.005). Angina frequency decreased (P<0.004), Canadian Cardiovascular Society class improved (P<0.001), and quality of life improved as assessed by the Seattle Angina Questionnaire (P≤0.03, all scales) and SF-36 (P≤0.04, all scales). There were no cell-related serious adverse events. CONCLUSIONS In this pilot clinical trial of microvascular angina, patients with ischemia and nonobstructive coronary artery disease receiving intracoronary infusion of CD34+ cell therapy had higher coronary flow reserve, less severe angina, and better quality of life at 6 months. The current study supports a potential therapeutic role for CD34+ cells in patients with microvascular angina. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03508609.
Collapse
Affiliation(s)
- Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH (O.Q., T.D.H.)
| | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.N.B.M., J.W., S.J.)
| | - Janet Wei
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.N.B.M., J.W., S.J.)
| | | | - Odayme Quesada
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH (O.Q., T.D.H.)
| | - Sandy Joung
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.N.B.M., J.W., S.J.)
| | - Christine L. Kotynski
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Jian Wang
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Michelle Lewis
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Ann M. Schumacher
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Ronnda L. Bartel
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Hiroshi Takagi
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Vishal Shah
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Anna Lee
- Mayo Clinic, Rochester, MN (M.T.C., A.L.)
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - William K. Sietsema
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Douglas W. Losordo
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Amir Lerman
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| |
Collapse
|
35
|
Oommen S, Cantero Peral S, Qureshi MY, Holst KA, Burkhart HM, Hathcock MA, Kremers WK, Brandt EB, Larsen BT, Dearani JA, Edwards BS, Maleszewski JJ, Nelson TJ. Autologous Umbilical Cord Blood-Derived Mononuclear Cell Therapy Promotes Cardiac Proliferation and Adaptation in a Porcine Model of Right Ventricle Pressure Overload. Cell Transplant 2022; 31:9636897221120434. [PMID: 36086821 PMCID: PMC9465577 DOI: 10.1177/09636897221120434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital heart diseases, including single ventricle circulations, are clinically challenging due to chronic pressure overload and the inability of the myocardium to compensate for lifelong physiological demands. To determine the clinical relevance of autologous umbilical cord blood-derived mononuclear cells (UCB-MNCs) as a therapy to augment cardiac adaptation following surgical management of congenital heart disease, a validated model system of right ventricular pressure overload due to pulmonary artery banding (PAB) in juvenile pigs has been employed. PAB in a juvenile porcine model and intramyocardial delivery of UCB-MNCs was evaluated in three distinct 12-week studies utilizing serial cardiac imaging and end-of-study pathology evaluations. PAB reproducibly induced pressure overload leading to chronic right ventricular remodeling including significant myocardial fibrosis and elevation of heart failure biomarkers. High-dose UCB-MNCs (3 million/kg) delivered into the right ventricular myocardium did not cause any detectable safety issues in the context of arrhythmias or abnormal cardiac physiology. In addition, this high-dose treatment compared with placebo controls demonstrated that UCB-MNCs promoted a significant increase in Ki-67-positive cardiomyocytes coupled with an increase in the number of CD31+ endothelium. Furthermore, the incorporation of BrdU-labeled cells within the myocardium confirmed the biological potency of the high-dose UCB-MNC treatment. Finally, the cell-based treatment augmented the physiological adaptation compared with controls with a trend toward increased right ventricular mass within the 12 weeks of the follow-up period. Despite these adaptations, functional changes as measured by echocardiography and magnetic resonance imaging did not demonstrate differences between cohorts in this surgical model system. Therefore, this randomized, double-blinded, placebo-controlled pre-clinical trial establishes the safety of UCB-MNCs delivered via intramyocardial injections in a dysfunctional right ventricle and validates the induction of cardiac proliferation and angiogenesis as transient paracrine mechanisms that may be important to optimize long-term outcomes for surgically repaired congenital heart diseases.
Collapse
Affiliation(s)
- Saji Oommen
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Susana Cantero Peral
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kimberly A. Holst
- Department of Cardiovascular Surgery,
Mayo Clinic, Rochester, MN, USA
| | - Harold M. Burkhart
- Pediatric Cardiothoracic Surgery, The
University of Oklahoma, Oklahoma City, OK, USA
| | | | - Walter K. Kremers
- Biomedical Statistics and Informatics,
Mayo Clinic, Rochester, MN, USA
| | - Emma B. Brandt
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph A. Dearani
- Department of Cardiovascular Surgery,
Mayo Clinic, Rochester, MN, USA
| | | | | | - Timothy J. Nelson
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
36
|
Salybekov AA, Wolfien M, Kobayashi S, Steinhoff G, Asahara T. Personalized Cell Therapy for Patients with Peripheral Arterial Diseases in the Context of Genetic Alterations: Artificial Intelligence-Based Responder and Non-Responder Prediction. Cells 2021; 10:3266. [PMID: 34943774 PMCID: PMC8699290 DOI: 10.3390/cells10123266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Stem/progenitor cell transplantation is a potential novel therapeutic strategy to induce angiogenesis in ischemic tissue, which can prevent major amputation in patients with advanced peripheral artery disease (PAD). Thus, clinicians can use cell therapies worldwide to treat PAD. However, some cell therapy studies did not report beneficial outcomes. Clinical researchers have suggested that classical risk factors and comorbidities may adversely affect the efficacy of cell therapy. Some studies have indicated that the response to stem cell therapy varies among patients, even in those harboring limited risk factors. This suggests the role of undetermined risk factors, including genetic alterations, somatic mutations, and clonal hematopoiesis. Personalized stem cell-based therapy can be developed by analyzing individual risk factors. These approaches must consider several clinical biomarkers and perform studies (such as genome-wide association studies (GWAS)) on disease-related genetic traits and integrate the findings with those of transcriptome-wide association studies (TWAS) and whole-genome sequencing in PAD. Additional unbiased analyses with state-of-the-art computational methods, such as machine learning-based patient stratification, are suited for predictions in clinical investigations. The integration of these complex approaches into a unified analysis procedure for the identification of responders and non-responders before stem cell therapy, which can decrease treatment expenditure, is a major challenge for increasing the efficacy of therapies.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstrasse 69, 18057 Rostock, Germany;
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Rostock University Medical Center, 18059 Rostock, Germany;
- Department Life, Light & Matter, University of Rostock, 18057 Rostock, Germany
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| |
Collapse
|
37
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
38
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Han C, Yang J, Sun J, Qin G. Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacol Ther 2021; 233:108025. [PMID: 34687770 PMCID: PMC9018895 DOI: 10.1016/j.pharmthera.2021.108025] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are lipid bilayer particles naturally released from the cell. While exosomes are formed as intraluminal vesicles (ILVs) of the multivesicular endosomes (MVEs) and released to extracellular space upon MVE-plasma membrane fusion, microvesicles are generated through direct outward budding of the plasma membrane. Exosomes and microvesicles have same membrane orientation, different yet overlapping sizes; their cargo contents are selectively packed and dependent on the source cell type and functional state. Both exosomes and microvesicles can transfer bioactive RNAs, proteins, lipids, and metabolites from donor to recipient cells and influence the biological properties of the latter. Over the last decade, their potential roles as effective inter-tissue communicators in cardiovascular physiology and pathology have been increasingly appreciated. In addition, EVs are attractive sources of biomarkers for the diagnosis and prognosis of diseases, because they acquire their complex cargoes through cellular processes intimately linked to disease pathogenesis. Furthermore, EVs obtained from various stem/progenitor cell populations have been tested as cell-free therapy in various preclinical models of cardiovascular diseases and demonstrate unequivocally encouraging benefits. Here we summarize the findings from recent research on the biological functions of EVs in the ischemic heart disease and heart failure, and their potential as novel diagnostic biomarkers and therapeutic opportunities.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Junjie Yang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Jiacheng Sun
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Ferdowsi S, Abbasi-Malati Z, Pourfathollah AA. Leukocyte reduction filters as an alternative source of peripheral blood leukocytes for research. Hematol Transfus Cell Ther 2021; 43:494-498. [PMID: 33422490 PMCID: PMC8573042 DOI: 10.1016/j.htct.2020.10.963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Peripheral blood leukocytes are a suitable cell model for science research. However, blood samples from healthy volunteers are limited in volume and difficult to obtain due to the complexity of volunteer recruitment. OBJECTIVE Therefore, it is urgent to find an alternative source of peripheral blood leukocytes. METHOD One of the possibilities is the use of leukocyte reduction filters (LRFs) in blood banks that is used for preparation of leukoreduced blood products. More than 90% of the leukocytes are trapped in the leukofilters allowing the desired blood product to pass through. RESULTS It has been reported that the biological function of leukocytes collected from the filters are no different from those isolated from buffy coats, leukapheresis products and whole blood (WB) cells. Moreover, LRFs are waste products that are discarded after leukoreduction. CONCLUSION Thus, leukofilters represent an economic source of human cell populations that can be used for a variety of investigative purposes, with no cost. In the present study, we reviewed the different usage of LRFs in the research, clinical and commercial applications.
Collapse
Affiliation(s)
- Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Abbasi-Malati
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Tarbiat Modares University, Faculty of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Bassetti B, Rurali E, Gambini E, Pompilio G. Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Front Cardiovasc Med 2021; 8:709795. [PMID: 34552966 PMCID: PMC8450394 DOI: 10.3389/fcvm.2021.709795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
In the last decades, various non-pharmacological solutions have been tested on top of medical therapy for the treatment of patients affected by refractory angina (RA). Among these therapeutics, neuromodulation, external counter-pulsation and coronary sinus constriction have been recently introduced in the guidelines for the management of RA in United States and Europe. Notably and paradoxically, although a consistent body of evidence has proposed cell-based therapies (CT) as safe and salutary for RA outcome, CT has not been conversely incorporated into current international guidelines yet. As a matter of fact, published randomized controlled trials (RCT) and meta-analyses (MTA) cumulatively indicated that CT can effectively increase perfusion, physical function and well-being, thus reducing angina symptoms and drug assumption in RA patients. In this review, we (i) provide an updated overview of novel non-pharmacological therapeutics included in current guidelines for the management of patients with RA, (ii) discuss the Level of Evidence stemmed from available clinical trials for each recommended treatment, and (iii) focus on evidence-based CT application for the management of RA.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Oloker Therapeutics S.r.l., Bari, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Narasimhan B, Narasimhan H, Lorente-Ros M, Romeo FJ, Bhatia K, Aronow WS. Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches. Expert Opin Investig Drugs 2021; 30:947-963. [PMID: 34346802 DOI: 10.1080/13543784.2021.1964471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite tremendous advances, the shortcomings of current therapies for coronary disease are evidenced by the fact that it remains the leading cause of death in many parts of the world. There is hence a drive to develop novel therapies to tackle this disease. Therapeutic approaches to coronary angiogenesis have long been an area of interest in lieu of its incredible, albeit unrealized potential. AREAS COVERED This paper offers an overview of mechanisms of native angiogenesis and a description of angiogenic growth factors. It progresses to outline the advances in gene and stem cell therapy and provides a brief description of other investigational approaches to promote angiogenesis. Finally, the hurdles and limitations unique to this particular area of study are discussed. EXPERT OPINION An effective, sustained, and safe therapeutic option for angiogenesis truly could be the paradigm shift for cardiovascular medicine. Unfortunately, clinically meaningful therapeutic options remain elusive because promising animal studies have not been replicated in human trials. The sheer complexity of this process means that numerous major hurdles remain before therapeutic angiogenesis truly makes its way from the bench to the bedside.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | | | - Marta Lorente-Ros
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Francisco Jose Romeo
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Kirtipal Bhatia
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
43
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
44
|
Lee YN, Wu YJ, Lee HI, Wang HH, Chang CY, Tien TY, Lin CF, Su CH, Yeh HI. Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells. Sci Rep 2021; 11:13449. [PMID: 34188086 PMCID: PMC8242093 DOI: 10.1038/s41598-021-92754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic effects of ultrasonic microbubble transfection (UMT)-based vascular endothelial growth factor 165 (VEGF165) gene delivery on young and senescent endothelial progenitor cells (EPCs) were investigated. By UMT, plasmid DNA (pDNA) can be delivered into both young EPCs and senescent EPCs. In the UMT groups, higher pDNA-derived protein expression was found in senescent EPCs than in young EPCs. Consistent with this finding, a higher intracellular level of pDNA copy number was detected in senescent EPCs, with a peak at the 2-h time point post UMT. Ultrasonic microbubble delivery with or without VEGF improved the angiogenic properties, including the proliferation and/or migration activities, of senescent EPCs. Supernatants from young and senescent EPCs subjected to UMT-mediated VEGF transfection enhanced the proliferation and migration of human aortic endothelial cells (HAECs), and the supernatant of senescent EPCs enhanced proliferation more strongly than the supernatant from young EPCs. In the UMT groups, the stronger enhancing effect of the supernatant from senescent cells on HAEC proliferation was consistent with the higher intracellular VEGF pDNA copy number and level of protein production per cell in the supernatant from senescent cells in comparison to the supernatant from young EPCs. Given that limitations for cell therapies are the inadequate number of transplanted cells and/or insufficient cell angiogenesis, these findings provide a foundation for enhancing the therapeutic angiogenic effect of cell therapy with senescent EPCs in ischaemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan.,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| | - Hsin-I Lee
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Hsueh-Hsiao Wang
- Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Ting-Yi Tien
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Chao-Feng Lin
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan. .,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan.
| | - Hung-I Yeh
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan.,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| |
Collapse
|
45
|
Ozcan I, Toya T, Corban MT, Ahmad A, Loeffler D, Morse D, Lerman LO, Kushwaha SS, Lerman A. Circulating Progenitor Cells Are Associated With Plaque Progression And Long-Term Outcomes In Heart Transplant Patients. Cardiovasc Res 2021; 118:1703-1712. [PMID: 34132771 DOI: 10.1093/cvr/cvab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Circulating progenitor cells (CPCs) play a role in vascular repair and plaque stability, while osteocalcin (OC) expressing CPCs have been linked to unstable plaque and adverse cardiovascular outcomes. However, their role in cardiac allograft vasculopathy (CAV) has not been elucidated. This cohort study aimed to investigate the contribution of CPCs on CAV progression and cardiovascular events after heart transplantation. METHODS AND RESULTS A total of 80 heart transplant patients (mean age 55 ± 14 years, 72% male) undergoing annual intravascular ultrasound (IVUS) had fresh CPCs marked by CD34, CD133, and OC counted in peripheral blood using flow cytometry, on the same day as baseline IVUS. CAV progression was assessed by IVUS as the change (Δ) in plaque volume divided by segment length (PV/SL), adjusted for the time between IVUS measurements (median 3.0, interquartile range (IQR) [2.8, 3.1] years), and was defined as ΔPV/SL that is above the median ΔPV/SL of study population. Major adverse cardiac events (MACE) was defined as any incident of revascularization, myocardial infarction, heart failure admission, re-transplantation, stroke and death. Patients with higher CD34+CD133+ CPCs had a decreased risk of CAV progression (odds ratio 0.58, 95% confidence interval [CI] [0.37, 0.92], p = 0.01) and MACE (hazard ratio [HR] 0.79, 95% CI [0.66, 0.99], p = 0.05) during a median (IQR) follow up of 8.0 years (7.2, 8.3). Contrarily, higher OC+ cell counts were associated with an increased risk of MACE (HR 1.26, 95% CI [1.03, 1.57], p = 0.02). CONCLUSIONS Lower levels of CD34+CD133+ CPCs are associated with plaque progression and adverse long-term outcomes in patients who underwent allograft heart transplantation. In contrast, higher circulating OC+ levels are associated with adverse long term outcomes. Thus, CPCs might play a role in amelioration of transplant vasculopathy, while OC expression by these cells might play a role in progression. TRANSLATIONAL PERSPECTIVE The results of the current study suggest lower levels of circulating CD34+CD133+ cell levels are associated with cardiac allograft vasculopathy progression and future adverse cardiovascular events, while higher OC+ cell levels are associated with a greater risk of future cardiovascular events. Further studies confirming our findings might elucidate the role of circulating progenitor cells in the pathophysiology of CAV. Moreover, our findings might support the use of circulating progenitors as biomarkers, as well as the notion of cell therapy as potential treatment option for CAV, a disease with severe burden and limited treatment options.
Collapse
Affiliation(s)
- Ilke Ozcan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Michel T Corban
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ali Ahmad
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Darrell Loeffler
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
Tripathi H, Peng H, Donahue R, Chelvarajan L, Gottipati A, Levitan B, Al-Darraji A, Gao E, Abdel-Latif A, Berron BJ. Isolation Methods for Human CD34 Subsets Using Fluorescent and Magnetic Activated Cell Sorting: an In Vivo Comparative Study. Stem Cell Rev Rep 2021; 16:413-423. [PMID: 31953639 DOI: 10.1007/s12015-019-09939-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) and resulting cardiac damage and heart failure are leading causes of morbidity and mortality worldwide. Multiple studies have examined the utility of CD34+ cells for the treatment of acute and ischemic heart disease. However, the optimal strategy to enrich CD34 cells from clinical sources is not known. We examined the efficacy of fluorescence activated cell sorting (FACS) and magnetic beads cell sorting (MACS) methods for CD34 cell isolation from mobilized human mononuclear peripheral blood cells (mhPBMNCs). METHODS mhPBCs were processed following acquisition using FACS or MACS according to clinically established protocols. Cell viability, CD34 cell purity and characterization of surface marker expression were assessed using a flow cytometer. For in vivo characterization of cardiac repair, we conducted LAD ligation surgery on 8-10 weeks female NOD/SCID mice followed by intramyocardial transplantation of unselected mhPBMNCs, FACS or MACS enriched CD34+ cells. RESULTS Both MACS and FACS isolation methods achieved high purity rates, viability, and enrichment of CD34+ cells. In vivo studies following myocardial infarction demonstrated retention of CD34+ in the peri-infarct region for up to 30 days after transplantation. Retained CD34+ cells were associated with enhanced angiogenesis and reduced inflammation compared to unselected mhPBMNCs or PBS treatment arms. Cardiac scar and fibrosis as assessed by immunohistochemistry were reduced in FACS and MACS CD34+ treatment groups. Finally, reduced scar and augmented angiogenesis resulted in improved cardiac functional recovery, both on the global and regional function and remodeling assessments by echocardiography. CONCLUSION Cell based therapy using enriched CD34+ cells sorted by FACS or MACS result in better cardiac recovery after ischemic injury compared to unselected mhPBMNCs. Both enrichment techniques offer excellent recovery and purity and can be equally used for clinical applications.
Collapse
Affiliation(s)
- Himi Tripathi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Hsuan Peng
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Renee Donahue
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Lakshman Chelvarajan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Anuhya Gottipati
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Bryana Levitan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Ahmed Al-Darraji
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Erhe Gao
- The Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Bradley J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
47
|
Abstract
For therapeutic materials to be successfully delivered to the heart, several barriers need to be overcome, including the anatomical challenges of access, the mechanical force of the blood flow, the endothelial barrier, the cellular barrier and the immune response. Various vectors and delivery methods have been proposed to improve the cardiac-specific uptake of materials to modify gene expression. Viral and non-viral vectors are widely used to deliver genetic materials, but each has its respective advantages and shortcomings. Adeno-associated viruses have emerged as one of the best tools for heart-targeted gene delivery. In addition, extracellular vesicles, including exosomes, which are secreted by most cell types, have gained popularity for drug delivery to several organs, including the heart. Accumulating evidence suggests that extracellular vesicles can carry and transfer functional proteins and genetic materials into target cells and might be an attractive option for heart-targeted delivery. Extracellular vesicles or artificial carriers of non-viral and viral vectors can be bioengineered with immune-evasive and cardiotropic properties. In this Review, we discuss the latest strategies for targeting and delivering therapeutic materials to the heart and how the knowledge of different vectors and delivery methods could successfully translate cardiac gene therapy into the clinical setting.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Taro Kariya
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
48
|
Davies A, Fox K, Galassi AR, Banai S, Ylä-Herttuala S, Lüscher TF. Management of refractory angina: an update. Eur Heart J 2021; 42:269-283. [PMID: 33367764 DOI: 10.1093/eurheartj/ehaa820] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the use of anti-anginal drugs and/or percutaneous coronary interventions (PCI) or coronary artery bypass grafting, the proportion of patients with coronary artery disease who have daily or weekly angina ranges from 2% to 24%. Refractory angina refers to long-lasting symptoms (for >3 months) due to established reversible ischaemia, which cannot be controlled by escalating medical therapy with the use of 2nd- and 3rd-line pharmacological agents, bypass grafting, or stenting. While there is uncertain prognostic benefit, the treatment of refractory angina is important to improve the quality of life of the patients affected. This review focuses on conventional pharmacological approaches to treating refractory angina, including guideline directed drug combination and dosages. The symptomatic and prognostic impact of advanced and novel revascularization strategies such as chronic total occlusion PCI, transmyocardial laser revascularization, coronary sinus occlusion, radiation therapy for recurrent restenosis, and spinal cord stimulation are also covered and recommendations of the 2019 ESC Guidelines on the Diagnosis and Management of Chronic Coronary Syndromes discussed. Finally, the potential clinical use of current angiogenetic and stem cell therapies in reducing ischaemia and/or pain is evaluated.
Collapse
Affiliation(s)
- Allan Davies
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.,Royal Brompton & Harefield Hospitals, London, UK
| | - Kim Fox
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.,Royal Brompton & Harefield Hospitals, London, UK
| | | | - Shmuel Banai
- Slezak Super Centre for Cardiac Research, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Medical Centre, Tel Aviv, Israel
| | | | - Thomas F Lüscher
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.,Royal Brompton & Harefield Hospitals, London, UK.,University of Zurich, Center for Molecular Cardiology, University of Zurich, Switzerland
| |
Collapse
|
49
|
Matta A, Nader V, Galinier M, Roncalli J. Transplantation of CD34+ cells for myocardial ischemia. World J Transplant 2021; 11:138-146. [PMID: 34046316 PMCID: PMC8131931 DOI: 10.5500/wjt.v11.i5.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
CD34+ cells are multipotent hematopoietic stem cells also known as endothelial progenitor cells and are useful in regenerative medicine. Naturally, these cells are mobilized from the bone marrow into peripheral circulation in response to ischemic tissue injury. CD34+ cells are known for their high proliferative and differentiation capacities that play a crucial role in the repair process of myocardial damage. They have an important paracrine activity in secreting factors to stimulate vasculogenesis, reduce endothelial cells and cardiomyocytes apoptosis, remodel extracellular matrix and activate additional progenitor cells. Once they migrate to the target site, they enhance angiogenesis, neovascularization and tissue regeneration. Several trials have demonstrated the safety and efficacy of CD34+ cell therapy in different settings, such as peripheral limb ischemia, stroke and cardiovascular disease. Herein, we review the potential utility of CD34+ cell transplantation in acute myocardial infarction, refractory angina and ischemic heart failure.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
- Faculty of Medicine, Holy Spirit University of Kaslik, Kaslik 00000, Lebanon
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
- Faculty of Pharmacy, Lebanese University, Beirut 961, Lebanon
| | - Michel Galinier
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
| |
Collapse
|
50
|
Rai B, Shukla J, Henry TD, Quesada O. Angiogenic CD34 Stem Cell Therapy in Coronary Microvascular Repair-A Systematic Review. Cells 2021; 10:1137. [PMID: 34066713 PMCID: PMC8151216 DOI: 10.3390/cells10051137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemia with non-obstructive coronary arteries (INOCA) is an increasingly recognized disease, with a prevalence of 3 to 4 million individuals, and is associated with a higher risk of morbidity, mortality, and a worse quality of life. Persistent angina in many patients with INOCA is due to coronary microvascular dysfunction (CMD), which can be difficult to diagnose and treat. A coronary flow reserve <2.5 is used to diagnose endothelial-independent CMD. Antianginal treatments are often ineffective in endothelial-independent CMD and thus novel treatment modalities are currently being studied for safety and efficacy. CD34+ cell therapy is a promising treatment option for these patients, as it has been shown to promote vascular repair and enhance angiogenesis in the microvasculature. The resulting restoration of the microcirculation improves myocardial tissue perfusion, resulting in the recovery of coronary microvascular function, as evidenced by an improvement in coronary flow reserve. A pilot study in INOCA patients with endothelial-independent CMD and persistent angina, treated with autologous intracoronary CD34+ stem cells, demonstrated a significant improvement in coronary flow reserve, angina frequency, Canadian Cardiovascular Society class, and quality of life (ESCaPE-CMD, NCT03508609). This work is being further evaluated in the ongoing FREEDOM (NCT04614467) placebo-controlled trial.
Collapse
Affiliation(s)
- Balaj Rai
- Lindner Center for Research, The Christ Hospital, Cincinnati, OH 45219, USA; (B.R.); (T.D.H.)
| | - Janki Shukla
- Department of Internal Medicine, University of Cincinnati Medical School, Cincinnati, OH 45219, USA;
| | - Timothy D. Henry
- Lindner Center for Research, The Christ Hospital, Cincinnati, OH 45219, USA; (B.R.); (T.D.H.)
| | - Odayme Quesada
- Lindner Center for Research, The Christ Hospital, Cincinnati, OH 45219, USA; (B.R.); (T.D.H.)
- Women’s Heart Center, Vascular and Lung Institute, The Christ Hospital, Cincinnati, OH 45219, USA
| |
Collapse
|