1
|
He Y, Yang Z, Guo D, Luo C, Liu Q, Xian L, Yang F, Huang C, Wei Q. The multifaceted nature of SUMOylation in heart disease and its therapeutic potential. Mol Cell Biochem 2025:10.1007/s11010-025-05286-z. [PMID: 40287894 DOI: 10.1007/s11010-025-05286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
SUMOylation (SUMO), a crucial post-translational modification, is implicated in the regulation of diverse biological processes and plays a pivotal role in both the maintenance of cardiac function and progression and treatment of heart disease. Here, we reviewed the mechanisms by which SUMO-related various aspects of cardiac function and disease, including cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and myocardial infarction. Furthermore, we highlight its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ying He
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhijie Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Dan Guo
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Cheng Luo
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qiaoqiao Liu
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Lei Xian
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
- Liuzhou Key Laboratory of Primary Cardiomyopathy in Prevention and Treatment, Liuzhou, Guangxi, China.
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Qingjun Wei
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Bertero E, Ghigo A, Ameri P. Stop Me at Your Own PeRiL: PRL2 Constrains AMPK in the Pressure-Overloaded Heart. Circ Res 2025; 136:664-666. [PMID: 40146805 DOI: 10.1161/circresaha.124.325806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Affiliation(s)
- Edoardo Bertero
- Department of Internal Medicine, University of Genova, Italy (E.B., P.A.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiology Network, Genova, Italy (E.B., P.A.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone," University of Torino, Italy (A.G.)
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Italy (E.B., P.A.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiology Network, Genova, Italy (E.B., P.A.)
| |
Collapse
|
3
|
Han X, Shi Q, Tu Y, Zhang J, Wang M, Li W, Liu Y, Zheng R, Wei J, Ye S, Zhang Y, Ye B, Wang Y, Ying H, Liang G. Cardiomyocyte PRL2 Promotes Cardiac Hypertrophy via Directly Dephosphorylating AMPKα2. Circ Res 2025; 136:645-663. [PMID: 39950300 DOI: 10.1161/circresaha.124.325262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy can result in heart failure. Protein dephosphorylation plays a primary role in the mediation of various cellular processes in cardiomyocytes. Here, we investigated the effects of a protein tyrosine phosphatase, PRL2 (phosphatase of regenerative liver 2), on pathological cardiac hypertrophy. METHODS The PRL2 knockout mice were subjected to angiotensin II infusion or transverse aortic constriction to induce myocardial hypertrophy and cardiac dysfunction. RNA-sequencing analysis was performed to explore the underlying mechanisms. Mass spectrometry and bio-layer interferometry assays were used to identify AMPKα2 (AMP-activated protein kinase α2) as an interacting protein of PRL2. Mutant plasmids of AMPKα2 were used to clarify how PRL2 interacts and dephosphorylates AMPKα2. RESULTS A significant upregulation of PRL2 was observed in hypertrophic myocardium tissues in mice and patients with heart failure. PRL2 deficiency alleviated cardiac hypertrophy, fibrosis, and dysfunction in mice challenged with angiotensin II infusion or transverse aortic constriction. Transcriptomic and biochemical analyses showed that PRL2 knockout or silence maintained AMPKT172 phosphorylation and subsequent mitochondrial integrity in angiotensin II-challenged heart tissues or cardiomyocytes. Mass spectrometry-based interactome assay indicated AMPKα2 subunit as the substrate of PRL2. Mechanistically, PRL2 binds to the C-terminal domain of AMPKα2 and then dephosphorylates AMPKα2T172 via its active site C46. Adeno-associated virus 9-mediated deficiency of cardiomyocyte PRL2 also protected cardiac mitochondrial function and showed cardioprotective effects in angiotensin II-challenged mice, but these benefits were not observed in AMPKα2-/- mice. CONCLUSIONS This study reveals that PRL2, as a novel AMPK-regulating phosphatase, promotes mitochondrial instability and hypertrophic injury in cardiomyocytes and provides PLR2 as a potential target for future drug development treating heart failure.
Collapse
Affiliation(s)
- Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China (M.W.)
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yanan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Shiju Ye
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yanmei Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yi Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| |
Collapse
|
4
|
Akter R, Noor F, Tonmoy HS, Ahmed A. Potential of SIRT6 modulators in targeting molecular pathways involved in cardiovascular diseases and their treatment-A comprehensive review. Biochem Pharmacol 2025; 233:116787. [PMID: 39894306 DOI: 10.1016/j.bcp.2025.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity, accounting for major public health concerns worldwide. CVD poses an immense burden on the global healthcare system and economy. Ischemic heart disease, stroke, heart failure, atherosclerosis, and hypertension are the major diseases belonging to CVDs and ischemic heart diseases and stroke contribute to most CVD-induced deaths. Previously published review articles focused on the role of SIRT6 in CVDs but did not focus on the important role of SIRT6 in modulating the signaling pathways involved in CVDs and targeting them to treat CVDs. Thus, this review aims to identify and delineate the major signaling pathways that are involved in CVDs and whether SIRT6 can modulate those pathways to improve and treat CVDs. Alongside possible applications of small molecule modulators of SIRT6 in cardiovascular disease treatment have been comprehensively analyzed.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh.
| | - Fouzia Noor
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| | - Hasan Shahriyer Tonmoy
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| | - Ashfaq Ahmed
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| |
Collapse
|
5
|
Wang W, Wu B, Hao M, Chen S, Cong R, Wu W, Wang P, Zhang Q, Jia P, Song Y, Liu B, Qu S, Pei JF, Li D, Zhang N. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. Cell Death Dis 2025; 16:41. [PMID: 39863605 PMCID: PMC11762313 DOI: 10.1038/s41419-025-07362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/08/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors. Mechanistically, we found a crucial AMPK-CLYBL acetylation positive feedback loop, triggered by toll-like receptors (TLRs), involving AMPK hypophosphorylation and CLYBL hyperacetylation. The deacetylase enzyme SIRT2 acted as the bridge between AMPK phosphorylation and CLYBL acetylation, thereby regulating macrophage polarization and the release of pro-inflammatory cytokines. Furthermore, CLYBL hypoacetylation decreased monocyte infiltration, thereby alleviating cardiac remodeling. These findings suggest that the AMPK-CLYBL acetylation positive feedback loop serves as a metabolic switch driving inflammatory response and inhibiting CLYBL-K154 acetylation may offer a promising therapeutic strategy for inflammatory response-related disorders.
Collapse
Affiliation(s)
- Wenke Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Mingjun Hao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China
| | - Sichong Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ruiting Cong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China
| | - Wenjie Wu
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China
| | - Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Qiaoyi Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
- China Medical University School of Public Health, Shenyang, 110122, China
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yuequn Song
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Bo Liu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Siyao Qu
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Jian-Fei Pei
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
| | - Naijin Zhang
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Li Y, Hsu CT, Yang TT, Cheng KC. Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals. Pharmaceuticals (Basel) 2025; 18:110. [PMID: 39861172 PMCID: PMC11768131 DOI: 10.3390/ph18010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy. This study explores SA's therapeutic potential in hyperglycemia-induced cardiac hypertrophy in H9c2 cardiomyocytes. Methods: H9c2 cells were exposed to high glucose to induce hypertrophy. Cells were treated with varying SA concentrations, and hypertrophic biomarkers were analyzed using ELISA, qPCR, and Western blot. Results: SA reduced cell size and hypertrophic biomarkers in a dose-dependent manner while increasing GLP-1 receptor expression and cAMP levels. These effects were attenuated in GLP-1-resistant cells, highlighting the role of GLP-1 receptor activation. AMPK activation was essential, as its inhibition abolished SA's effects. SA also decreased O-linked N-acetylglucosamine transferase (OGT) expression via AMPK activation, contributing to reduced hypertrophy. Conclusions: SA alleviates hyperglycemia-induced cardiac hypertrophy in H9c2 cells by activating the GLP-1 receptor and AMPK signaling pathway.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Anatomy, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Chao-Tien Hsu
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Ting-Ting Yang
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan
| |
Collapse
|
7
|
Chen Z, Zhang M, Xu Q, Lu P, Liu M, Yin R, Liu X, Dai Y, Gao X, Gong J, Zhang S, Wang X. Huangqi-Danshen decoction improves heart failure by regulating pericardial adipose tissue derived extracellular vesicular miR-27a-3p to activate AMPKα2 mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156187. [PMID: 39488874 DOI: 10.1016/j.phymed.2024.156187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Huangqi-Danshen decoction (HDD) is a classic traditional Chinese medicine for treating heart failure. Pericardial adipose tissue (PAT) has recently gained increasing attention in cardiovascular diseases. PURPOSE This study aimed to investigate the effect of pericardial adipose tissue-derived extracellular vesicles on heart failure, the protective effect of HDD on myocardial remodel in heart failure rats, and identify the potential molecular mechanisms involved. METHODS UPLC-MS/MS identified active components of HDD. Extracellular vesicles (EVs) from pericardial adipose tissue of sham-operated and HF rats were identified through transmission electron microscopy, nanoparticle tracking analysis and western blot. EVs were co-cultured with H9c2 cardiomyocytes in order to examine their uptake and effects. MicroRNA sequencing, dual-luciferase reporter assay and PCR were conducted for exploring specific mechanisms of EVs on hypertrophic cardiomyocytes. In vivo, heart failure was modeled in rats via transverse aortic constriction (TAC). In vitro, the hypertrophic cardiomyocyte model were established using Ang II-induced H9c2 cardiomyocytes. RESULTS UPLC-MS/MS identified 11 active components in serum of HDD administrated rats. Echocardiography showed HDD improved cardiac function in TAC model rats. HE and Masson staining indicated HDD ameliorated myocardial hypertrophy and fibrosis. MicroRNA sequencing found that HDD treatment resulted in 37 differentially expressed miRNAs (DMEs) (p < 0.05 and |log2FC| ≥ 1). KEGG analysis revealed that DEMs were enriched in the AMPK signaling pathway. PCR identified miR-27a-3p with the greatest difference in AMPK-related DMEs. Dual-luciferase reporter assay and Targetscan website were utilized to identify the target relationship between miR-27a-3p and PRKAA2 (AMPKα2). The miR-27a-3p negatively regulated AMPKα2 to inhibit mitophagy mediated by PINK1/Parkin pathway. HDD inhibited miR-27a-3p secretion from failing heart pericardial adipose tissue-derived extracellular vesicles, thereby improving inflammation, cardiac function, and myocardial remodeling through above pathways. CONCLUSION HDD inhibited the PAT-derived extracellular vesicular miR-27a-3p in failing hearts to activate AMPK/PINK1/Parkin signaling-mediated mitophagy, which improved cardiomyocyte energy metabolism, myocardial remodeling and heart failure.
Collapse
Affiliation(s)
- Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiyao Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Rui Yin
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xuan Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xin Gao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Juexiao Gong
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Sujie Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
8
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Mf NM, Arunachalam S, Sheikh A, Saraswathiamma D, Albawardi A, Al Marzooqi S, Jha NK, Subramanya S, Beiram R, Ojha S. α-Bisabolol: A Dietary Sesquiterpene that Attenuates Apoptotic and Nonapoptotic Cell Death Pathways by Regulating the Mitochondrial Biogenesis and Endoplasmic Reticulum Stress-Hippo Signaling Axis in Doxorubicin-Induced Acute Cardiotoxicity in Rats. ACS Pharmacol Transl Sci 2024; 7:2694-2705. [PMID: 39296269 PMCID: PMC11406691 DOI: 10.1021/acsptsci.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
The potential for multiorgan toxicities is a significant barrier to the therapeutic use of doxorubicin (DOX) in cancer treatment. With regard to DOX-induced acute cardiotoxicity in rats, the current investigation sought to assess the cardioprotective function of α-bisabolol (BSB) as well as the underlying pharmacological and molecular processes. Acute cardiotoxicity was induced in the rats by the intraperitoneal injection of DOX (12.5 mg/kg, single dosage). Over the course of 5 days, the rats were administered 25 mg/kg of BSB orally twice a day. The DOX administration induced cardiac damage, as evidenced by altered cardiospecific diagnostic markers and macroscopic enzyme mapping assay. The occurrence of mitochondrial oxidative stress was observed by a significant decline in antioxidant defense along with an increase in lipid peroxidation. DOX also perturbed DNA damage, mitochondrial biogenesis, mitochondrial fission and dysfunction, ER stress, Hippo signaling, and caspase-dependent and independent apoptosis including necroptosis and ferroptosis in the myocardium of rats. Conversely, it has been noted that the administration of BSB preserves the myocardium and reverses all cellular, molecular, and structural disruptions in the cardiac tissues of rats exposed to DOX-induced toxicity. The results that are currently available unequivocally show the cardioprotective role of BSB in DOX-induced cardiotoxicity. This effect is attributed to BSB's strong antioxidant, antilipid peroxidative, and antiapoptotic properties, which are mediated by advantageous changes in multiple signaling pathways.
Collapse
Affiliation(s)
- Nagoor Meeran Mf
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Azimullah Sheikh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Dhanya Saraswathiamma
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Saeeda Al Marzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sandeep Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| |
Collapse
|
10
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
11
|
Weng H, Zou W, Tian F, Xie H, Liu A, Liu W, Liu Y, Zhou N, Cai X, Wu J, Zheng Y, Shu X. Inhalable cardiac targeting peptide modified nanomedicine prevents pressure overload heart failure in male mice. Nat Commun 2024; 15:6058. [PMID: 39025877 PMCID: PMC11258261 DOI: 10.1038/s41467-024-50312-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Heart failure causes considerable morbidity and mortality worldwide. Clinically applied drugs for the treatment of heart failure are still severely limited by poor delivery efficiency to the heart and off-target consumption. Inspired by the high heart delivery efficiency of inhaled drugs, we present an inhalable cardiac-targeting peptide (CTP)-modified calcium phosphate (CaP) nanoparticle for the delivery of TP-10, a selective inhibitor of PDE10A. The CTP modification significantly promotes cardiomyocyte and fibroblast targeting during the pathological state of heart failure in male mice. TP-10 is subsequently released from TP-10@CaP-CTP and effectively attenuates cardiac remodelling and improved cardiac function. In view of these results, a low dosage (2.5 mg/kg/2 days) of inhaled medication exerted good therapeutic effects without causing severe lung injury after long-term treatment. In addition, the mechanism underlying the amelioration of heart failure is investigated, and the results reveal that the therapeutic effects of this system on cardiomyocytes and cardiac fibroblasts are mainly mediated through the cAMP/AMPK and cGMP/PKG signalling pathways. By demonstrating the targeting capacity of CTP and verifying the biosafety of inhalable CaP nanoparticles in the lung, this work provides a perspective for exploring myocardium-targeted therapy and presents a promising clinical strategy for the long-term management of heart failure.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Weijuan Zou
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Fangyan Tian
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huilin Xie
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ao Liu
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Wen Liu
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yu Liu
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Nianwei Zhou
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiaojun Cai
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianrong Wu
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Yuanyi Zheng
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Xianhong Shu
- Department of Echocardiography, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China.
- Department of Ultrasound in Medicine, Shanghai Xuhui District Central Hospital, Shanghai, PR China.
| |
Collapse
|
12
|
Xia L, Chen J, Huang J, Lin X, Jiang J, Liu T, Huang N, Luo Y. The role of AMPKα subunit in Alzheimer's disease: In-depth analysis and future prospects. Heliyon 2024; 10:e34254. [PMID: 39071620 PMCID: PMC11279802 DOI: 10.1016/j.heliyon.2024.e34254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
The AMP-activated protein kinase α (AMPKα) subunit is the catalytic subunit in the AMPK complex, playing a crucial role in AMPK activation. It has two isoforms: AMPKα1 and AMPKα2. Emerging evidence suggests that the AMPKα subunit exhibits subtype-specific effects in Alzheimer's disease (AD). This review discusses the role of the AMPKα subunit in the pathogenesis of AD, including its impact on β-amyloid (Aβ) pathology, Tau pathology, metabolic disorders, inflammation, mitochondrial dysfunction, inflammasome and pyroptosis. Additionally, it reviews the distinct roles of its isoforms, AMPKα1 and AMPKα2, in AD, which may provide more precise targets for future drug development in AD.
Collapse
Affiliation(s)
- Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jianhua Chen
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jingyu Jiang
- Department of Gastroenterology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Tingting Liu
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
13
|
Dong B, Xue R, Li J, Ling S, Xing W, Liu Z, Yuan X, Pan J, Du R, Shen X, Zhang J, Zhang Y, Li Y, Zhong G. Ckip-1 3'UTR alleviates prolonged sleep deprivation induced cardiac dysfunction by activating CaMKK2/AMPK/cTNI pathway. MOLECULAR BIOMEDICINE 2024; 5:23. [PMID: 38871861 PMCID: PMC11176284 DOI: 10.1186/s43556-024-00186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.
Collapse
Affiliation(s)
- Beilei Dong
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Jianwei Li
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325041, China
| | - Wenjuan Xing
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zizhong Liu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinxin Yuan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Junjie Pan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Ruikai Du
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinming Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jingwen Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Yingxian Li
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Guohui Zhong
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
14
|
Zhu W, Lian N, Wang J, Zhao F, Liu B, Sheng J, Zhang C, Zhou X, Gao W, Xie C, Gu H, Zhang Y, Bian M, Jiang M, Li Y. Liguzinediol potentiates the metabolic remodeling by activating the AMPK/SIRT3 pathway and represses Caspase-3/GSDME-mediated pyroptosis to ameliorate cardiotoxicity. Chin Med 2024; 19:85. [PMID: 38877519 PMCID: PMC11179277 DOI: 10.1186/s13020-024-00955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Liguzinediol (Lig) has emerged as a promising candidate for mitigating Doxorubicin (DOX)-induced cardiotoxicity, a significant limitation in the clinical application of this widely used antineoplastic drug known for its efficacy. This study aimed to explore the effects and potential mechanisms underlying Lig's protective role against DOX-induced cardiotoxicity. METHODS C57BL/6 mice were treated with DOX. Cardiac function changes were observed by echocardiography. Cardiac structure changes were observed by HE and Masson staining. Immunofluorescence was applied to visualize the cardiomyocyte apoptosis. Western blotting was used to detect the expression levels of AMP-activated protein kinase (AMPK), sirtuin 3 (SIRT3), Caspase-3 and gasdermin E N-terminal fragment (GSDME-N). These experiments confirmed that Lig had an ameliorative effect on DOX-induced cardiotoxicity in mice. RESULTS The results demonstrated that Lig effectively countered myocardial oxidative stress by modulating intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Lig reduced levels of creatine kinase (CK) and lactate dehydrogenase (LDH), while ameliorating histopathological changes and improving electrocardiogram profiles in vivo. Furthermore, the study revealed that Lig activated the AMPK/SIRT3 pathway, thereby enhancing mitochondrial function and attenuating myocardial cell apoptosis. In experiments with H9C2 cells treated with DOX, co-administration of the AMPK inhibitor compound C (CC) led to a significant increase in intracellular ROS levels. Lig intervention reversed these effects, along with the downregulation of GSDME-N, interleukin-1β (IL-1β), and interleukin-6 (IL-6), suggesting a potential role of Lig in mitigating Caspase-3/GSDME-mediated pyroptosis. CONCLUSION The findings of this study suggest that Lig effectively alleviates DOX-induced cardiotoxicity through the activation of the AMPK/SIRT3 pathway, thereby presenting itself as a natural product with therapeutic potential for preventing DOX-associated cardiotoxicity. This novel approach may pave the way for the development of alternative strategies in the clinical management of DOX-induced cardiac complications.
Collapse
Affiliation(s)
- Weijie Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Naqi Lian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fengming Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bowen Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxing Sheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenyan Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- School of Senior Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenbai Gao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Xie
- College of Acupuncture and Massage Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyu Gu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxin Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianli Bian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Miao Jiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Tang Y, Yin L, Yuan L, Lin X, Jiang B. Nucleolin myocardial-specific knockout exacerbates glucose metabolism disorder in endotoxemia-induced myocardial injury. PeerJ 2024; 12:e17414. [PMID: 38784400 PMCID: PMC11114111 DOI: 10.7717/peerj.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Background Sepsis-induced myocardial injury, as one of the important complications of sepsis, can significantly increase the mortality of septic patients. Our previous study found that nucleolin affected mitochondrial function in energy synthesis and had a protective effect on septic cardiomyopathy in mice. During sepsis, glucose metabolism disorders aggravated myocardial injury and had a negative effect on septic patients. Objectives We investigated whether nucleolin could regulate glucose metabolism during endotoxemia-induced myocardial injury. Methods The study tested whether the nucleolin cardiac-specific knockout in the mice could affect glucose metabolism through untargeted metabolomics, and the results of metabolomics were verified experimentally in H9C2 cells. The ATP content, lactate production, and oxygen consumption rate (OCR) were evaluated. Results The metabolomics results suggested that glycolytic products were increased in endotoxemia-induced myocardial injury, and that nucleolin myocardial-specific knockout altered oxidative phosphorylation-related pathways. The experiment data showed that TNF-α combined with LPS stimulation could increase the lactate content and the OCR values by about 25%, and decrease the ATP content by about 25%. However, interference with nucleolin expression could further decrease ATP content and OCR values by about 10-20% and partially increase the lactate level in the presence of TNF-α and LPS. However, nucleolin overexpression had the opposite protective effect, which partially reversed the decrease in ATP content and the increase in lactate level. Conclusion Down-regulation of nucleolin can exacerbate glucose metabolism disorders in endotoxemia-induced myocardial injury. Improving glucose metabolism by regulating nucleolin was expected to provide new therapeutic ideas for patients with septic cardiomyopathy.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Xu Z, Pan Z, Jin Y, Gao Z, Jiang F, Fu H, Chen X, Zhang X, Yan H, Yang X, Yang B, He Q, Luo P. Inhibition of PRKAA/AMPK (Ser485/491) phosphorylation by crizotinib induces cardiotoxicity via perturbing autophagosome-lysosome fusion. Autophagy 2024; 20:416-436. [PMID: 37733896 PMCID: PMC10813574 DOI: 10.1080/15548627.2023.2259216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity.Abbreviations and Acronyms: AAV: adeno-associated virus; ACAC/ACC: acetyl-Co A carboxylase; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; CHX: cycloheximide; CKMB: creatine kinase myocardial band; CQ: chloroquine; c-PARP: cleaved poly (ADP-ribose) polymerase; DAPI: 4'6-diamidino-2-phenylindole; EF: ejection fraction; FOXO: forkhead box O; FS: fractional shortening; GSEA: gene set enrichment analysis; H&E: hematoxylin and eosin; HF: heart failure; HW: TL: ratio of heart weight to tibia length; IR: ischemia-reperfusion; KEGG: Kyoto encyclopedia of genes and genomes; LAMP2: lysosomal-associated membrane protein 2; LDH: lactate dehydrogenase; MCMs: mouse cardiomyocytes; MMP: mitochondrial membrane potential; mtDNA: mitochondrial DNA; MYH6: myosin, heavy peptide 6, cardiac muscle, alpha; MYH7: myosin, heavy peptide 7, cardiac muscle, beta; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; PI: propidium iodide; PI3K: phosphoinositide 3-kinase; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; qPCR: quantitative real-time PCR; SD: standard deviation; SRB: sulforhodamine B; TKI: tyrosine kinase inhibitor; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Deparment of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| |
Collapse
|
17
|
Sabe SA, Harris DD, Broadwin M, Xu CM, Sabra M, Banerjee D, Abid MR, Sellke FW. Comparative effects of canagliflozin and sitagliptin in chronically ischemic myocardium. VESSEL PLUS 2024; 8:2. [PMID: 39176133 PMCID: PMC11339913 DOI: 10.20517/2574-1209.2023.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Aim Recent studies demonstrate that sodium-glucose cotransporter 2 inhibitors (SGLT2i) and dipeptidyl peptidase-4 inhibitors (DPP4i), two classes of antidiabetic drugs, are cardioprotective. However, the mechanisms of these benefits and their comparative efficacy remain unclear. We aimed to compare the effects of these antidiabetic agents on cardiac function, perfusion, and microvascular density using a swine model of chronic myocardial ischemia. Methods Chronic myocardial ischemia was induced in Yorkshire swine by ameroid constrictor placement to the left circumflex artery. Two weeks later, pigs were administered vehicle ("CON", 8 pigs), 300 mg SGLT2i canagliflozin, ("CANA", 8 pigs), or 100 mg DPP4i sitagliptin ("SIT", 5 pigs) daily. Five weeks later, pigs were euthanized. Cardiac function, perfusion, collateralization, and protein expression were determined by pressure-volume catheter, microsphere analysis, immunofluorescence, and immunoblotting, respectively. Results Compared with SIT, CANA was associated with improved stroke volume and cardiac output, with a trend towards reduced left ventricular stiffness. Both CANA and SIT trended towards improved perfusion compared to CON, but there were no differences between the two treatment groups. SIT was associated with improved capillary density with a trend towards improved arteriolar density compared to CANA. Both CANA and SIT were associated with increased expression of vascular endothelial cadherin compared to CON, without differences in treatment groups. SIT pigs had decreased 5' adenosine monophosphate-activated protein kinase activation compared to CON and CANA. There was a trend towards increased endothelial nitric oxide synthase activation in the SIT group compared to CON. There were no differences in activation of extracellular signal-regulated kinase 1/2 across groups. Conclusions In the setting of chronic myocardial ischemia, canagliflozin is associated with improved cardiac function compared to sitagliptin, with similar effects on perfusion despite differences in microvascular collateralization.
Collapse
Affiliation(s)
- Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - Cynthia M Xu
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - Debolina Banerjee
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02905, USA
| |
Collapse
|
18
|
de Zélicourt A, Fayssoil A, Mansart A, Zarrouki F, Karoui A, Piquereau J, Lefebvre F, Gerbaud P, Mika D, Dakouane-Giudicelli M, Lanchec E, Feng M, Leblais V, Bobe R, Launay JM, Galione A, Gomez AM, de la Porte S, Cancela JM. Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling. Cell Calcium 2024; 117:102839. [PMID: 38134531 DOI: 10.1016/j.ceca.2023.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Abdallah Fayssoil
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, 78000 Versailles, France
| | - Faouzi Zarrouki
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Ahmed Karoui
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Jérome Piquereau
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Florence Lefebvre
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Pascale Gerbaud
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Delphine Mika
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | | | - Erwan Lanchec
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Miao Feng
- UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Leblais
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Régis Bobe
- UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Ana Maria Gomez
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Sabine de la Porte
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - José-Manuel Cancela
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France.
| |
Collapse
|
19
|
Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective Strategies After Ischemia-Reperfusion Injury. Am J Cardiovasc Drugs 2024; 24:5-18. [PMID: 37815758 PMCID: PMC10806044 DOI: 10.1007/s40256-023-00614-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high morbidity and mortality worldwide. Although early reperfusion is the most effective strategy to salvage ischemic myocardium, reperfusion injury can develop with the restoration of blood flow. Therefore, it is important to identify protection mechanisms and strategies for the heart after myocardial infarction. Recent studies have shown that multiple intracellular molecules and signaling pathways are involved in cardioprotection. Meanwhile, device-based cardioprotective modalities such as cardiac left ventricular unloading, hypothermia, coronary sinus intervention, supersaturated oxygen (SSO2), and remote ischemic conditioning (RIC) have become important areas of research. Herein, we review the molecular mechanisms of cardioprotection and cardioprotective modalities after ischemia-reperfusion injury (IRI) to identify potential approaches to reduce mortality and improve prognosis in patients with AMI.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Huilin Hu
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China.
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Hongen Tian
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| |
Collapse
|
20
|
Zhu Y, He YJ, Yu Y, Xu D, Yuan SY, Yan H. Aldehyde Dehydrogenase 2 Preserves Mitochondrial Function in the Ischemic Heart: A Redox-dependent Mechanism for AMPK Activation by Thioredoxin-1. J Cardiovasc Pharmacol 2024; 83:93-104. [PMID: 37816196 DOI: 10.1097/fjc.0000000000001499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
ABSTRACT Aldehyde dehydrogenase 2 (ALDH2) protects the ischemic heart by activating adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. However, the molecular mechanisms linking ALDH2 and AMPK signaling are not fully understood. This study aimed to explore the potential mechanisms linking ALDH2 and AMPK in myocardial ischemic injury. An ischemic model was established by ligating the left anterior descending coronary artery in rats. The overexpression or knockdown of ALDH2 in H9c2 cells treated with oxygen-glucose deprivation was obtained through lentivirus infection. Transferase-mediated dUTP nick-end labeling was used to evaluate apoptosis in an ischemic rat model and oxygen-glucose deprivation cells. ALDH2 activity, mitochondrial oxidative stress markers, adenosine triphosphate, respiratory control ratio, and cell viability in H9c2 cells were evaluated using a biological kit and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. Protein expression of ALDH2 , 4-hydroxynonenal, thioredoxin-1 (Trx-1), and AMPK-proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling pathway was detected through Western blotting. ALDH2 activation reduced ischemic-induced myocardial infarct size and apoptosis. ALDH2 protected mitochondrial function by enhancing mitochondrial respiratory control ratio and adenosine triphosphate production, alleviated mitochondrial oxidative stress, and suppressed myocardial apoptosis. Moreover, ALDH2 attenuated ischemia-induced oxidative stress and maintained Trx-1 levels by reducing 4-hydroxynonenal, thereby promoting AMPK-PGC-1α signaling activation. Inhibiting Trx-1 or AMPK abolished the cardioprotective effect of ALDH2 on ischemia. ALDH2 alleviates myocardial injury through increased mitochondrial biogenesis and reduced oxidative stress, and these effects were achieved through Trx1-mediating AMPK-PGC1-α signaling activation.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Intensive Care Unit, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China; and
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Mandatori S, Liu Y, Marturia-Navarro J, Hadi M, Henriksen K, Zheng J, Rasmussen LM, Rizza S, Kaestner KH, Issazadeh-Navikas S. PRKAG2.2 is essential for FoxA1 + regulatory T cell differentiation and metabolic rewiring distinct from FoxP3 + regulatory T cells. SCIENCE ADVANCES 2023; 9:eadj8442. [PMID: 38117896 PMCID: PMC10732530 DOI: 10.1126/sciadv.adj8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Forkhead box A1 (FoxA1)+ regulatory T cells (Tregs) exhibit distinct characteristics from FoxP3+ Tregs while equally effective in exerting anti-inflammatory properties. The role of FoxP3+ Tregs in vivo has been challenged, motivating a better understanding of other Tregs in modulating hyperactive immune responses. FoxA1+ Tregs are generated on activation of the transcription factor FoxA1 by interferon-β (IFNβ), an anti-inflammatory cytokine. T cell activation, expansion, and function hinge on metabolic adaptability. We demonstrated that IFNβ promotes a metabolic rearrangement of FoxA1+ Tregs by enhancing oxidative phosphorylation and mitochondria clearance by mitophagy. In response to IFNβ, FoxA1 induces a specific transcription variant of adenosine 5'-monophosphate-activated protein kinase (AMPK) γ2 subunit, PRKAG2.2. This leads to the activation of AMPK signaling, thereby enhancing mitochondrial respiration and mitophagy by ULK1-BNIP3. This IFNβ-FoxA1-PRKAG2.2-BNIP3 axis is pivotal for their suppressive function. The involvement of PRKAG2.2 in FoxA1+ Treg, not FoxP3+ Treg differentiation, underscores the metabolic differences between Treg populations and suggests potential therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Sara Mandatori
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joana Marturia-Navarro
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahdieh Hadi
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Henriksen
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jin Zheng
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Munk Rasmussen
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Hua K, Li T, He Y, Guan A, Chen L, Gao Y, Xu Q, Wang H, Luo R, Zhao L, Jin H. Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection. Virulence 2023; 14:2171636. [PMID: 36694280 PMCID: PMC9928480 DOI: 10.1080/21505594.2023.2171636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Haemophilus parasuis (H. parasuis) causes exudative inflammation, implying endothelial dysfunction during pathogen infection. However, so far, the molecular mechanism of endothelial dysfunction caused by H. parasuis has not been clarified. By using the transwell-based cell co-culture system, we demonstrate that knocking out resistin in porcine alveolar macrophages (PAMs) dramatically attenuated endothelial monolayer damage caused by H. parasuis. The resistin secreted by PAMs inhibited the expression of the tight junction proteins claudin-5 and occludin rather than the adherens junction protein VE-cadherin in co-cultured porcine aortic endothelial cells (PAECs). Furthermore, we demonstrate that resistin regulated claudin-5 and occludin expression and monolayer PAEC permeability in an LKB1/AMPK/mTOR pathway-dependent manner. Additionally, we reveal that the outer membrane lipoprotein gene lppA in H. parasuis induced resistin expression in PAMs, as deleting lppA reduced resistin expression in H. parasuis-infected PAMs, causing a significant change in LKB1/AMPK/mTOR pathway activity in co-cultured PAECs, thereby restoring tight junction protein levels and endothelial monolayer permeability. Thus, we postulate that the H. parasuis lppA gene enhances resistin production in PAMs, disrupting tight junctions in PAECs and causing endothelial barrier dysfunction. These findings elucidate the pathogenic mechanism of exudative inflammation caused by H. parasuis for the first time and provide a more profound angle of acute exudative inflammation caused by bacteria.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Tingting Li
- Department of Animal Disease Diagnosis, Hubei Animal Disease Prevention and Control Centre, Wuhan, China
| | - Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Liying Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Qianshuan Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Haoyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China,CONTACT Hui Jin
| |
Collapse
|
23
|
Sabe SA, Xu CM, Sabra M, Harris DD, Broadwin M, Bellam KG, Banerjee D, Usheva A, Ruhul Abid M, Sellke FW. Effects of canagliflozin on myocardial microvascular density, oxidative stress, and proteomic profile ☆. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100052. [PMID: 38188970 PMCID: PMC10769006 DOI: 10.1016/j.jmccpl.2023.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are cardioprotective, and canagliflozin (CANA), an SGLT2i, has been shown to improve perfusion, AMPK signaling, and oxidative stress in chronically ischemic myocardium. The aim of this study is to determine the effects of CANA in nonischemic myocardium on coronary collateralization, oxidative stress, and other molecular pathways determined by proteomic profiling. Methods Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery. Two weeks later, pigs received no drug (CON, n = 8) or 300 mg CANA daily (n = 8). Treatment continued for five weeks, followed by tissue harvest of nonischemic myocardium. Results CANA was associated with decreased capillary density (p = 0.05) compared to CON, without changes in arteriolar density. Reduced capillary density did not correlate with reduced perfusion. Oxidative stress was reduced with CANA (22 % decrease). In the CANA group, there was a trend towards increased p-eNOS and eNOS, without a change in p-eNOS/eNOS ratio, p-Akt, Akt, and p-Akt/Akt ratio. There was no change in p-ERK1/2, but a decrease in total ERK1/2 and increase in p-ERK1/2/ERK1/2 ratio. There were no changes in expression of p-AMPK, AMPK, with a trend towards increased ratio of p-AMPK/AMPK. Proteomics analysis identified 2819 common proteins, of which 120 were upregulated and 425 were downregulated with CANA. Pathway analysis demonstrated wide regulation of metabolic proteins. Conclusions The effects of CANA on myocardial perfusion and AMPK signaling in chronically ischemic myocardium are not found in nonischemic territory, despite attenuation of oxidative stress. Metabolic proteins are widely regulated in nonischemic myocardium with CANA.
Collapse
Affiliation(s)
- Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Cynthia M. Xu
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Dwight D. Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Krishna G. Bellam
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Debolina Banerjee
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Anny Usheva
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States of America
| |
Collapse
|
24
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Mazzieri A, Basta G, Calafiore R, Luca G. GLP-1 RAs and SGLT2i: two antidiabetic agents associated with immune and inflammation modulatory properties through the common AMPK pathway. Front Immunol 2023; 14:1163288. [PMID: 38053992 PMCID: PMC10694219 DOI: 10.3389/fimmu.2023.1163288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Immune cells and other cells respond to nutrient deprivation by the classic catabolic pathway of AMPK (Adenosine monophosphate kinase). This kinase is a pivotal regulator of glucose and fatty acids metabolism, although current evidence highlights its role in immune regulation. Indeed AMPK, through activation of Foxo1 (Forkhead box O1) and Foxo3 (Forkhead box O3), can regulate FOXP3, the key gene for differentiation and homeostasis of Tregs (T regulators lymphocytes). The relevance of Tregs in the onset of T1D (Type 1 diabetes) is well-known, while their role in the pathogenesis of T2D (Type 2 diabetes) is not fully understood yet. However, several studies seem to indicate that Tregs may oppose the progression of diabetic complications by mitigating insulin resistance, atherosclerosis, and damage to target organs (as in kidney disease). Hence, AMPK and AMPK-activating agents may play a role in the regulation of the immune system. The connection between metformin and AMPK is historically known; however, this link and the possible related immune effects are less studied about SGLT2i (Sodium-glucose co-transport 2 inhibitors) and GLP1-RAs (Glucagon-like peptide-1 receptor agonists). Actual evidence shows that the negative caloric balance, induced by SGLT2i, can activate AMPK. Conversely and surprisingly, an anabolizing agent like GLP-1RAs can also upregulate this kinase through cAMP (Cyclic adenosine monophosphate) accumulation. Therefore, both these drugs can likely lead to the activation of the AMPK pathway and consequential proliferation of Tregs. These observations seem to confirm not only the metabolic but also the immunoregulatory effects of these new antidiabetic agents.
Collapse
Affiliation(s)
- Alessio Mazzieri
- Translational Medicine and Surgery, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Division of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Diabetes Research Foundation, Confindustria Umbria, Perugia, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
26
|
Li Z, Xing J. Contribution and therapeutic value of mitophagy in cerebral ischemia-reperfusion injury after cardiac arrest. Biomed Pharmacother 2023; 167:115492. [PMID: 37716121 DOI: 10.1016/j.biopha.2023.115492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Cardiopulmonary resuscitation and related life support technologies have improved substantially in recent years; however, mortality and disability rates from cardiac arrest (CA) remain high and are closely associated with the high incidence of cerebral ischemia-reperfusion injury (CIRI), which is explained by a "double-hit" model (i.e., resulting from both ischemia and reperfusion). Mitochondria are important power plants in the cell and participate in various biochemical processes, such as cell differentiation and signaling in eukaryotes. Various mitochondrial processes, including energy metabolism, calcium homeostasis, free radical production, and apoptosis, are involved in several important stages of the progression and development of CIRI. Mitophagy is a key mechanism of the endogenous removal of damaged mitochondria to maintain organelle function and is a critical target for CIRI treatment after CA. Mitophagy also plays an essential role in attenuating ischemia-reperfusion in other organs, particularly during post-cardiac arrest myocardial dysfunction. Regulation of mitophagy may influence necroptosis (a programmed cell death pathway), which is the main endpoint of organ ischemia-reperfusion injury. In this review, we summarize the main signaling pathways related to mitophagy and their associated regulatory proteins. New therapeutic methods and drugs targeting mitophagy in ischemia-reperfusion animal models are also discussed. In-depth studies of the mechanisms underlying the regulation of mitophagy will enhance our understanding of the damage and repair processes in CIRI after CA, thereby contributing to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
27
|
Gorący A, Rosik J, Szostak J, Szostak B, Retfiński S, Machaj F, Pawlik A. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets 2023; 27:593-608. [PMID: 37477241 DOI: 10.1080/14728222.2023.2240021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Heart failure is a complex clinical syndrome resulting from the unsuccessful compensation of symptoms of myocardial damage. Mitochondrial dysfunction is a process that occurs because of an attempt to adapt to the disruption of metabolic and energetic pathways occurring in the myocardium. This, in turn, leads to further dysfunction in cardiomyocyte processes. Currently, many therapeutic strategies have been implemented to improve mitochondrial function, but their effectiveness varies widely. AREAS COVERED This review focuses on new models of therapeutic strategies targeting mitochondrial function in the treatment of heart failure. EXPERT OPINION Therapeutic strategies targeting mitochondria appear to be a valuable option for treating heart failure. Currently, the greatest challenge is to develop new research models that could restore the disrupted metabolic processes in mitochondria as comprehensively as possible. Only the development of therapies that focus on improving as many dysregulated mitochondrial processes as possible in patients with heart failure will be able to bring the expected clinical improvement, along with inhibition of disease progression. Combined strategies involving the reduction of the effects of oxidative stress and mitochondrial dysfunction, appear to be a promising possibility for developing new therapies for a complex and multifactorial disease such as heart failure.
Collapse
Affiliation(s)
- Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Szymon Retfiński
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
28
|
Sabe SA, Harris DD, Broadwin M, Sabra M, Xu CM, Banerjee D, Abid MR, Sellke FW. Sitagliptin therapy improves myocardial perfusion and arteriolar collateralization in chronically ischemic myocardium: A pilot study. Physiol Rep 2023; 11:e15744. [PMID: 37300400 PMCID: PMC10257079 DOI: 10.14814/phy2.15744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Dipeptidyl peptidase 4 inhibitors (DPP4i) may be cardioprotective based on several small animal and clinical studies, though randomized control trials have demonstrated limited benefit. Given these discrepant findings, the role of these agents in chronic myocardial disease, particularly in the absence of diabetes, is still poorly understood. The purpose of this study was to determine the effects of sitagliptin, a DPP4i, on myocardial perfusion and microvessel density in a clinically relevant large animal model of chronic myocardial ischemia. Normoglycemic Yorkshire swine underwent ameroid constrictor placement to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received either no drug (CON, n = 8) or 100 mg oral sitagliptin (SIT) daily (n = 5). Treatment continued for 5 weeks, followed by hemodynamic measurements, euthanasia, and tissue harvest of ischemic myocardium. There were no significant differences in myocardial function between CON and SIT as measured by stroke work (p > 0.5), cardiac output (p = 0.22), and end-systolic elastance (p = 0.17). SIT was associated with increased absolute blood flow at rest (17% increase, IQR 12-62, p = 0.045) and during pacing (89% increase, IQR 83-105, p = 0.002). SIT was also associated with improved arteriolar density (p = 0.045) compared with CON, without changes in capillary density (p = 0.72). SIT was associated with increased expression of pro-arteriogenic markers MCP-1 (p = 0.003), TGFß (p = 0.03), FGFR1 (p = 0.002), and ICAM-1 (p = 0.03), with a trend toward an increase in the ratio of phosphorylated/active PLCγ1 to total PLCγ1 (p = 0.11) compared with CON. In conclusion, in chronically ischemic myocardium, sitagliptin improves myocardial perfusion and arteriolar collateralization via the activation of pro-arteriogenic signaling pathways.
Collapse
Affiliation(s)
- Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Dwight Douglas Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Cynthia M. Xu
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Debolina Banerjee
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| |
Collapse
|
29
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
30
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
31
|
Zabielska-Kaczorowska MA, Braczko A, Pelikant-Malecka I, Slominska EM, Smolenski RT. Hidden Pool of Cardiac Adenine Nucleotides That Controls Adenosine Production. Pharmaceuticals (Basel) 2023; 16:ph16040599. [PMID: 37111356 PMCID: PMC10142527 DOI: 10.3390/ph16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Myocardial ischemic adenosine production decreases in subsequent events that may blunt its protective functions. To test the relation between total or mitochondrial cardiac adenine nucleotide pool (TAN) on the energy status with adenosine production, Langendorff perfused rat hearts were subjected to three protocols: 1 min ischemia at 40 min, 10 min ischemia at 50 min, and 1 min ischemia at 85 min in Group I; additional infusion of adenosine (30 µM) for 15 min after 10 min ischemia in Group I-Ado, and 1 min ischemia at 40 and 85 min in the controls (Group No I). A 31P NMR and an HPLC were used for the analysis of nucleotide and catabolite concentrations in the heart and coronary effluent. Cardiac adenosine production in Group I measured after 1 min ischemia at 85 min decreased to less than 15% of that at 40 min in Group I, accompanied by a decrease in cardiac ATP and TAN to 65% of the initial results. Adenosine production at 85 min was restored to 45% of that at 40 min in Group I-Ado, accompanied by a rebound of ATP and TAN by 10% vs. Group I. Mitochondrial TAN and free AMP concentrations paralleled that of total cardiac TAN. Changes in energy equilibrium or mitochondrial function were minor. This study highlights that only a fraction of the cardiac adenine nucleotide pool is available for adenosine production, but further studies are necessary to clarify its nature.
Collapse
Affiliation(s)
- Magdalena A Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Iwona Pelikant-Malecka
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Heart Science Centre, Imperial College at Harefield Hospital, Harefield UB9 6JH, UK
| |
Collapse
|
32
|
Iwańczyk S, Lehmann T, Cieślewicz A, Malesza K, Woźniak P, Hertel A, Krupka G, Jagodziński PP, Grygier M, Lesiak M, Araszkiewicz A. Circulating miRNA-451a and miRNA-328-3p as Potential Markers of Coronary Artery Aneurysmal Disease. Int J Mol Sci 2023; 24:ijms24065817. [PMID: 36982889 PMCID: PMC10058788 DOI: 10.3390/ijms24065817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
MicroRNAs (miRNAs) are currently investigated as crucial regulatory factors which may serve as a potential therapeutic target. Reports on the role of miRNA in patients with coronary artery aneurysmal disease (CAAD) are limited. The present analysis aims to confirm the differences in the expression of previously preselected miRNAs in larger study groups and evaluate their usefulness as potential markers of CAAD. The study cohort included 35 consecutive patients with CAAD (Group 1), and two groups of 35 patients matched Group 1 regarding sex and age from the overall cohort of 250 patients (Group 2 and Group 3). Group 2 included patients with angiographically documented coronary artery disease (CAD), while Group 3 enrolled patients with normal coronary arteries (NCA) assessed during coronary angiography. We applied the RT-qPCR method using the custom plates for the RT-qPCR array. We confirmed that the level of five preselected circulating miRNAs was different in patients with CAAD compared to Group 2 and Group 3. We found that miR-451a and miR-328 significantly improved the CAAD prediction. In conclusion, miR-451a is a significant marker of CAAD compared to patients with CAD. In turn, miR-328-3p is a significant marker of CAAD compared to patients with NCA.
Collapse
Affiliation(s)
- Sylwia Iwańczyk
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
- Correspondence: ; Tel.: +48-662-712-627
| | - Tomasz Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Artur Cieślewicz
- Clinical Pharmacology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Katarzyna Malesza
- Clinical Pharmacology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Patrycja Woźniak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Agnieszka Hertel
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Grzegorz Krupka
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Marek Grygier
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | | |
Collapse
|
33
|
Lee SR, Mukae M, Jeong KJ, Park SH, Shin HJ, Kim SW, Won YS, Kwun HJ, Baek IJ, Hong EJ. PGRMC1 Ablation Protects from Energy-Starved Heart Failure by Promoting Fatty Acid/Pyruvate Oxidation. Cells 2023; 12:752. [PMID: 36899888 PMCID: PMC10000468 DOI: 10.3390/cells12050752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Cong Y, Hong Y, Wang D, Cheng P, Wang Z, Xing C, Sun W, Xu G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces liver lipid metabolism disorder via the ROS/AMPK/CD36 signaling pathway. Toxicol Sci 2023; 191:276-284. [PMID: 36534932 DOI: 10.1093/toxsci/kfac133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is widely considered as the most toxic and common carcinogen in the world. Exposure to TCDD causes liver lipid metabolism disorder and steatosis. However, the molecular mechanism of TCDD-induced liver lipid accumulation is not completely clear. Here, we found that a 5 μg/kg TCDD exposure for 3 weeks induced hepatocyte lipid deposition, increased CD36 expression, and promoted AMP-activated protein kinase (AMPK) ɑ phosphorylation in the liver of C57BL/6J mice. Furthermore, sulfo-N-succinimidyl oleate, a CD36 inhibiter, blunted TCDD-induced lipid deposition in Huh7 cells, confirming the critical role of CD36 in TCDD-induced hepatic steatosis. In terms of molecular mechanisms, we found that TCDD exposure increased reactive oxygen species (ROS) levels in Huh7 cells, which activated AMPK. Moreover, the activated AMPK upregulated CD36 expression. Therefore, we can see that the increase in CD36 expression induced by TCDD was regulated by ROS/AMPK/CD36 signaling pathway. Our results help to clarify the molecular mechanism of TCDD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yewen Cong
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yujing Hong
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Clinical Nutrition, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Dandan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Haian Center for Disease Control and Prevention, Haian, Jiangsu 226600, P.R. China
| | - Pei Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Clinical Nutrition, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221000, P. R. China
| | - Zhisheng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Changming Xing
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenxing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
35
|
Ding WJ, Li XH, Tang CM, Yang XC, Sun Y, Song YP, Ling MY, Yan R, Gao HQ, Zhang WH, Yu N, Feng JC, Zhang Z, Xing YQ. Quantification and Proteomic Characterization of β-Hydroxybutyrylation Modification in the Hearts of AMPKα2 Knockout Mice. Mol Cell Proteomics 2023; 22:100494. [PMID: 36621768 PMCID: PMC9941199 DOI: 10.1016/j.mcpro.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid β-oxidation, especially β-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine β-hydroxybutyrylation (Kbhb) is a β-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.
Collapse
Affiliation(s)
- Wen-Jing Ding
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Hui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Cong-Min Tang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Chun Yang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Sun
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Ping Song
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Ying Ling
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Rong Yan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Qing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Hua Zhang
- Division of Bacterial Anti-tumor Drugs, Shandong Precision Medicine Engineering Laboratory, Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Na Yu
- Division of Bacterial Anti-tumor Drugs, Shandong Precision Medicine Engineering Laboratory, Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Jun-Chao Feng
- Division of Bacterial Anti-tumor Drugs, Shandong Precision Medicine Engineering Laboratory, Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| | - Yan-Qiu Xing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
36
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
37
|
Sabe SA, Xu CM, Sabra M, Harris DD, Malhotra A, Aboulgheit A, Stanley M, Abid MR, Sellke FW. Canagliflozin Improves Myocardial Perfusion, Fibrosis, and Function in a Swine Model of Chronic Myocardial Ischemia. J Am Heart Assoc 2023; 12:e028623. [PMID: 36583437 PMCID: PMC9973570 DOI: 10.1161/jaha.122.028623] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022]
Abstract
Background Sodium-glucose cotransporter-2 inhibitors are cardioprotective independent of glucose control, as demonstrated in animal models of acute myocardial ischemia and clinical trials. The functional and molecular mechanisms of these benefits in the setting of chronic myocardial ischemia are poorly defined. The purpose of this study is to determine the effects of canagliflozin therapy on myocardial perfusion, fibrosis, and function in a large animal model of chronic myocardial ischemia. Methods and Results Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received either no drug (n=8) or 300 mg sodium-glucose cotransporter-2 inhibitor canagliflozin orally, daily (n=8). Treatment continued for 5 weeks, followed by hemodynamic measurements, harvest, and tissue analysis. Canagliflozin therapy was associated with increased stroke volume and stroke work and decreased left ventricular stiffness compared with controls. The canagliflozin group had improved perfusion to ischemic myocardium compared with controls, without differences in arteriolar or capillary density. Canagliflozin was associated with decreased interstitial and perivascular fibrosis in chronically ischemic tissue, with reduced Jak/STAT (Janus kinase/signal transducer and activator of transcription) signaling compared with controls. In ischemic myocardium of the canagliflozin group, there was increased expression and activation of adenosine monophosphate-activated protein kinase, decreased activation of endothelial nitric oxide synthase, and unchanged total endothelial nitric oxide synthase. Canagliflozin therapy reduced total protein oxidation and increased expression of mitochondrial antioxidant superoxide dismutase 2 compared with controls. Conclusions In the setting of chronic myocardial ischemia, canagliflozin therapy improves myocardial function and perfusion to ischemic territory, without changes in collateralization. Attenuation of fibrosis via reduced Jak/STAT signaling, activation of adenosine monophosphate-activated protein kinase, and antioxidant signaling may contribute to these effects.
Collapse
Affiliation(s)
- Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Cynthia M. Xu
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Dwight Douglas Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Akshay Malhotra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Ahmed Aboulgheit
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Madigan Stanley
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island HospitalAlpert Medical School of Brown University, Rhode Island HospitalProvidenceRI
| |
Collapse
|
38
|
Pharmacological Activation of Rev-erb α Attenuates Doxorubicin-Induced Cardiotoxicity by PGC-1 α Signaling Pathway. Cardiovasc Ther 2023; 2023:2108584. [PMID: 36874248 PMCID: PMC9977526 DOI: 10.1155/2023/2108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Background Doxorubicin-induced cardiotoxicity has been closely concerned in clinical practice. Rev-erbα is a transcriptional repressor that emerges as a drug target for heart diseases recently. This study is aimed at investigating the role and mechanism of Rev-erbα in doxorubicin-induced cardiotoxicity. Methods H9c2 cells were treated with 1.5 μM doxorubicin, and C57BL/6 mice were treated with a 20 mg/kg cumulative dose of doxorubicin to construct doxorubicin-induced cardiotoxicity models in vitro and in vivo. Agonist SR9009 was used to activate Rev-erbα. PGC-1α expression level was downregulated by specific siRNA in H9c2 cells. Cell apoptosis, cardiomyocyte morphology, mitochondrial function, oxidative stress, and signaling pathways were measured. Results SR9009 alleviated doxorubicin-induced cell apoptosis, morphological disorder, mitochondrial dysfunction, and oxidative stress in H9c2 cells and C57BL/6 mice. Meanwhile, PGC-1α and downstream signaling NRF1, TAFM, and UCP2 expression levels were preserved by SR9009 in doxorubicin-treated cardiomyocytes in vitro and in vivo. When downregulating PGC-1α expression level by specific siRNA, the protective role of SR9009 in doxorubicin-treated cardiomyocytes was attenuated with increased cell apoptosis, mitochondrial dysfunction, and oxidative stress. Conclusion Pharmacological activation of Rev-erbα by SR9009 could attenuate doxorubicin-induced cardiotoxicity through preservation of mitochondrial function and alleviation of apoptosis and oxidative stress. The mechanism is associated with the activation of PGC-1α signaling pathways, suggesting that PGC-1α signaling is a mechanism for the protective effect of Rev-erbα against doxorubicin-induced cardiotoxicity.
Collapse
|
39
|
Changes in the Expression of MIF and Other Key Enzymes of Energy Metabolism in the Myocardia of Broiler Chickens with Ascites Syndrome. Animals (Basel) 2022; 12:ani12192488. [PMID: 36230229 PMCID: PMC9558964 DOI: 10.3390/ani12192488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Ascites syndrome (AS) is a metabolic disease observed mainly in fast-growing broilers. The heart is one of the most important target organs of the disease. The goal of this study was to evaluate the metabolic function of the right ventricles in clinical ascitic broilers. HE staining was performed to observe histopathological changes in the right ventricle of the heart, while Western blotting was used to detect the protein expression levels of macrophage migration inhibitory factor (MIF) and phosphorylated AMP-activated protein kinase (p-AMPK), as well as other key enzymes of energy metabolic pathways (i.e., glycolytic pathway: HK2, PFK1, PFK2, and PKM2; the tricarboxylic acid cycle (TCA cycle) pathway: OGDH, IDH2, and CS; and the fatty acid oxidation pathway: CPT-1A and ACC) in myocardial tissue. The histopathological examination of the myocardia of ascitic broilers revealed disoriented myocardial cells in the myofibril structure and a large number of blood cells deposited in the intermyofibrillar vessels, suggesting right heart failure in ascitic broilers. The Western blotting analysis demonstrated significantly increased levels of MIF and p-AMPK in the myocardia of ascitic broilers compared to those of the control group (p < 0.05). Additionally, the protein expression of key enzymes was dramatically increased in the glycolytic and fatty acid oxidation pathways, while the protein expression of key enzymes in the TCA cycle pathway was decreased in the ascitic broiler group. These findings suggest enhanced glycolysis and fatty acid oxidation metabolism, and a diminished TCA cycle, in the myocardia of broiler chickens with ascites syndrome.
Collapse
|
40
|
Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D, Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol 2022; 15:104. [PMID: 35948909 PMCID: PMC9364625 DOI: 10.1186/s13045-022-01322-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by the expression of the critical transcription factor forkhead box protein P3, regulatory T (Treg) cells are an essential part of the immune system, with a dual effect on the pathogenesis of autoimmune diseases and cancer. Targeting Tregs to reestablish the proinflammatory and immunogenic tumor microenvironment (TME) is an increasingly attractive strategy for cancer treatment and has been emphasized in recent years. However, attempts have been significantly hindered by the subsequent autoimmunity after Treg ablation owing to systemic loss of their suppressive capacity. Cellular metabolic reprogramming is acknowledged as a hallmark of cancer, and emerging evidence suggests that elucidating the underlying mechanisms of how intratumoral Tregs acquire metabolic fitness and superior immunosuppression in the TME may contribute to clinical benefits. In this review, we discuss the common and distinct metabolic profiles of Tregs in peripheral tissues and the TME, as well as the differences between Tregs and other conventional T cells in their metabolic preferences. By focusing on the critical roles of different metabolic programs, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, as well as their essential regulators in modulating Treg proliferation, migration, and function, we hope to provide new insights into Treg cell-targeted antitumor immunotherapies.
Collapse
Affiliation(s)
- Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
41
|
Qin X, Zhang Y, Zheng Q. Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23158291. [PMID: 35955426 PMCID: PMC9368187 DOI: 10.3390/ijms23158291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or away from (e.g., aging, heart failure, and hypertension) fatty acid oxidation, yet they all increase the risk of AF. This has raised the urgent need for a general consensus regarding the metabolic changes that predispose patients to AF. “Metabolic flexibility” aptly describes switches between substrates (fatty acids, glucose, amino acids, and ketones) in response to various energy stresses depending on availability and requirements. AF, characterized by irregular high-frequency excitation and the contraction of the atria, is an energy challenge and triggers a metabolic switch from preferential fatty acid utilization to glucose metabolism to increase the efficiency of ATP produced in relation to oxygen consumed. Therefore, the heart needs metabolic flexibility. In this review, we will briefly discuss (1) the current understanding of cardiac metabolic flexibility with an emphasis on the specificity of atrial metabolic characteristics; (2) metabolic heterogeneity among AF pathogenesis and metabolic inflexibility as a common pathological basis for AF; and (3) the substrate-metabolism mechanism underlying metabolic inflexibility in AF pathogenesis.
Collapse
Affiliation(s)
- Xinghua Qin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yudi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- Correspondence: or
| |
Collapse
|
42
|
Palm CL, Nijholt KT, Bakker BM, Westenbrink BD. Short-Chain Fatty Acids in the Metabolism of Heart Failure – Rethinking the Fat Stigma. Front Cardiovasc Med 2022; 9:915102. [PMID: 35898266 PMCID: PMC9309381 DOI: 10.3389/fcvm.2022.915102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) remains a disease with immense global health burden. During the development of HF, the myocardium and therefore cardiac metabolism undergoes specific changes, with decreased long-chain fatty acid oxidation and increased anaerobic glycolysis, diminishing the overall energy yield. Based on the dogma that the failing heart is oxygen-deprived and on the fact that carbohydrates are more oxygen-efficient than FA, metabolic HF drugs have so far aimed to stimulate glucose oxidation or inhibit FA oxidation. Unfortunately, these treatments have failed to provide meaningful clinical benefits. We believe it is time to rethink the concept that fat is harmful to the failing heart. In this review we discuss accumulating evidence that short-chain fatty acids (SCFAs) may be an effective fuel for the failing heart. In contrast to long-chain fatty acids, SCFAs are readily taken up and oxidized by the heart and could serve as a nutraceutical treatment strategy. In addition, we discuss how SCFAs activate pathways that increase long chain fatty acid oxidation, which could help increase the overall energy availability. Another potential beneficial effect we discuss lies within the anti-inflammatory effect of SCFAs, which has shown to inhibit cardiac fibrosis – a key pathological process in the development of HF.
Collapse
Affiliation(s)
- Constantin L. Palm
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Kirsten T. Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Barbara M. Bakker
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: B. Daan Westenbrink
| |
Collapse
|
43
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
44
|
Su KN, Ma Y, Cacheux M, Ilkan Z, Raad N, Muller GK, Wu X, Guerrera N, Thorn SL, Sinusas AJ, Foretz M, Viollet B, Akar JG, Akar FG, Young LH. Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight 2022; 7:141213. [PMID: 35451373 PMCID: PMC9089788 DOI: 10.1172/jci.insight.141213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.
Collapse
Affiliation(s)
- Kevin N Su
- Department of Cellular & Molecular Physiology and
| | - Yina Ma
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marine Cacheux
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zeki Ilkan
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nour Raad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Xiaohong Wu
- Department of Cellular & Molecular Physiology and
| | - Nicole Guerrera
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie L Thorn
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joseph G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fadi G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H Young
- Department of Cellular & Molecular Physiology and.,Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Mitochondrial Quality and Quantity Control: Mitophagy Is a Potential Therapeutic Target for Ischemic Stroke. Mol Neurobiol 2022; 59:3110-3123. [PMID: 35266113 DOI: 10.1007/s12035-022-02795-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a cerebrovascular disease with high mortality and disability, which seriously affects the health and lives of people around the world. Effective treatment for ischemic stroke has been limited by its complex pathological mechanisms. Increasing evidence has indicated that mitochondrial dysfunction plays an essential role in the occurrence, development, and pathological processes of ischemic stroke. Therefore, strict control of the quality and quantity of mitochondria via mitochondrial fission and fusion as well as mitophagy is beneficial to the survival and normal function maintenance of neurons. Under certain circumstances, excessive mitophagy also could induce cell death. This review discusses the dynamic changes and double-edged roles of mitochondria and related signaling pathways of mitophagy in the pathophysiology of ischemic stroke. Furthermore, we focus on the possibility of modulating mitophagy as a potential therapy for the prevention and prognosis of ischemic stroke. Notably, we reviewed recent advances in the studies of natural compounds, which could modulate mitophagy and exhibit neuroprotective effects, and discussed their potential application in the treatment of ischemic stroke.
Collapse
|
46
|
Heart Failure and Drug Therapies: A Metabolic Review. Int J Mol Sci 2022; 23:ijms23062960. [PMID: 35328390 PMCID: PMC8950643 DOI: 10.3390/ijms23062960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality globally with at least 26 million people worldwide living with heart failure (HF). Metabolism has been an active area of investigation in the setting of HF since the heart demands a high rate of ATP turnover to maintain homeostasis. With the advent of -omic technologies, specifically metabolomics and lipidomics, HF pathologies have been better characterized with unbiased and holistic approaches. These techniques have identified novel pathways in our understanding of progression of HF and potential points of intervention. Furthermore, sodium-glucose transport protein 2 inhibitors, a drug that has changed the dogma of HF treatment, has one of the strongest types of evidence for a potential metabolic mechanism of action. This review will highlight cardiac metabolism in both the healthy and failing heart and then discuss the metabolic effects of heart failure drugs.
Collapse
|
47
|
Mongirdienė A, Skrodenis L, Varoneckaitė L, Mierkytė G, Gerulis J. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2022; 10:602. [PMID: 35327404 PMCID: PMC8945343 DOI: 10.3390/biomedicines10030602] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
With respect to structural and functional cardiac disorders, heart failure (HF) is divided into HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Oxidative stress contributes to the development of both HFrEF and HFpEF. Identification of a broad spectrum of reactive oxygen species (ROS)-induced pathways in preclinical models has provided new insights about the importance of ROS in HFrEF and HFpEF development. While current treatment strategies mostly concern neuroendocrine inhibition, recent data on ROS-induced metabolic pathways in cardiomyocytes may offer additional treatment strategies and targets for both of the HF forms. The purpose of this article is to summarize the results achieved in the fields of: (1) ROS importance in HFrEF and HFpEF pathophysiology, and (2) treatments for inhibiting ROS-induced pathways in HFrEF and HFpEF patients. ROS-producing pathways in cardiomyocytes, ROS-activated pathways in different HF forms, and treatment options to inhibit their action are also discussed.
Collapse
Affiliation(s)
- Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania
| | - Laurynas Skrodenis
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Leila Varoneckaitė
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Gerda Mierkytė
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Justinas Gerulis
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
48
|
Cui YK, Hong YX, Wu WY, Han WM, Wu Y, Wu C, Li GR, Wang Y. Acacetin ameliorates cardiac hypertrophy by activating Sirt1/AMPK/PGC-1α pathway. Eur J Pharmacol 2022; 920:174858. [PMID: 35219729 DOI: 10.1016/j.ejphar.2022.174858] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is a major risk factor for developing heart failure. This study investigates the effects of the natural flavone acacetin on myocardial hypertrophy in cellular level and whole animals. In cardiomyocytes from neonatal rat with hypertrophy induced by angiotensin II (Ang II), acacetin at 0.3, 1, and 3 μM reduced the increased myocyte surface area, brain natriuretic peptide (BNP), and ROS production by upregulating anti-oxidative molecules (i.e. Nrf2, SOD1, SOD2, HO-1), anti-apoptotic protein Bcl-2, and downregulating the pro-apoptotic protein Bax and the inflammatory cytokine IL-6 in a concentration-dependent manner. In addition, acacetin rescued Ang II-induced impairment of PGC-1α, PPARα and pAMPK. These beneficial effects of acacetin were mediated by activation of Sirt1, which was confirmed in cardiac hypertrophy induced by abdominal aorta constriction (AAC) in SD rats. Acacetin prodrug (10 mg/kg, s.c., b.i.d.) treatment reduced the elevated artery blood pressure, improved the increased heart size and thickness of left ventricular wall and the ventricular fibrosis associated with inhibiting myocardial fibrosis and BNP, and reversed the impaired protective signal molecules including PGC-1α, Nrf2, PPARα, pAMPK and Sirt1 of left ventricular tissue. Our results demonstrate the novel pharmacological effect that acacetin ameliorates cardiac hypertrophy via Sirt1-mediated activation of AMPK/PGC-1α signal molecules followed by reducing oxidation, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu-Kai Cui
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Wei-Min Han
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Yao Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China; Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu, 210032, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China.
| |
Collapse
|
49
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Chen H, Zhuo C, Zu A, Yuan S, Zhang H, Zhao J, Zheng L. Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway. J Cell Mol Med 2021; 26:855-867. [PMID: 34953026 PMCID: PMC8817125 DOI: 10.1111/jcmm.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Prolonged pathological myocardial hypertrophy leads to end‐stage heart failure. Thymoquinone (TQ), a bioactive component extracted from Nigella sativa seeds, is extensively used in ethnomedicine to treat a broad spectrum of disorders. However, it remains unclear whether TQ protects the heart from pathological hypertrophy. This study was conducted to examine the potential utility of TQ for treatment of pathological cardiac hypertrophy and if so, to elucidate the underlying mechanisms. Male C57BL/6J mice underwent either transverse aortic constriction (TAC) or sham operation, followed by TQ treatment for six consecutive weeks. In vitro experiments consisted of neonatal rat cardiomyocytes (NRCMs) that were exposed to phenylephrine (PE) stimulation to induce cardiomyocyte hypertrophy. In this study, we observed that systemic administration of TQ preserved cardiac contractile function, and alleviated cardiac hypertrophy, fibrosis and oxidative stress in TAC‐challenged mice. The in vitro experiments showed that TQ treatment attenuated the PE‐induced hypertrophic response in NRCMs. Mechanistical experiments showed that supplementation of TQ induced reactivation of the AMP‐activated protein kinase (AMPK) with concomitant inhibition of ERK 1/2, p38 and JNK1/2 MAPK cascades. Furthermore, we demonstrated that compound C, an AMPK inhibitor, abolished the protective effects of TQ in in vivo and in vitro experiments. Altogether, our study disclosed that TQ provides protection against myocardial hypertrophy in an AMPK‐dependent manner and identified it as a promising agent for the treatment of myocardial hypertrophy.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengui Zhuo
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Aohan Zu
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Yuan
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Han Zhang
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, China
| | - Liangrong Zheng
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|