1
|
Cao L, Chen C, Pi W, Zhang Y, Xue S, Yong VW, Xue M. Exploring medical gas therapy in hemorrhagic stroke treatment: A narrative review. Nitric Oxide 2025; 156:94-106. [PMID: 40127886 DOI: 10.1016/j.niox.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Hemorrhagic stroke (HS) is a neurological disorder caused by the rupture of cerebral blood vessels, resulting in blood seeping into the brain parenchyma and causing varying degrees of neurological impairment, including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). Current treatment methods mainly include hematoma evacuation surgery and conservative treatment. However, these methods have limited efficacy in enhancing neurological function and prognosis. The current challenge in treating HS lies in inhibiting the occurrence and progression of secondary brain damage after bleeding, which is a key factor affecting the prognosis of HS patients. Studies have shown that medical gas therapy is gaining more attention and has demonstrated various levels of neuroprotective effects on central nervous system disorders, such as hyperbaric oxygen, hydrogen sulfide, nitric oxide, carbon monoxide, and other inhalable gas molecules. These medical gas molecules primarily improve brain tissue damage and neurological dysfunction by regulating inflammation, oxidative stress, apoptosis, and other processes. However, many of these medical gasses also possess neurotoxic properties. Therefore, the use of medical gases in HS deserves further exploration and research. In this review, we will elucidate the therapeutic effects and study the advances in medical gas molecules in HS.
Collapse
Affiliation(s)
- Liang Cao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Chen Chen
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Sara Xue
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Kasner SE, Bath PM, Hill MD, Volpi JJ, Giuffre M, Masuoka L, Wambeke D, Madeddu PR. Recombinant Human Tissue Kallikrein-1 for Treating Acute Ischemic Stroke and Preventing Recurrence. Stroke 2025; 56:745-753. [PMID: 39758014 PMCID: PMC11850014 DOI: 10.1161/strokeaha.124.048858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Novel strategies are needed for the treatment of acute ischemic stroke when revascularization therapies are not clinically appropriate or are unsuccessful. rKLK1 (recombinant human tissue kallikrein-1), a bradykinin-producing enzyme, offers a promising potential solution. In animal studies of acute stroke, there is a marked 36-fold increase in bradykinin B2 receptor on brain endothelial cells of the ischemic region. Due to this environment, rKLK1-generated bradykinin will exert a potent local vasodilation and increase brain perfusion via 3 synergistic signaling pathways downstream to the B2 receptor. Because of its preferential effect on ischemic tissue, systemic adverse effects such as hypotension are avoided with proper dosing. In addition, with initial vasodilation through recruitment of preexisting collaterals, rKLK1 promotes long-term benefit of brain perfusion by promoting new collateral formation. With an extended course of therapy for weeks after acute ischemic stroke, these multifaceted effects may also reduce the risk of stroke recurrence. A prior phase II trial demonstrated a favorable impact on clinical outcomes and recurrent strokes, particularly among patients who were not eligible for mechanical thrombectomy. A phase II/III trial has launched in this population, though opportunities for combination revascularization therapies deserve further investigation.
Collapse
Affiliation(s)
- Scott E. Kasner
- University of Pennsylvania School of Medicine, Division of Vascular Neurology, Philadelphia (S.E.K.)
| | - Philip M. Bath
- Stroke Trials Unit, University of Nottingham, United Kingdom (P.M.B.)
| | - Michael D. Hill
- Department of Clinical Neuroscience and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary and Foothills Medical Centre, Alberta, Canada (M.D.H.)
| | - John J. Volpi
- Houston Methodist, Department of Neurology, Houston, TX (J.J.V.)
| | - Michael Giuffre
- Faculty of Medicine, University of Calgary, Alberta, Canada (M.G.)
| | | | | | - Paolo R. Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, United Kingdom (P.R.M.)
| |
Collapse
|
3
|
Long DA, Gibbons KS, Horton SB, Johnson K, Buckley DHF, Erickson S, Festa M, d’Udekem Y, Alphonso N, Le Marsney R, Winlaw DS, Masterson K, van Loon K, Young PJ, Schibler A, Schlapbach LJ, Butt W. Neurodevelopmental Outcomes After Nitric Oxide During Cardiopulmonary Bypass for Open Heart Surgery: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2458040. [PMID: 39908019 PMCID: PMC11800016 DOI: 10.1001/jamanetworkopen.2024.58040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
Importance Children with congenital heart defects who undergo cardiopulmonary bypass (CPB) surgery are at risk for delayed or impaired neurodevelopmental outcomes. Nitric oxide (NO) added to the CPB oxygenator may reduce systemic inflammation due to CPB and improve recovery from surgery, including improved neurodevelopmental outcomes. Objective To investigate neurodevelopment, health-related quality of life (HRQOL), and factors associated with impaired neurodevelopment at 12 months post surgery in infants who received CPB with NO or standard CPB. Design, Setting, and Participants This double-masked randomized clinical trial was conducted in 6 centers in Australia, New Zealand, and the Netherlands between July 19, 2017, and April 28, 2021, with a preplanned prospective follow-up 12 months postrandomization completed on August 5, 2022. The cohort included 1364 infants younger than 2 years who underwent open heart surgery with CPB for congenital heart disease. Interventions The intervention group received NO 20 ppm into the CPB oxygenator. The control group received standard CPB. Main Outcomes and Measures The primary outcome was neurodevelopment, defined as the Ages and Stages Questionnaire, Third Edition (ASQ-3) total score. Secondary outcomes were HRQOL and functional status as measured by Pediatric Quality of Life Inventory and modified Pediatric Overall Performance Category scores, respectively. Sensitivity analyses modeled the outcome for patients lost to follow-up. Results Of 1318 infants alive 12 months after randomization, follow-up was performed in 927, with 462 patients in the NO group and 465 in the standard care group (median [IQR] age at follow-up, 16.6 [13.7-19.8] months; median [IQR] time since randomization, 12.7 [12.1-13.9] months; 516 male [55.7%]). There were no differences between the NO and standard care groups in ASQ-3 total score (mean [SD], 196.6 [75.4] vs 198.7 [73.8], respectively; adjusted mean difference, -2.24; 95% CI, -11.84 to 7.36). There were no differences in secondary outcomes. Prematurity (gestational age <37 weeks), univentricular lesions, congenital syndromes, and longer intensive care unit length of stay were associated with lower ASQ-3 total scores in adjusted multivariable analyses. Conclusions and Relevance In this randomized clinical trial of infants with congenital heart disease, NO administered via the CPB oxygenator did not improve neurodevelopmental outcomes or HRQOL 12 months after open heart surgery. Further research should explore homogenous cohorts with higher surgical risk and higher-dose or alternative therapies. Trial Registration ANZCTR Identifier: ACTRN12617000821392.
Collapse
Affiliation(s)
- Debbie A. Long
- School of Nursing, Centre for Healthcare Transformation, Queensland University of Technology, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Kristen S. Gibbons
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Stephen B. Horton
- Cardiac Surgical Unit, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Clinical Sciences Theme, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Kerry Johnson
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - David H. F. Buckley
- Paediatric Intensive Care Unit, Starship Children’s Hospital, Auckland, New Zealand
| | - Simon Erickson
- Paediatric Critical Care, Perth Children’s Hospital, Western Australia and The University of Western Australia, Crawley, Australia
| | - Marino Festa
- Kids Critical Care Research, Paediatric Intensive Care Unit, Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Children’s Hospital Network, Sydney, New South Wales, Australia
| | - Yves d’Udekem
- Faculty of Medicine, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Children’s National Hospital and The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Nelson Alphonso
- Cardiac Surgery, Queensland Children’s Hospital, Brisbane, Australia
- School of Medicine, Children’s Health Clinical Unit, The University of Queensland, Brisbane, Australia
| | - Renate Le Marsney
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - David S. Winlaw
- Heart Centre for Children, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Children’s Hospital Network and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kate Masterson
- Clinical Sciences Theme, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Paediatric Intensive Care Unit, Royal Children’s Hospital Melbourne, Melbourne, Victoria, Australia
| | - Kim van Loon
- Department of Anaesthesiology, University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Paul J. Young
- Intensive Care Unit, Wellington Hospital, Wellington, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Schibler
- James Cook University, Townsville, Queensland, Australia
- Critical Care Research Group, Wesley Medical Research, St Andrew’s War Memorial Hospital, Brisbane, Queensland, Australia
| | - Luregn J. Schlapbach
- Paediatric Intensive Care Unit, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Department of Intensive Care and Neonatology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Warwick Butt
- Faculty of Medicine, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Clinical Sciences Theme, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Anaesthesiology, University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, the Netherlands
- Department of Critical Care, University of Melbourne, Melbourne, Victoria, Australia
- Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Jiang S, Ding Y, Wang H, Kim E, Geng X. Neuroprotective Potential of Nitroglycerin in Ischemic Stroke: Insights into Neural Glucose Metabolism and Endoplasmic Reticulum Stress Inhibition. J Am Heart Assoc 2024; 13:e035382. [PMID: 39575751 PMCID: PMC11935545 DOI: 10.1161/jaha.124.035382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Glyceryl trinitrate (GTN), also known as nitroglycerin, is predominantly recognized as a vasodilator for ischemic heart disease, and its potential neuroprotective properties in acute ischemic stroke remain under exploration. We sought to discover the therapeutic advantages and mechanisms of post-recanalization GTN administration in acute ischemic stroke. METHODS AND RESULTS A total of 118 male Sprague-Dawley rats were divided into groups: sham, transient/permanent middle cerebral artery occlusion (MCAO) with or without GTN treatment, and transient/permanent MCAO treated with both GTN and KT5823, an inhibitor of PKG. Acute ischemic stroke was induced by transient MCAO for 2 hours followed by 6 or 24 hours of reperfusion and permanent MCAO (28-hour MCAO without reperfusion). The study assessed infarct volumes, neurological deficits, glucose metabolism metrics, NO, and cGMP levels via ELISA. mRNA and protein expression of key molecules of hyperglycolysis, gluconeogenesis, endoplasmic reticulum stress as well as signaling molecules (PKG, AMPK) were conducted via reverse transcription polymerase chain reaction and Western blotting, and cell death was assessed with TUNEL and ELISA. GTN significantly reduced cerebral infarct volumes, neurological deficits, and cell death only after transient MCAO. GTN led to a significant reduction in the expression of NO and cGMP levels, key glucose metabolism, endoplasmic reticulum stress-related genes and proteins, and phosphorylated AMPK while boosting PKG expression, in transient MCAO but not permanent MCAO. The GTN-induced reduction in glucose metabolites, lactate, and reactive oxygen species was exclusive to transient MCAO groups. Coadministration of GTN and PKG inhibitors reversed the observed GTN benefits. CONCLUSIONS GTN induced neuroprotection in transient MCAO by improving glucose metabolism and potentially controlling endoplasmic reticulum stress through the NO-cGMP-PKG signaling cascade to inhibit AMPK phosphorylation.
Collapse
Affiliation(s)
- Shangqian Jiang
- Neuroscience Institute, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMI
| | - Hongrui Wang
- Neuroscience Institute, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Enoch Kim
- Department of NeurosurgeryWayne State University School of MedicineDetroitMI
| | - Xiaokun Geng
- Neuroscience Institute, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWayne State University School of MedicineDetroitMI
| |
Collapse
|
5
|
Ezra M, Franko E, Spronk DB, Lamb C, Okell TW, Pattinson KT. Trial of the cerebral perfusion response to sodium nitrite infusion in patients with acute subarachnoid haemorrhage using arterial spin labelling MRI. Nitric Oxide 2024; 153:50-60. [PMID: 39369814 DOI: 10.1016/j.niox.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a devastating subset of stroke. One of the major determinants of outcome is an evolving multifactorial injury occurring in the first 72 hours, known as early brain injury. Reduced nitric oxide (NO) bioavailability and an associated disruption to cerebral perfusion is believed to play an important role in this process. We sought to explore this relationship, by examining the effect on cerebral perfusion of the in vivo manipulation of NO levels using an exogenous NO donor (sodium nitrite). We performed a double blind placebo controlled randomised experimental medicine study of the cerebral perfusion response to sodium nitrite infusion during the early brain injury period in 15 low grade (World Federation of Neurosurgeons grade 1-2) SAH patients. Patients were randomly assigned to receive sodium nitrite at 10 mcg/kg/min or saline placebo. Assessment occurred following endovascular aneurysm occlusion, mean time after ictus 66h (range 34-90h). Cerebral perfusion was quantified before infusion commencement and after 3 hours, using multi-post labelling delay (multi-PLD) vessel encoded pseudocontinuous arterial spin labelling (VEPCASL) magnetic resonance imaging (MRI). Administration of sodium nitrite was associated with a significant increase in average grey matter cerebral perfusion. Group level voxelwise analysis identified that increased perfusion occurred within regions of the brain known to exhibit enhanced vulnerability to injury. These findings highlight the role of impaired NO bioavailability in the pathophysiology of early brain injury.
Collapse
Affiliation(s)
- Martyn Ezra
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Edit Franko
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Desiree B Spronk
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Catherine Lamb
- Neuro Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kyle Ts Pattinson
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Mutimer CA, Mujanovic A, Kaesmacher J, Churilov L, Kleinig TJ, Parsons MW, Mitchell PJ, Campbell BCV, Ng F. Comparison of Perfusion Imaging Definitions of the No-Reflow Phenomenon after Thrombectomy-What Is the Best Perfusion Imaging Definition? Ann Neurol 2024; 96:1104-1114. [PMID: 39225109 DOI: 10.1002/ana.27073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The no-reflow phenomenon is a potential contributor to poor outcome despite successful thrombectomy. There are multiple proposed imaging-based definitions of no-reflow leading to wide variations in reported prevalence. We investigated the agreement between existing imaging definitions and compared the characteristics and outcomes of patients identified as having no-reflow. METHODS We performed an external validation of 4 existing published definitions of no-reflow in thrombectomy patients with extended Thrombolysis in Cerebral Infarction scale 2c to 3 (eTICI2c-3) angiographic reperfusion who underwent 24-hour perfusion imaging from 2 international randomized controlled trials (EXTEND-IA TNK part-1 and 2) and a multicenter prospective observational study. Receiver-operating-characteristic and Bayesian-information-criterion (BIC) analyses were performed with the outcome variable being dependent-or-dead at 90-days (modified Rankin Score [mRS] ≥3). RESULTS Of 131 patients analyzed, the prevalence of no-reflow significantly varied between definitions (0.8-22.1%; p < 0.001). There was poor agreement between definitions (kappa 5/6 comparisons <0.212). Among patients with no-reflow according to at least 1 definition, there were significant differences between definitions in the intralesional interside differences in cerebral blood flow (CBF) (p = 0.006), cerebral blood volume (CBV) (p < 0.001), and mean-transit-time (MTT) (p = 0.005). No-reflow defined by 3 definitions was associated with mRS ≥3 at 90 days. The definition of >15% CBV or CBF asymmetry was the only definition that improved model fit on BIC analysis (ΔBIC = -8.105) and demonstrated an association between no-reflow and clinical outcome among patients with eTICI3 reperfusion. CONCLUSIONS Existing imaging definitions of no-reflow varied significantly in prevalence and post-treatment perfusion imaging profile, potentially explaining the variable prevalence of no-reflow reported in literature. The definition of >15% CBV or CBF asymmetry best discriminated for functional outcome at 90 days, including patients with eTICI3 reperfusion. ANN NEUROL 2024;96:1104-1114.
Collapse
Affiliation(s)
- Chloe A Mutimer
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Adnan Mujanovic
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Johannes Kaesmacher
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Leonid Churilov
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Timothy J Kleinig
- Department of Neurology, Royal Adelaide Hospital, Adelaide, Australia
| | - Mark W Parsons
- University of New South Wales, Liverpool Hospital, Sydney, Australia
| | - Peter J Mitchell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Radiology, Royal Melbourne Hospital, Parkville, Australia
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Felix Ng
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Neurology, Austin Health, Parkville, Australia
| |
Collapse
|
8
|
Sato Y, Li Y, Kato Y, Kanoke A, Sun JY, Nishijima Y, Wang RK, Stryker M, Endo H, Liu J. Type 2 diabetes remodels collateral circulation and promotes leukocyte adhesion following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619748. [PMID: 39484619 PMCID: PMC11526934 DOI: 10.1101/2024.10.23.619748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with impaired leptomeningeal collateral compensation and poor stroke outcome. Neutrophils tethering and rolling on endothelium after stroke can also independently reduce flow velocity. However, the chronology and topological changes in collateral circulation in T2DM is not yet defined. Here, we describe the spatial and temporal blood flow dynamics and vessel remodeling in pial arteries and veins and leukocyte-endothelial adhesion following middle cerebral artery (MCA) stroke using two-photon microscopy in awake control and T2DM mice. Relative to control mice prior to stroke, T2DM mice already exhibited smaller pial vessels with reduced flow velocity. Following stroke, T2DM mice displayed persistently reduced blood flow in pial arteries and veins, resulting in a poor recovery of downstream penetrating arterial flow and a sustained deficit in microvascular flow. There was also persistent increase of leukocyte adhesion to the endothelium of veins, coincided with elevated neutrophils infiltration into brain parenchyma in T2DM mice compared to control mice after stroke. Our data suggest that T2DM-induced increase in chronic inflammation may contribute to the remodeling of leptomeningeal collateral circulation and the observed hemodynamics deficiency that potentiates poor stroke outcome.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuya Kato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kanoke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jennifer Y Sun
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- University College London, Institute of Ophthalmology, London, UK
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ruikang K. Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Stryker
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jialing Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
| |
Collapse
|
9
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, M SC, Jose DA, Torres K, Guzman J, Dunn A, T PK, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024:10.1007/s12975-024-01295-0. [PMID: 39294532 DOI: 10.1007/s12975-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus, 12/15-LOX is an important target to prevent delayed cerebral ischemia. SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day 5 to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. In SAH mice, 12/15-LOX was upregulated in brain vascular cells, and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| | - Sung Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Shafeeque C M
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Dania A Jose
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - P Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| |
Collapse
|
10
|
Walczak P, Ji X, Li S, Boltze J. Effects of immunological processes and mild ambient atmosphere alterations on the brain in health and disease. NEUROPROTECTION 2024; 2:179-181. [PMID: 39346949 PMCID: PMC7616641 DOI: 10.1002/nep3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Affiliation(s)
- Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland, Baltimore, Maryland, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shen Li
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
11
|
Mei J, Salim HA, Lakhani DA, Balar A, Musmar B, Adeeb N, Hoseinyazdi M, Luna L, Deng F, Hyson NZ, Dmytriw AA, Guenego A, Faizy TD, Heit JJ, Albers GW, Urrutia VC, Llinas R, Marsh EB, Hillis AE, Nael K, Yedavalli VS. Lower admission stroke severity is associated with good collateral status in distal medium vessel occlusion stroke. J Neuroimaging 2024; 34:424-429. [PMID: 38797931 DOI: 10.1111/jon.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Distal medium vessel occlusions (DMVOs) are a significant contributor to acute ischemic stroke (AIS), with collateral status (CS) playing a pivotal role in modulating ischemic damage progression. We aimed to explore baseline characteristics associated with CS in AIS-DMVO. METHODS This retrospective analysis of a prospectively collected database enrolled 130 AIS-DMVO patients from two comprehensive stroke centers. Baseline characteristics, including patient demographics, admission National Institutes of Health Stroke Scale (NIHSS) score, admission Los Angeles Motor Scale (LAMS) score, and co-morbidities, including hypertension, hyperlipidemia, diabetes, coronary artery disease, atrial fibrillation, and history of transient ischemic attack or stroke, were collected. The analysis was dichotomized to good CS, reflected by hypoperfusion index ratio (HIR) <.3, versus poor CS, reflected by HIR ≥.3. RESULTS Good CS was observed in 34% of the patients. As to the occluded location, 43.8% occurred in proximal M2, 16.9% in mid M2, 35.4% in more distal middle cerebral artery, and 3.8% in distal anterior cerebral artery. In multivariate logistic analysis, a lower NIHSS score and a lower LAMS score were both independently associated with a good CS (odds ratio [OR]: 0.88, 95% confidence interval [CI]: 0.82-0.95, p < .001 and OR: 0.77, 95% CI: 0.62-0.96, p = .018, respectively). Patients with poor CS were more likely to manifest as moderate to severe stroke (29.1% vs. 4.5%, p < .001), while patients with good CS had a significantly higher chance of having a minor stroke clinically (40.9% vs. 12.8%, p < .001). CONCLUSIONS CS remains an important determinant in the severity of AIS-DMVO. Collateral enhancement strategies may be a worthwhile pursuit in AIS-DMVO patients with more severe initial stroke presentation, which can be swiftly identified by the concise LAMS and serves as a proxy for underlying poor CS.
Collapse
Affiliation(s)
- Janet Mei
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Hamza A Salim
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
- Neuroendovascular Program, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Dhairya A Lakhani
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Aneri Balar
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Basel Musmar
- Department of Neurosurgery and Interventional Neuroradiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nimer Adeeb
- Department of Neurosurgery and Interventional Neuroradiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meisam Hoseinyazdi
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Licia Luna
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Francis Deng
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Nathan Z Hyson
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
- Neurovascular Centre, Departments of Medical Imaging and Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Adrien Guenego
- Department of Diagnostic and Interventional Neuroradiology, Erasme University Hospital, Brussels, Belgium
| | - Tobias D Faizy
- Department of Radiology, Neuroendovascular Program, University Medical Center Münster, Munster, Germany
| | - Jeremy J Heit
- Department of Interventional Neuroradiology, Stanford Medical Center, Palo Alto, California, USA
| | - Gregory W Albers
- Department of Interventional Neuroradiology, Stanford Medical Center, Palo Alto, California, USA
| | - Victor C Urrutia
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Raf Llinas
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Elisabeth B Marsh
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Argye E Hillis
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Kambiz Nael
- Dept. Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Vivek S Yedavalli
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, Shafeeque CM, Jose DA, Torres K, Guzman J, Dunn A, P Kumar T, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi after Subarachnoid Hemorrhage in Mice. RESEARCH SQUARE 2024:rs.3.rs-4468292. [PMID: 38947083 PMCID: PMC11213206 DOI: 10.21203/rs.3.rs-4468292/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background and Purpose Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus 12/15-LOX is an important target to prevent delayed cerebral ischemia. Methods SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day five to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and for development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. Results In SAH mice, 12/15-LOX was upregulated in brain vascular cells and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Conclusions Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Sung Ha Hong
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Sithara Thomas
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - C M Shafeeque
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Dania A Jose
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Kiara Torres
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Jose Guzman
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - T P Kumar
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Spiros L Blackburn
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Devin W McBride
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| |
Collapse
|
13
|
Becerra Calderon A, Shroff UN, Deepak S, Izuhara A, Trogen G, McDonough AA, Gurley SB, Nelson JW, Peti‐Peterdi J, Gyarmati G. Angiotensin II Directly Increases Endothelial Calcium and Nitric Oxide in Kidney and Brain Microvessels In Vivo With Reduced Efficacy in Hypertension. J Am Heart Assoc 2024; 13:e033998. [PMID: 38726925 PMCID: PMC11179802 DOI: 10.1161/jaha.123.033998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.
Collapse
Affiliation(s)
- Alejandra Becerra Calderon
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Urvi Nikhil Shroff
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Sachin Deepak
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Audrey Izuhara
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Greta Trogen
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Alicia A. McDonough
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
| | - Susan B. Gurley
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | | | - János Peti‐Peterdi
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Georgina Gyarmati
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
14
|
Jia M, Jin F, Li S, Ren C, Ruchi M, Ding Y, Zhao W, Ji X. No-reflow after stroke reperfusion therapy: An emerging phenomenon to be explored. CNS Neurosci Ther 2024; 30:e14631. [PMID: 38358074 PMCID: PMC10867879 DOI: 10.1111/cns.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
In the field of stroke thrombectomy, ineffective clinical and angiographic reperfusion after successful recanalization has drawn attention. Partial or complete microcirculatory reperfusion failure after the achievement of full patency of a former obstructed large vessel, known as the "no-reflow phenomenon" or "microvascular obstruction," was first reported in the 1960s and was later detected in both experimental models and patients with stroke. The no-reflow phenomenon (NRP) was reported to result from intraluminal occlusions formed by blood components and extraluminal constriction exerted by the surrounding structures of the vessel wall. More recently, an emerging number of clinical studies have estimated the prevalence of the NRP in stroke patients following reperfusion therapy, ranging from 3.3% to 63% depending on its evaluation methods or study population. Studies also demonstrated its detrimental effects on infarction progress and neurological outcomes. In this review, we discuss the research advances, underlying pathogenesis, diagnostic techniques, and management approaches concerning the no-reflow phenomenon in the stroke population to provide a comprehensive understanding of this phenomenon and offer references for future investigations.
Collapse
Affiliation(s)
- Milan Jia
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Feiyang Jin
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Sijie Li
- Department of Emergency, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Mangal Ruchi
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Wenbo Zhao
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Sienel RI, Mamrak U, Biller J, Roth S, Zellner A, Parakaw T, Khambata RS, Liesz A, Haffner C, Ahluwalia A, Seker BF, Plesnila N. Inhaled nitric oxide suppresses neuroinflammation in experimental ischemic stroke. J Neuroinflammation 2023; 20:301. [PMID: 38102677 PMCID: PMC10725028 DOI: 10.1186/s12974-023-02988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation. Mice were subjected to experimental stroke and received inhaled NO (iNO; 50 ppm) after reperfusion. iNO normalized vascular cyclic guanosine monophosphate (cGMP) levels, reduced the elevated expression of intercellular adhesion molecule-1 (ICAM-1), and returned leukocyte adhesion to baseline levels. Reduction of vascular pathology significantly reduced the inflammatory cytokines interleukin-1β (Il-1β), interleukin-6 (Il-6), and tumor necrosis factor-α (TNF-α), within the brain parenchyma. These findings suggest that vascular dysfunction is responsible for leukocyte adhesion and that these processes drive parenchymal inflammation. Reversing vascular dysfunction may therefore emerge as a novel approach to diminish neuroinflammation after ischemic stroke and possibly other ischemic disorders.
Collapse
Affiliation(s)
- Rebecca I Sienel
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Janina Biller
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Tipparat Parakaw
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Burcu F Seker
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
16
|
Biose IJ, Oremosu J, Bhatnagar S, Bix GJ. Promising Cerebral Blood Flow Enhancers in Acute Ischemic Stroke. Transl Stroke Res 2023; 14:863-889. [PMID: 36394792 PMCID: PMC10640530 DOI: 10.1007/s12975-022-01100-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Ischemic stroke presents a major global economic and public health burden. Although recent advances in available endovascular therapies show improved functional outcome, a good number of stroke patients are either ineligible or do not have access to these treatments. Also, robust collateral flow during acute ischemic stroke independently predicts the success of endovascular therapies and the outcome of stroke. Hence, adjunctive therapies for cerebral blood flow (CBF) enhancement are urgently needed. A very clear overview of the pial collaterals and the role of genetics are presented in this review. We review available evidence and advancement for potential therapies aimed at improving CBF during acute ischemic stroke. We identified heme-free soluble guanylate cyclase activators; Sanguinate, remote ischemic perconditioning; Fasudil, S1P agonists; and stimulation of the sphenopalatine ganglion as promising potential CBF-enhancing therapeutics requiring further investigation. Additionally, we outline and discuss the critical steps required to advance research strategies for clinically translatable CBF-enhancing agents in the context of acute ischemic stroke models.
Collapse
Affiliation(s)
- Ifechukwude Joachim Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson, Ste 1300, Room 1349, New Orleans, LA, 70112, USA
| | - Jadesola Oremosu
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Somya Bhatnagar
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson, Ste 1300, Room 1349, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70122, USA.
| |
Collapse
|
17
|
Loron G, Pansiot J, Olivier P, Charriaut-Marlangue C, Baud O. Inhaled Nitric Oxide Promotes Angiogenesis in the Rodent Developing Brain. Int J Mol Sci 2023; 24:ijms24065871. [PMID: 36982947 PMCID: PMC10054632 DOI: 10.3390/ijms24065871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Inhaled nitric oxide (iNO) is a therapy used in neonates with pulmonary hypertension. Some evidence of its neuroprotective properties has been reported in both mature and immature brains subjected to injury. NO is a key mediator of the VEGF pathway, and angiogenesis may be involved in the reduced vulnerability to injury of white matter and the cortex conferred by iNO. Here, we report the effect of iNO on angiogenesis in the developing brain and its potential effectors. We found that iNO promotes angiogenesis in the developing white matter and cortex during a critical window in P14 rat pups. This shift in the developmental program of brain angiogenesis was not related to a regulation of NO synthases by exogenous NO exposure, nor the VEGF pathway or other angiogenic factors. The effects of iNO on brain angiogenesis were found to be mimicked by circulating nitrate/nitrite, suggesting that these carriers may play a role in transporting NO to the brain. Finally, our data show that the soluble guanylate cyclase/cGMP signaling pathway is likely to be involved in the pro-angiogenetic effect of iNO through thrombospondin-1, a glycoprotein of the extracellular matrix, inhibiting soluble guanylate cyclase through CD42 and CD36. In conclusion, this study provides new insights into the biological basis of the effect of iNO in the developing brain.
Collapse
Affiliation(s)
- Gauthier Loron
- Service de Médecine Néonatale et de Réanimation Pédiatrique, Université de Reims Champagne-Ardenne, CReSTIC, CHU Reims, 51100 Reims, France
| | - Julien Pansiot
- Inserm, NeuroDiderot, Faculty of Medicine, Université Paris Cité, 75019 Paris, France
| | - Paul Olivier
- Inserm, NeuroDiderot, Faculty of Medicine, Université Paris Cité, 75019 Paris, France
| | | | - Olivier Baud
- Inserm, NeuroDiderot, Faculty of Medicine, Université Paris Cité, 75019 Paris, France
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
18
|
Keller K, Haghi SHR, Hahad O, Schmidtmann I, Chowdhury S, Lelieveld J, Münzel T, Hobohm L. Air pollution impacts on in-hospital case-fatality rate of ischemic stroke patients. Thromb Res 2023; 225:116-125. [PMID: 36990953 DOI: 10.1016/j.thromres.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND A growing body of evidence suggests that air pollution exposure is associated with an increased risk for cardiovascular diseases. Data regarding the impact of long-term air pollution exposure on ischemic stroke mortality are sparse. METHODS The German nationwide inpatient sample was used to analyse all cases of hospitalized patients with ischemic stroke in Germany 2015-2019, which were stratified according to their residency. Data of the German Federal Environmental Agency regarding average values of air pollutants were assessed from 2015 to 2019 at district-level. Data were combined and the impact of different air pollution parameters on in-hospital case-fatality was analyzed. RESULTS Overall, 1,505,496 hospitalizations of patients with ischemic stroke (47.7% females; 67.4 % ≥70 years old) were counted in Germany 2015-2019, of whom 8.2 % died during hospitalization. When comparing patients with residency in federal districts with high vs. low long-term air pollution, enhanced levels of benzene (OR 1.082 [95%CI 1.034-1.132],P = 0.001), ozone (O3, OR 1.123 [95%CI 1.070-1.178],P < 0.001), nitric oxide (NO, OR 1.076 [95%CI 1.027-1.127],P = 0.002) and PM2.5 fine particulate matter concentrations (OR 1.126 [95%CI 1.074-1.180],P < 0.001) were significantly associated with increased case-fatality independent from age, sex, cardiovascular risk-factors, comorbidities, and revascularization treatments. Conversely, enhanced carbon monoxide, nitrogen dioxide, PM10, and sulphur dioxide (SO2) concentrations were not significantly associated with stroke mortality. However, SO2-concentrations were significantly associated with stroke-case-fatality rate of >8 % independent of residence area-type and area use (OR 1.518 [95%CI 1.012-2.278],P = 0.044). CONCLUSION Elevated long-term air pollution levels in residential areas in Germany, notably of benzene, O3, NO, SO2, and PM2.5, were associated with increased stroke mortality of patients. RESEARCH IN CONTEXT Evidence before this study: Besides typical, established risk factors, increasing evidence suggests that air pollution is an important and growing risk factor for stroke events, estimated to be responsible for approximately 14 % of all stroke-associated deaths. However, real-world data regarding the impact of long-term exposure to air pollution on stroke mortality are sparse. Added value of this study: The present study demonstrates that the long-term exposure to the air pollutants benzene, O3, NO, SO2 and PM2.5 are independently associated with increased case-fatality of hospitalized patients with ischemic stroke in Germany. Implications of all the available evidence: The results of our study support the urgent need to reduce the exposure to air pollution by tightening emission controls to reduce the stroke burden and stroke mortality.
Collapse
|
19
|
Cipolla MJ. Therapeutic Induction of Collateral Flow. Transl Stroke Res 2023; 14:53-65. [PMID: 35416577 PMCID: PMC10155807 DOI: 10.1007/s12975-022-01019-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/31/2023]
Abstract
Therapeutic induction of collateral flow as a means to salvage tissue and improve outcome from acute ischemic stroke is a promising approach in the era in which endovascular therapy is no longer time-dependent but collateral-dependent. The importance of collateral flow enhancement as a therapeutic for acute ischemic stroke extends beyond those patients with large amounts of salvageable tissue. It also has the potential to extend the time window for reperfusion therapies in patients who are ineligible for endovascular thrombectomy. In addition, collateral enhancement may be an important adjuvant to neuroprotective agents by providing a more robust vascular route for which treatments can gain access to at risk tissue. However, our understanding of collateral hemodynamics, including under comorbid conditions that are highly prevalent in the stroke population, has hindered the efficacy of collateral flow augmentation for improving stroke outcome in the clinical setting. This review will discuss our current understanding of pial collateral function and hemodynamics, including vasoactivity that is critical for enhancing penumbral perfusion. In addition, mechanisms by which collateral flow can be increased during acute ischemic stroke to limit ischemic injury, that may be different depending on the state of the brain and vasculature prior to stroke, will also be reviewed.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, 149 Beaumont Ave, HSRF 416A, Burlington, VT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
20
|
Inocencio IM, Kaur N, Tran NT, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in preterm lambs is enhanced following sildenafil and inhaled nitric oxide administration. Front Physiol 2023; 14:1101647. [PMID: 36760535 PMCID: PMC9905131 DOI: 10.3389/fphys.2023.1101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Neurovascular coupling (NVC) leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity and metabolic demand. Impaired or immature NVC reported in the preterm brain, potentially reduces cerebral oxygenation following increased neural activity, predisposing to cerebral tissue hypoxia. Endogenous nitric oxide (NO) is a potent vasodilator and a major mediator of NVC and the cerebral haemodynamic response. NO modulators, such as inhaled nitric oxide (iNO) and sildenafil, induce vasodilation and are used clinically to treat pulmonary hypertension in preterm neonates. However, their impact on NVC in the preterm brain are unknown. We aimed to characterise the cerebral functional haemodynamic response in the preterm brain exposed to NO modulators. We hypothesized that iNO and sildenafil in clinical dosages would increase the baseline cerebral perfusion and the cerebral haemodynamic response to neural activation. Methods: Preterm lambs (126-7 days' gestation) were delivered and mechanically ventilated. The cerebral functional haemodynamic response was measured using near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulations of 1.8, 4.8, and 7.8 s durations in control preterm lambs (n = 11), and following 4.8 and 7.8 s stimulations in preterm lambs receiving either sildenafil citrate (n = 6, 1.33 mcg/kg/hr) or iNO (n = 8, 20 ppm). Results: Following 1.8, 4.8, and 7.8 s stimulations, ∆oxyHb in the contralateral cortex increased (positive functional response) in 7/11 (64%), 7/11 (64%), and 4/11 (36%) control lambs respectively (p < 0.05). Remaining lambs showed decreased ΔoxyHb (negative functional response). Following 4.8 s stimulations, more lambs receiving sildenafil or iNO (83% and 100% respectively) showed positive functional response compared to the controls (p < 0.05). No significant difference between the three groups was observed at 7.8 s stimulations. Conclusion: In the preterm brain, prolonged somatosensory stimulations increased the incidence of negative functional responses with decreased cerebral oxygenation, suggesting that cerebral oxygen delivery may not match the oxygen demand. Sildenafil and iNO increased the incidence of positive functional responses, potentially enhancing NVC, and cerebral oxygenation.
Collapse
Affiliation(s)
- Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Navneet Kaur
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Nhi T. Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Flora Y. Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia,Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia,*Correspondence: Flora Y. Wong,
| |
Collapse
|
21
|
Mardi P. Opium abuse and stroke in Iran: A systematic review and meta-analysis. Front Neurol 2022; 13:855578. [PMID: 36188414 PMCID: PMC9524459 DOI: 10.3389/fneur.2022.855578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Opium dependence is a significant health concern in low and middle-income countries, leading to a considerable number of deaths annually. Opium has several detrimental effects on its consumers. Data regarding the impact of opium on stroke are controversial. The objective of this study is to evaluate the association between opium dependence and stroke. Methods I conducted a systematic search based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to evaluate the association between opium dependence and stroke. Following the extraction of qualitative findings from included studies, a meta-analysis was performed to assess the pooled estimate of odds ratios (ORs). Results Eight and four studies were included in qualitative and quantitative synthesis, respectively. Opium dependence increases the hazard of stroke mortality. Also, opium increases the odds of ischemic stroke by 127% (pooled OR = 2.27, 95% CI: 1.47–3.07). Conclusion Opium not only merely increases the odds of being diagnosed with ischemic stroke but also leads to a notable increase in the mortality rate following stroke.
Collapse
|
22
|
Uniken Venema SM, Dankbaar JW, van der Lugt A, Dippel DWJ, van der Worp HB. Cerebral Collateral Circulation in the Era of Reperfusion Therapies for Acute Ischemic Stroke. Stroke 2022; 53:3222-3234. [PMID: 35938420 DOI: 10.1161/strokeaha.121.037869] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical outcomes of patients with acute ischemic stroke depend in part on the extent of their collateral circulation. A good collateral circulation has also been associated with greater benefit of intravenous thrombolysis and endovascular treatment. Treatment decisions for these reperfusion therapies are increasingly guided by a combination of clinical and imaging parameters, particularly in later time windows. Computed tomography and magnetic resonance imaging enable a rapid assessment of both the collateral extent and cerebral perfusion. Yet, the role of the collateral circulation in clinical decision-making is currently limited and may be underappreciated due to the use of rather coarse and rater-dependent grading methods. In this review, we discuss determinants of the collateral circulation in patients with acute ischemic stroke, report on commonly used and emerging neuroimaging techniques for assessing the collateral circulation, and discuss the therapeutic and prognostic implications of the collateral circulation in relation to reperfusion therapies for acute ischemic stroke.
Collapse
Affiliation(s)
- Simone M Uniken Venema
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, the Netherlands. (S.M.U.V., H.B.v.d.W.)
| | - Jan Willem Dankbaar
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands. (J.W.D.)
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center Rotterdam, the Netherlands. (A.v.d.L.)
| | - Diederik W J Dippel
- Department of Neurology, Erasmus Medical Center Rotterdam, the Netherlands. (D.W.J.D.)
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, the Netherlands. (S.M.U.V., H.B.v.d.W.)
| |
Collapse
|
23
|
Abstract
A disruption in the well-orchestrated fetal-to-neonatal cardiopulmonary transition at birth results in the clinical conundrum of severe hypoxemic respiratory failure associated with elevated pulmonary vascular resistance (PVR), referred to as persistent pulmonary hypertension of the newborn (PPHN). In the past three decades, the advent of surfactant, newer modalities of ventilation, inhaled nitric oxide, other pulmonary vasodilators, and finally extracorporeal membrane oxygenation (ECMO) have made giant strides in improving the outcomes of infants with PPHN. However, death or the need for ECMO occurs in 10-20% of term infants with PPHN. Better understanding of the etiopathogenesis of PPHN can lead to physiology-driven management strategies. This manuscript reviews the fetal circulation, cardiopulmonary transition at birth, etiology, and pathophysiology of PPHN.
Collapse
Affiliation(s)
- Deepika Sankaran
- Division of Neonatology, Department of Pediatrics, University of California, Davis, California, USA; Department of Pediatrics, Adventist Health Rideout Hospital, Marysville, CA, USA.
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University of California, Davis, California, USA.
| |
Collapse
|
24
|
Signori D, Magliocca A, Hayashida K, Graw JA, Malhotra R, Bellani G, Berra L, Rezoagli E. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med Exp 2022; 10:28. [PMID: 35754072 PMCID: PMC9234017 DOI: 10.1186/s40635-022-00455-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.
Collapse
Affiliation(s)
- Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, CCM/CVK Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
25
|
Kemps H, Dessy C, Dumas L, Sonveaux P, Alders L, Van Broeckhoven J, Font LP, Lambrichts S, Foulquier S, Hendrix S, Brône B, Lemmens R, Bronckaers A. Extremely low frequency electromagnetic stimulation reduces ischemic stroke volume by improving cerebral collateral blood flow. J Cereb Blood Flow Metab 2022; 42:979-996. [PMID: 35209740 PMCID: PMC9125494 DOI: 10.1177/0271678x221084410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extremely low frequency electromagnetic stimulation (ELF-EMS) has been considered as a neuroprotective therapy for ischemic stroke based on its capacity to induce nitric oxide (NO) signaling. Here, we examined whether ELF-EMS reduces ischemic stroke volume by stimulating cerebral collateral perfusion. Moreover, the pathway responsible for ELF-EMS-induced NO production was investigated. ELF-EMS diminished infarct growth following experimental stroke in collateral-rich C57BL/6 mice, but not in collateral-scarce BALB/c mice, suggesting that decreased lesion sizes after ELF-EMS results from improved collateral blood flow. In vitro analysis demonstrated that ELF-EMS increased endothelial NO levels by stimulating the Akt-/eNOS pathway. Furthermore, ELF-EMS augmented perfusion in the hind limb of healthy mice, which was mediated by enhanced Akt-/eNOS signaling. In healthy C57BL/6 mouse brains, ELF-EMS treatment increased cerebral blood flow in a NOS-dependent manner, whereas no improvement in cerebrovascular perfusion was observed in collateral-sparse BALB/c mice. In addition, ELF-EMS enhanced cerebral blood flow in both the contra- and ipsilateral hemispheres of C57BL/6 mice subjected to experimental ischemic stroke. In conclusion, we showed that ELF-EMS enhances (cerebro)vascular perfusion by stimulating NO production, indicating that ELF-EMS could be an attractive therapeutic strategy for acute ischemic stroke by improving cerebral collateral blood flow.
Collapse
Affiliation(s)
- Hannelore Kemps
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laurent Dumas
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lotte Alders
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Lena Perez Font
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Universidad de Oriente, Santiago de Cuba, Cuba
| | - Sara Lambrichts
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands.,CARIM, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sven Hendrix
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Bert Brône
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Robin Lemmens
- KU Leuven, - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| |
Collapse
|
26
|
Jung P, Ha E, Zhang M, Fall C, Hwang M, Taylor E, Stetkevich S, Bhanot A, Wilson CG, Figueroa JD, Obenaus A, Bragg S, Tone B, Eliamani S, Holshouser B, Blood AB, Liu T. Neuroprotective role of nitric oxide inhalation and nitrite in a Neonatal Rat Model of Hypoxic-Ischemic Injury. PLoS One 2022; 17:e0268282. [PMID: 35544542 PMCID: PMC9094545 DOI: 10.1371/journal.pone.0268282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND There is evidence from various models of hypoxic-ischemic injury (HII) that nitric oxide (NO) is protective. We hypothesized that either inhaled NO (iNO) or nitrite would alleviate brain injury in neonatal HII via modulation of mitochondrial function. METHODS We tested the effects of iNO and nitrite on the Rice-Vannucci model of HII in 7-day-old rats. Brain mitochondria were isolated for flow cytometry, aconitase activity, electron paramagnetic resonance, and Seahorse assays. RESULTS Pretreatment of pups with iNO decreased survival in the Rice-Vannucci model of HII, while iNO administered post-insult did not. MRI analysis demonstrated that pre-HII iNO at 40 ppm and post-HII iNO at 20 ppm decreased the brain lesion sizes from 6.3±1.3% to 1.0±0.4% and 1.8±0.8%, respectively. Intraperitoneal nitrite at 0.165 μg/g improved neurobehavioral performance but was harmful at higher doses and had no effect on brain infarct size. NO reacted with complex IV at the heme a3 site, decreased the oxidative stress of mitochondria challenged with anoxia and reoxygenation, and suppressed mitochondrial oxygen respiration. CONCLUSIONS This study suggests that iNO administered following neonatal HII may be neuroprotective, possibly via its modulation of mitochondrial function.
Collapse
Affiliation(s)
- Peter Jung
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Euntaik Ha
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Carolyn Fall
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Mindy Hwang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Emily Taylor
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Samuel Stetkevich
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Aditi Bhanot
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Christopher G. Wilson
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, United States of America
| | - Shannon Bragg
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Beatriz Tone
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Saburi Eliamani
- Center for Imaging Research, Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Barbara Holshouser
- Center for Imaging Research, Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Arlin B. Blood
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| |
Collapse
|
27
|
Chen Y, Yang B, Xu L, Shi Z, Han R, Yuan F, Ouyang J, Yan X, Ostrikov KK. Inhalation of Atmospheric-Pressure Gas Plasma Attenuates Brain Infarction in Rats With Experimental Ischemic Stroke. Front Neurosci 2022; 16:875053. [PMID: 35516812 PMCID: PMC9063166 DOI: 10.3389/fnins.2022.875053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggest the potential efficacy of neuroprotective effects of gaseous atmospheric-pressure plasma (APP) treatment on neuronal cells. However, it remains unclear if the neuroprotective properties of the gas plasmas benefit the ischemic stroke treatment, and how to use the plasmas in the in vivo ischemic stroke models. Rats were subjected to 90 min middle cerebral artery occlusion (MCAO) to establish the ischemic stroke model and then intermittently inhaled the plasma for 2 min at 60 min MCAO. The regional cerebral blood flow (CBF) was monitored. Animal behavior scoring, magnetic resonance imaging (MRI), 2,3,5-triphenyltetrazolium chloride (TTC) staining, and hematoxylin and eosin (HE) staining were performed to evaluate the therapeutic efficacy of the gas plasma inhalation on MCAO rats. Intermittent gas plasma inhalation by rats with experimental ischemic stroke could improve neurological function, increase regional CBF, and decrease brain infarction. Further MRI tests showed that the gas plasma inhalation could limit the ischemic lesion progression, which was beneficial to improve the outcomes of the MCAO rats. Post-stroke treatment with intermittent gas plasma inhalation could reduce the ischemic lesion progression and decrease cerebral infarction volume, which might provide a new promising strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bingyan Yang
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Lixin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Han
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Fang Yuan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiting Ouyang
- School of Physics, Beijing Institute of Technology, Beijing, China
- *Correspondence: Jiting Ouyang,
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xu Yan,
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Roles of Nitric Oxide in Brain Ischemia and Reperfusion. Int J Mol Sci 2022; 23:ijms23084243. [PMID: 35457061 PMCID: PMC9028809 DOI: 10.3390/ijms23084243] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Brain ischemia and reperfusion (I/R) is one of the most severe clinical manifestations of ischemic stroke, placing a significant burden on both individuals and society. The only FDA-approved clinical treatment for ischemic stroke is tissue plasminogen activator (t-PA), which rapidly restores cerebral blood flow but can have severe side effects. The complex pathological process of brain I/R has been well-established in the past few years, including energy metabolism disorders, cellular acidosis, doubling of the synthesis or release of excitotoxic amino acids, intracellular calcium homeostasis, free radical production, and activation of apoptotic genes. Recently, accumulating evidence has shown that NO may be strongly related to brain I/R and involved in complex pathological processes. This review focuses on the role of endogenous NO in pathological processes in brain I/R, including neuronal cell death and blood brain barrier disruption, to explore how NO impacts specific signaling cascades and contributes to brain I/R injury. Moreover, NO can rapidly react with superoxide to produce peroxynitrite, which may also mediate brain I/R injury, which is discussed here. Finally, we reveal several therapeutic approaches strongly associated with NO and discuss their potential as a clinical treatment for ischemic stroke.
Collapse
|
29
|
Jin X, Li P, Michalski D, Li S, Zhang Y, Jolkkonen J, Cui L, Didwischus N, Xuan W, Boltze J. Perioperative stroke: A perspective on challenges and opportunities for experimental treatment and diagnostic strategies. CNS Neurosci Ther 2022; 28:497-509. [PMID: 35224865 PMCID: PMC8928912 DOI: 10.1111/cns.13816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Perioperative stroke is an ischemic or hemorrhagic cerebral event during or up to 30 days after surgery. It is a feared condition due to a relatively high incidence, difficulties in timely detection, and unfavorable outcome compared to spontaneously occurring stroke. Recent preclinical data suggest that specific pathophysiological mechanisms such as aggravated neuroinflammation contribute to the detrimental impact of perioperative stroke. Conventional treatment options are limited in the perioperative setting due to difficult diagnosis and medications affecting coagulation in may cases. On the contrary, the chance to anticipate cerebrovascular events at the time of surgery may pave the way for prevention strategies. This review provides an overview on perioperative stroke incidence, related problems, and underlying pathophysiological mechanisms. Based on this analysis, we assess experimental stroke treatments including neuroprotective approaches, cell therapies, and conditioning medicine strategies regarding their potential use in perioperative stroke. Interestingly, the specific aspects of perioperative stroke might enable a more effective application of experimental treatment strategies such as classical neuroprotection whereas others including cell therapies may be of limited use. We also discuss experimental diagnostic options for perioperative stroke augmenting classical clinical and imaging stroke diagnosis. While some experimental stroke treatments may have specific advantages in perioperative stroke, the paucity of established guidelines or multicenter clinical research initiatives currently limits their thorough investigation.
Collapse
Affiliation(s)
- Xia Jin
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | | | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Jukka Jolkkonen
- Department of Neurology and A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Coventry, UK.,Department of Radiology, University of Pittsburgh, Pittsburgh, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
30
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
31
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
32
|
Fung C, Z'Graggen WJ, Jakob SM, Gralla J, Haenggi M, Rothen HU, Mordasini P, Lensch M, Söll N, Terpolilli N, Feiler S, Oertel MF, Raabe A, Plesnila N, Takala J, Beck J. Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia. Front Neurol 2022; 13:817072. [PMID: 35250821 PMCID: PMC8894247 DOI: 10.3389/fneur.2022.817072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background We demonstrated experimentally that inhaled nitric oxide (iNO) dilates hypoperfused arterioles, increases tissue perfusion, and improves neurological outcome following subarachnoid hemorrhage (SAH) in mice. We performed a prospective pilot study to evaluate iNO in patients with delayed cerebral ischemia after SAH. Methods SAH patients with delayed cerebral ischemia and hypoperfusion despite conservative treatment were included. iNO was administered at a maximum dose of 40 ppm. The response to iNO was considered positive if: cerebral artery diameter increased by 10% in digital subtraction angiography (DSA), or tissue oxygen partial pressure (PtiO2) increased by > 5 mmHg, or transcranial doppler (TCD) values decreased more than 30 cm/sec, or mean transit time (MTT) decreased below 6.5 secs in CT perfusion (CTP). Patient outcome was assessed at 6 months with the modified Rankin Scale (mRS). Results Seven patients were enrolled between February 2013 and September 2016. Median duration of iNO administration was 23 h. The primary endpoint was reached in all patients (five out of 17 DSA examinations, 19 out of 29 PtiO2 time points, nine out of 26 TCD examinations, three out of five CTP examinations). No adverse events necessitating the cessation of iNO were observed. At 6 months, three patients presented with a mRS score of 0, one patient each with an mRS score of 2 and 3, and two patients had died. Conclusion Administration of iNO in SAH patients is safe. These results call for a larger prospective evaluation.
Collapse
Affiliation(s)
- Christian Fung
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Gralla
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Ulrich Rothen
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Lensch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Terpolilli
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Kaloss AM, Theus MH. Leptomeningeal anastomoses: Mechanisms of pial collateral remodeling in ischemic stroke. WIREs Mech Dis 2022; 14:e1553. [PMID: 35118835 PMCID: PMC9283306 DOI: 10.1002/wsbm.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Arterial collateralization, as determined by leptomeningeal anastomoses or pial collateral vessels, is a well‐established vital player in cerebral blood flow restoration and neurological recovery from ischemic stroke. A secondary network of cerebral collateral circulation apart from the Circle of Willis, exist as remnants of arteriole development that connect the distal arteries in the pia mater. Recent interest lies in understanding the cellular and molecular adaptations that control the growth and remodeling, or arteriogenesis, of these pre‐existing collateral vessels. New findings from both animal models and human studies of ischemic stroke suggest a multi‐factorial and complex, temporospatial interplay of endothelium, immune and vessel‐associated cell interactions may work in concert to facilitate or thwart arteriogenesis. These valuable reports may provide critical insight into potential predictors of the pial collateral response in patients with large vessel occlusion and may aid in therapeutics to enhance collateral function and improve recovery from stroke. This article is categorized under:Neurological Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.,Center for Regenerative Medicine, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
34
|
Sienel RI, Kataoka H, Kim SW, Seker FB, Plesnila N. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Front Neurol 2022; 12:807658. [PMID: 35140676 PMCID: PMC8818753 DOI: 10.3389/fneur.2021.807658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury. Methods Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII−/−)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by in vivo fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology. Results In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; p < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold (p < 0.01); the number of intraparenchymal leukocytes was not affected. Conclusions Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Rebecca Isabella Sienel
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Hiroharu Kataoka
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seong-Woong Kim
- Department of Neurosurgery, University of Giessen, Giessen, Germany
| | - Fatma Burcu Seker
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- *Correspondence: Nikolaus Plesnila
| |
Collapse
|
35
|
Lee HM, Choi JW, Choi MS. Role of Nitric Oxide and Protein S-Nitrosylation in Ischemia-Reperfusion Injury. Antioxidants (Basel) 2021; 11:57. [PMID: 35052559 PMCID: PMC8772765 DOI: 10.3390/antiox11010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a process in which damage is induced in hypoxic tissue when oxygen supply is resumed after ischemia. During IRI, restoration of reduced nitric oxide (NO) levels may alleviate reperfusion injury in ischemic organs. The protective mechanism of NO is due to anti-inflammatory effects, antioxidant effects, and the regulation of cell signaling pathways. On the other hand, it is generally known that S-nitrosylation (SNO) mediates the detrimental or protective effect of NO depending on the action of the nitrosylated target protein, and this is also applied in the IRI process. In this review, the effect of each change of NO and SNO during the IRI process was investigated.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Min Sik Choi
- Laboratory of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
36
|
Omileke D, Bothwell SW, Pepperall D, Beard DJ, Coupland K, Patabendige A, Spratt NJ. Decreased Intracranial Pressure Elevation and Cerebrospinal Fluid Outflow Resistance: A Potential Mechanism of Hypothermia Cerebroprotection Following Experimental Stroke. Brain Sci 2021; 11:brainsci11121589. [PMID: 34942890 PMCID: PMC8699790 DOI: 10.3390/brainsci11121589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Elevated intracranial pressure (ICP) occurs 18–24 h after ischaemic stroke and is implicated as a potential cause of early neurological deterioration. Increased resistance to cerebrospinal fluid (CSF) outflow after ischaemic stroke is a proposed mechanism for ICP elevation. Ultra-short duration hypothermia prevents ICP elevation 24 h post-stroke in rats. We aimed to determine whether hypothermia would reduce CSF outflow resistance post-stroke. Methods: Transient middle cerebral artery occlusion was performed, followed by gradual cooling to 33 °C. At 18 h post-stroke, CSF outflow resistance was measured using a steady-state infusion method. Results: Hypothermia to 33 °C prevented ICP elevation 18 h post-stroke (hypothermia ∆ICP = 0.8 ± 3.6 mmHg vs. normothermia ∆ICP = 4.4 ± 2.0 mmHg, p = 0.04) and reduced infarct volume 24 h post-stroke (hypothermia = 78.6 ± 21.3 mm3 vs. normothermia = 108.1 ± 17.8 mm3; p = 0.01). Hypothermia to 33 °C did not result in a significant reduction in CSF outflow resistance compared with normothermia controls (0.32 ± 0.36 mmHg/µL/min vs. 1.07 ± 0.99 mmHg/µL/min, p = 0.06). Conclusions: Hypothermia treatment was protective in terms of ICP rise prevention, infarct volume reduction, and may be implicated in CSF outflow resistance post-stroke. Further investigations are warranted to elucidate the mechanisms of ICP elevation and hypothermia treatment.
Collapse
Affiliation(s)
- Daniel Omileke
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Steven W. Bothwell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Debbie Pepperall
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Daniel J. Beard
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Kirsten Coupland
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Adjanie Patabendige
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Wirral CH64 7TE, UK
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK
- Correspondence: (A.P.); (N.J.S.)
| | - Neil J. Spratt
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.O.); (S.W.B.); (D.P.); (D.J.B.); (K.C.)
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
- Hunter New England Local Health District, New Lambton Heights, Newcastle, NSW 2305, Australia
- Correspondence: (A.P.); (N.J.S.)
| |
Collapse
|
37
|
Zinni M, Pansiot J, Léger PL, El Kamouh M, Baud O. Sildenafil-Mediated Neuroprotection from Adult to Neonatal Brain Injury: Evidence, Mechanisms, and Future Translation. Cells 2021; 10:cells10102766. [PMID: 34685745 PMCID: PMC8534574 DOI: 10.3390/cells10102766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral stroke, traumatic brain injury, and hypoxic ischemic encephalopathy are among the most frequently occurring brain injuries. A complex pathogenesis, characterized by a synergistic interaction between alterations of the cerebrovascular system, cell death, and inflammation, is at the basis of the brain damage that leads to behavioral and neurodevelopmental disabilities in affected subjects. Sildenafil is a selective inhibitor of the enzyme phosphodiesterase 5 (PDE5) that is able to cross the blood-brain barrier. Preclinical data suggest that sildenafil may be a good candidate for the prevention or repair of brain injury in both adults and neonates. The aim of this review is to summarize the evidence supporting the neuroprotective action of sildenafil and discuss the possible benefits of the association of sildenafil with current therapeutic strategies.
Collapse
Affiliation(s)
- Manuela Zinni
- Inserm UMR1141 NeuroDiderot, Université de Paris, 75019 Paris, France; (M.Z.); (J.P.); (M.E.K.)
| | - Julien Pansiot
- Inserm UMR1141 NeuroDiderot, Université de Paris, 75019 Paris, France; (M.Z.); (J.P.); (M.E.K.)
| | - Pierre-Louis Léger
- Pediatric and Neonatal Intensive Care Unit, Armand-Trousseau University Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 75019 Paris, France;
| | - Marina El Kamouh
- Inserm UMR1141 NeuroDiderot, Université de Paris, 75019 Paris, France; (M.Z.); (J.P.); (M.E.K.)
- Laboratoire de Physiologie et Génomique des Poissons-INRAE, 35700 Rennes, France
| | - Olivier Baud
- Laboratory of Child Growth and Development, University of Geneva, 1211 Geneva, Switzerland
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-795-534-204
| |
Collapse
|
38
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
40
|
Lenz IJ, Plesnila N, Terpolilli NA. Role of endothelial nitric oxide synthase for early brain injury after subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 2021; 41:1669-1681. [PMID: 33256507 PMCID: PMC8221759 DOI: 10.1177/0271678x20973787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first few hours and days after subarachnoid hemorrhage (SAH) are characterized by cerebral ischemia, spasms of pial arterioles, and a significant reduction of cerebral microperfusion, however, the mechanisms of this early microcirculatory dysfunction are still unknown. Endothelial nitric oxide production is reduced after SAH and exogenous application of NO reduces post-hemorrhagic microvasospasm. Therefore, we hypothesize that the endothelial NO-synthase (eNOS) may be involved in the formation of microvasospasms, microcirculatory dysfunction, and unfavorable outcome after SAH. SAH was induced in male eNOS deficient (eNOS-/-) mice by endovascular MCA perforation. Three hours later, the cerebral microcirculation was visualized using in vivo 2-photon-microscopy. eNOS-/- mice had more severe SAHs, more severe ischemia, three time more rebleedings, and a massively increased mortality (50 vs. 0%) as compared to wild type (WT) littermate controls. Three hours after SAH eNOS-/- mice had fewer perfused microvessels and 40% more microvasospasms than WT mice. The current study indicates that a proper function of eNOS plays a key role for a favorable outcome after SAH and helps to explain why patients suffering from hypertension or other conditions associated with impaired eNOS function, have a higher risk of unfavorable outcome after SAH.
Collapse
Affiliation(s)
- Irina J Lenz
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
41
|
An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, Li W, Qian Y, Landschoot-Ward J, Chen J. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis 2021; 12:732-746. [PMID: 34094639 PMCID: PMC8139201 DOI: 10.14336/ad.2020.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular Dementia (VaD) accounts for nearly 20% of all cases of dementia. eNOS plays an important role in neurovascular remodeling, anti-inflammation, and cognitive functional recovery after stroke. In this study, we investigated whether eNOS regulates brain damage, cognitive function in mouse model of bilateral common carotid artery stenosis (BCAS) induced VaD. Late-adult (6-8 months) C57BL/6J and eNOS knockout (eNOS-/-) mice were subjected to BCAS (n=12/group) or sham group (n=8/group). BCAS was performed by applying microcoils to both common carotid arteries. Cerebral blood flow (CBF) and blood pressure were measured. A battery of cognitive functional tests was performed, and mice were sacrificed 30 days after BCAS. Compared to corresponding sham mice, BCAS in wild-type (WT) and eNOS-/- mice significantly: 1) induces short term, long term memory loss, spatial learning and memory deficits; 2) decreases CBF, increases ischemic cell damage, including apoptosis, white matter (WM) and axonal damage; 3) increases blood brain barrier (BBB) leakage, decreases aquaporin-4 (AQP4) expression and vessel density; 4) increases microglial, astrocyte activation and oxidative stress in the brain; 5) increases inflammatory factor interleukin-1 receptor-associated kinase-1(IRAK-1) and amyloid beta (Aβ) expression in brain; 6) increases IL-6 and IRAK4 expression in brain. eNOS-/-sham mice exhibit increased blood pressure, decreased iNOS and nNOS in brain compared to WT-sham mice. Compared to WT-BCAS mice, eNOS-/-BCAS mice exhibit worse vascular and WM/axonal damage, increased BBB leakage and inflammatory response, increased cognitive deficit, decreased iNOS, nNOS in brain. eNOS deficit exacerbates BCAS induced brain damage and cognitive deficit.
Collapse
Affiliation(s)
- Lulu An
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yi Shen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (Current address)
| | - Michael Chopp
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,3Department of Physics, Oakland University, Rochester, MI-48309, USA
| | - Alex Zacharek
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Poornima Venkat
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Zhili Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Wei Li
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yu Qian
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | | | - Jieli Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| |
Collapse
|
42
|
Paolini Paoletti F, Simoni S, Parnetti L, Gaetani L. The Contribution of Small Vessel Disease to Neurodegeneration: Focus on Alzheimer's Disease, Parkinson's Disease and Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22094958. [PMID: 34066951 PMCID: PMC8125719 DOI: 10.3390/ijms22094958] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer's disease (AD) and Parkinson's disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response.
Collapse
|
43
|
Morgan RW, Sutton RM, Himebauch AS, Roberts AL, Landis WP, Lin Y, Starr J, Ranganathan A, Delso N, Mavroudis CD, Volk L, Slovis J, Marquez AM, Nadkarni VM, Hefti M, Berg RA, Kilbaugh TJ. A randomized and blinded trial of inhaled nitric oxide in a piglet model of pediatric cardiopulmonary resuscitation. Resuscitation 2021; 162:274-283. [PMID: 33766668 DOI: 10.1016/j.resuscitation.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 01/17/2023]
Abstract
AIM Inhaled nitric oxide (iNO) during cardiopulmonary resuscitation (CPR) improved systemic hemodynamics and outcomes in a preclinical model of adult in-hospital cardiac arrest (IHCA) and may also have a neuroprotective role following cardiac arrest. The primary objectives of this study were to determine if iNO during CPR would improve cerebral hemodynamics and mitochondrial function in a pediatric model of lipopolysaccharide-induced shock-associated IHCA. METHODS After lipopolysaccharide infusion and ventricular fibrillation induction, 20 1-month-old piglets received hemodynamic-directed CPR and were randomized to blinded treatment with or without iNO (80 ppm) during and after CPR. Defibrillation attempts began at 10 min with a 20-min maximum CPR duration. Cerebral tissue from animals surviving 1-h post-arrest underwent high-resolution respirometry to evaluate the mitochondrial electron transport system and immunohistochemical analyses to assess neuropathology. RESULTS During CPR, the iNO group had higher mean aortic pressure (41.6 ± 2.0 vs. 36.0 ± 1.4 mmHg; p = 0.005); diastolic BP (32.4 ± 2.4 vs. 27.1 ± 1.7 mmHg; p = 0.03); cerebral perfusion pressure (25.0 ± 2.6 vs. 19.1 ± 1.8 mmHg; p = 0.02); and cerebral blood flow relative to baseline (rCBF: 243.2 ± 54.1 vs. 115.5 ± 37.2%; p = 0.02). Among the 8/10 survivors in each group, the iNO group had higher mitochondrial Complex I oxidative phosphorylation in the cerebral cortex (3.60 [3.56, 3.99] vs. 3.23 [2.44, 3.46] pmol O2/s mg; p = 0.01) and hippocampus (4.79 [4.35, 5.18] vs. 3.17 [2.75, 4.58] pmol O2/s mg; p = 0.02). There were no other differences in mitochondrial respiration or brain injury between groups. CONCLUSIONS Treatment with iNO during CPR resulted in superior systemic hemodynamics, rCBF, and cerebral mitochondrial Complex I respiration in this pediatric cardiac arrest model.
Collapse
Affiliation(s)
- Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States.
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Adam S Himebauch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Anna L Roberts
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - William P Landis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Jonathan Starr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Abhay Ranganathan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Nile Delso
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Constantine D Mavroudis
- Department of Surgery, Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, United States
| | - Lindsay Volk
- Department of Surgery, Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, United States
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Alexandra M Marquez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| |
Collapse
|
44
|
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr Res 2021; 89:738-745. [PMID: 32563183 DOI: 10.1038/s41390-020-1017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Apart from its known actions as a pulmonary vasodilator, nitric oxide (NO) is a key signal mediator in the neonatal brain. Despite the extensive use of NO for pulmonary artery hypertension (PAH), its actions in the setting of brain hypoxia and ischemia, which co-exists with PAH in 20-30% of affected infants, are not well established. This review focuses on the mechanisms of actions of NO covering the basic, translational, and clinical evidence of its neuroprotective and neurotoxic properties. In this first part, we present the physiology of transport and delivery of NO to the brain and the regulation of cerebrovascular and systemic circulation by NO, as well the role of NO in the development of the immature brain. IMPACT: NO can be transferred from the site of production to the site of action rapidly and affects the central nervous system. Inhaled NO (iNO), a commonly used medication, can have significant effects on the neonatal brain. NO regulates the cerebrovascular and systemic circulation and plays a role in the development of the immature brain. This review describes the properties of NO under physiologic conditions and under stress. The impact of this review is that it describes the effects of NO, especially regarding the vulnerable neonatal brain, and helps understand the conditions that could contribute to neurotoxicity or neuroprotection.
Collapse
|
45
|
Wei B, Wang Z, Wu S, Orgah J, Zhu J, Song W. Improving Collateral Circulation: A Potential Adjunctive Strategy to Prevent or Slow the Progression of Vascular Dementia. Neuropsychiatr Dis Treat 2021; 17:3061-3067. [PMID: 34675517 PMCID: PMC8502063 DOI: 10.2147/ndt.s328446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Vascular dementia (VaD), a cognitive disorder caused by cerebrovascular pathologies, is the most common cause of dementia in the elderly, being second only to Alzheimer's disease. Researches have shown that adequate cerebral blood flow (CBF) is the first condition for maintaining the structural integrity and normal function of the brain, and VaD is generally considered to be resulted from neuronal loss due to reduced CBF. Collateral circulation, a compensation mechanism for CBF, provides an alternative vascular pathway for blood to reach ischemic tissues, which has been confirmed to be associated with better clinical outcomes of ischemic diseases. At present, considerable effort has been devoted to enhancing the functional prognosis of acute ischemic stroke by improving collateral circulation. Since ischemic stroke is the primary contributor to VaD, it is necessary to explore whether improving collateral circulation is beneficial to prevent or slow the progression of VaD. This article reviews the compensatory characteristics of different levels of cerebral collateral circulation, addresses the relationship between collateral circulation and VaD, and highlights that improving collateral circulation may be a potential adjunctive strategy in preventing and slowing the progression of VaD.
Collapse
Affiliation(s)
- Baoyu Wei
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhaoqi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Shihao Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - John Orgah
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jinqiang Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Wanshan Song
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People's Republic of China
| |
Collapse
|
46
|
Hemodynamics in acute stroke: Cerebral and cardiac complications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:295-317. [PMID: 33632449 DOI: 10.1016/b978-0-12-819814-8.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hemodynamics is the study of blood flow, where parameters have been defined to quantify blood flow and the relationship with systemic circulatory changes. Understanding these perfusion parameters, the relationship between different blood flow variables and the implications for ischemic injury are outlined in the ensuing discussion. This chapter focuses on the hemodynamic changes that occur in ischemic stroke, and their contribution to ischemic stroke pathophysiology. We discuss the interaction between cardiovascular response and hemodynamic changes in stroke. Studying hemodynamic changes has a key role in stroke prevention, therapeutic implications and prognostic importance in acute ischemic stroke: preexisting hemodynamic and autoregulatory impairments predict the occurrence of stroke. Hemodynamic failure predisposes to the formation of thromboemboli and accelerates infarction due to impairing compensatory mechanisms. In ischemic stroke involving occlusion of a large vessel, persistent collateral circulation leads to preservation of ischemic penumbra and therefore justifying endovascular thrombectomy. Following thrombectomy, impaired autoregulation may lead to reperfusion injury and hemorrhage.
Collapse
|
47
|
McCarty MF, Lerner A. Nutraceutical induction and mimicry of heme oxygenase activity as a strategy for controlling excitotoxicity in brain trauma and ischemic stroke: focus on oxidative stress. Expert Rev Neurother 2020; 21:157-168. [PMID: 33287596 DOI: 10.1080/14737175.2021.1861940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Ischemic stroke and traumatic brain injury are leading causes of acute mortality, and in the longer run, major causes of significant mental and physical impairment. Most of the brain neuronal cell death in the minutes and hours following an ischemic stroke or brain trauma is mediated by the process of excitotoxicity, in which sustained elevations of extracellular glutamate, reflecting a failure of ATP-dependent mechanism which sequester glutamate in neurons and astrocytes, drive excessive activation of NMDA receptors. Areas covered: A literature search was undertaken to clarify the molecular mechanisms whereby excessive NMDA activation leads to excitotoxic neuronal death, and to determine what safe nutraceutical agents might have practical potential for rescuing at-risk neurons by intervening in these mechanisms. Expert opinion: Activation of both NADPH oxidase and neuronal nitric oxide synthase in the microenvironment of activated NMDA receptors drives production of superoxide and highly toxic peroxynitrite. This leads to excessive activation of PARP and p38 MAP kinase, mitochondrial dysfunction, and subsequent neuronal death. Heme oxygenase-1 (HO-1) induction offers protection via inhibition of NADPH oxidase and promotion of cGMP generation. Phase 2-inductive nutraceuticals can induce HO-1, and other nutraceuticals can mimic the effects of its products biliverdin and carbon monoxide.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Technion Israel Institute of Technology Ruth and Bruce Rappaport Faculty of Medicine- Research, Haifa, Israel (Retired)
| |
Collapse
|
48
|
Fan JL, O’Donnell T, Lanford J, Croft K, Watson E, Smyth D, Koch H, Wong LK, Tzeng YC. Dietary nitrate reduces blood pressure and cerebral artery velocity fluctuations and improves cerebral autoregulation in transient ischemic attack patients. J Appl Physiol (1985) 2020; 129:547-557. [DOI: 10.1152/japplphysiol.00160.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We found dietary nitrate supplementation reduced blood pressure and brain blood flow fluctuations and improved the relationship between blood pressure and brain blood flow in transient ischemic attack patients. Meanwhile, dietary nitrate had no effects on the brain blood vessels’ response to CO2. We attribute the improved brain blood flow stability to the improved myogenic control of blood pressure with dietary nitrate. Our findings indicate that dietary nitrate could be an effective strategy for stabilizing blood pressure and brain blood flow following transient ischemic attack.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Terrence O’Donnell
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jeremy Lanford
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Kevin Croft
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Eloise Watson
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Duncan Smyth
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Henrietta Koch
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Lai-Kin Wong
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
49
|
Lee IJ, Kao PT, Hung SA, Wang ZW, Lin HJ, Chang WT, Yeh CS, Liau I. Light triggering goldsomes enable local NO-generation and alleviate pathological vasoconstriction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102282. [PMID: 32771420 DOI: 10.1016/j.nano.2020.102282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/17/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022]
Abstract
While nitric oxide (NO) can remedy vasoconstriction, inhalation of NO may cause systematic toxicity. We report a goldsome, which comprises a hollowed poly(lactic-co-glycolic acid) (PLGA) polymersome with S-nitrosoglutathione (GSNO, a NO donor) molecules and gold nanoparticles (Au NPs) incorporated in its hydrophilic core and hydrophobic membrane, respectively. Photothermal heating caused breakdown of polymersomes and enabled NO generation through reaction between GSNO and Au NPs. Photo-illumination at the zebrafish head led to local NO generation and selective cerebral vasodilation while it had little effects in regions away from the illumination site, and effectively mitigated hypoxia induced cerebral vasoconstriction. We demonstrate a translational potential by showing photo-stimulated NO generation with a clinical intravascular optical catheter. In conclusion, the goldsome, which enables light stimulated local NO generation and can be delivered with clinical intravascular optical catheters, should extend applications of NO therapies while surmounting limitations associated with systemic administration.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Tsung Kao
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Shao-An Hung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Zih-Wun Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Jen Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine and Cardiovascular Center, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Ian Liau
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan; Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
50
|
Thomaz DT, Andreguetti RR, Binder LB, Scheffer DDL, Corrêa AW, Silva FRMB, Tasca CI. Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide. Neurochem Res 2020; 45:2217-2229. [PMID: 32666283 DOI: 10.1007/s11064-020-03083-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Stroke is a major cause of disability and death worldwide. Oxygen and glucose deprivation (OGD) in brain tissue preparations can reproduce several pathological features induced by stroke providing a valuable ex vivo protocol for studying the mechanism of action of neuroprotective agents. Guanosine, an endogenous guanine nucleoside, promotes neuroprotection in vivo and in vitro models of neurotoxicity. We previously showed that guanosine protective effect was mimicked by inhibition of nitric oxide synthases (NOS) activity. This study was designed to investigate the involvement of nitric oxide (NO) in the mechanisms related to the protective role of guanosine in rat hippocampal slices subjected to OGD followed by reoxygenation (OGD/R). Guanosine (100 μM) and the pan-NOS inhibitor, L-NAME (1 mM) afforded protection to hippocampal slices subjected to OGD/R. The presence of NO donors, DETA-NO (800 μM) or SNP (5 μM) increased reactive species production, and abolished the protective effect of guanosine or L-NAME against OGD/R. Guanosine or L-NAME treatment prevented the impaired ATP production, lactate release, and glutamate uptake following OGD/R. The presence of a NO donor also abolished the beneficial effects of guanosine or L-NAME on bioenergetics and glutamate uptake. These results showed, for the first time, that guanosine may regulate cellular bioenergetics in hippocampal slices subjected to OGD/R injury by a mechanism that involves the modulation of NO levels.
Collapse
Affiliation(s)
- Daniel Tonial Thomaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rafaela Rafognatto Andreguetti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora da Luz Scheffer
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alisson Willms Corrêa
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|