1
|
Glasauer SMK, Triemer T, Neef AB, Neuhauss SCF, Luedtke NW. DNA template strand segregation in developing zebrafish. Cell Chem Biol 2021; 28:1638-1647.e4. [PMID: 34592171 DOI: 10.1016/j.chembiol.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/26/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022]
Abstract
Asymmetric inheritance of sister chromatids has long been predicted to be linked to discordant fates of daughter cells and even hypothesized to minimize accumulation of mutations in stem cells. Here, we use (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU), bromodeoxyuridine (BrdU), and light sheet microscopy to track embryonic DNA in whole zebrafish. Larval development results in rapid depletion of older DNA template strands from stem cell niches in the retina, brain, and intestine. Prolonged label retention occurs in quiescent progenitors that resume replication in later development. High-resolution microscopy reveals no evidence of asymmetric template strand segregation in >100 daughter cell pairs, making it improbable that asymmetric DNA segregation prevents mutational burden according to the immortal strand hypothesis in developing zebrafish.
Collapse
Affiliation(s)
- Stella M K Glasauer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara CA 93106, USA
| | - Therese Triemer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Anne B Neef
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
2
|
Abstract
The loss of genetic fidelity in tissue stem cells is considered a significant cause of human aging and carcinogenesis. Many cellular mechanisms are well accepted for limiting mutations caused by replication errors and DNA damage. However, one mechanism, non-random sister chromatid segregation, remains controversial. This atypical pattern of chromosome segregation is restricted to asymmetrically self-renewing cells. Though first confirmed in murine cells, non-random segregation was originally proposed by Cairns as an important genetic fidelity mechanism in human tissues. We investigated human hepatic stem cells expanded by suppression of asymmetric cell kinetics (SACK) for evidence of non-random sister chromatid segregation. Cell kinetics and time-lapse microscopy analyses established that an ex vivo expanded human hepatic stem cell strain possessed SACK agent-suppressible asymmetric cell kinetics. Complementary DNA strand-labeling experiments revealed that cells in hepatic stem cell cultures segregated sister chromatids non-randomly. The number of cells cosegregating sister chromatids with the oldest “immortal DNA strands” was greater under conditions that increased asymmetric self-renewal kinetics. Detection of this mechanism in a human tissue stem cell strain increases support for Cairns’ proposal that non-random sister chromatid segregation operates in human tissue stem cells to limit carcinogenesis.
Collapse
|
3
|
Qin H, Zhao A, Fu X. Chemical modulation of cell fates: in situ regeneration. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1137-1150. [PMID: 30099708 DOI: 10.1007/s11427-018-9349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.
Collapse
Affiliation(s)
- Hua Qin
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Andong Zhao
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Xiaobing Fu
- Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China. .,College of Life Sciences, PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
4
|
Symmetry from Asymmetry or Asymmetry from Symmetry? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:305-318. [PMID: 29348326 DOI: 10.1101/sqb.2017.82.034272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The processes of DNA replication and mitosis allow the genetic information of a cell to be copied and transferred reliably to its daughter cells. However, if DNA replication and cell division were always performed in a symmetric manner, the result would be a cluster of tumor cells instead of a multicellular organism. Therefore, gaining a complete understanding of any complex living organism depends on learning how cells become different while faithfully maintaining the same genetic material. It is well recognized that the distinct epigenetic information contained in each cell type defines its unique gene expression program. Nevertheless, how epigenetic information contained in the parental cell is either maintained or changed in the daughter cells remains largely unknown. During the asymmetric cell division (ACD) of Drosophila male germline stem cells, our previous work revealed that preexisting histones are selectively retained in the renewed stem cell daughter, whereas newly synthesized histones are enriched in the differentiating daughter cell. We also found that randomized inheritance of preexisting histones versus newly synthesized histones results in both stem cell loss and progenitor germ cell tumor phenotypes, suggesting that programmed histone inheritance is a key epigenetic player for cells to either remember or reset cell fates. Here, we will discuss these findings in the context of current knowledge on DNA replication, polarized mitotic machinery, and ACD for both animal development and tissue homeostasis. We will also speculate on some potential mechanisms underlying asymmetric histone inheritance, which may be used in other biological events to achieve the asymmetric cell fates.
Collapse
|
5
|
Kaur S, Elkahloun AG, Singh SP, Chen QR, Meerzaman DM, Song T, Manu N, Wu W, Mannan P, Garfield SH, Roberts DD. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 2017; 7:10133-52. [PMID: 26840086 PMCID: PMC4891109 DOI: 10.18632/oncotarget.7100] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
CD47 is a signaling receptor for thrombospondin-1 and the counter-receptor for signal-regulatory protein-α (SIRPα). By inducing inhibitory SIRPα signaling, elevated CD47 expression by some cancers prevents macrophage phagocytosis. The anti-human CD47 antibody B6H12 inhibits tumor growth in several xenograft models, presumably by preventing SIRPα engagement. However, CD47 signaling in nontransformed and some malignant cells regulates self-renewal, suggesting that CD47 antibodies may therapeutically target cancer stem cells (CSCs). Treatment of MDA-MB-231 breast CSCs with B6H12 decreased proliferation and asymmetric cell division. Similar effects were observed in T47D CSCs but not in MCF7 breast carcinoma or MCF10A breast epithelial cells. Gene expression analysis in breast CSCs treated with B6H12 showed decreased expression of epidermal growth factor receptor (EGFR) and the stem cell transcription factor KLF4. EGFR and KLF4 mRNAs are known targets of microRNA-7, and B6H12 treatment correspondingly enhanced microRNA-7 expression in breast CSCs. B6H12 treatment also acutely inhibited EGF-induced EGFR tyrosine phosphorylation. Expression of B6H12-responsive genes correlated with CD47 mRNA expression in human breast cancers, suggesting that the CD47 signaling pathways identified in breast CSCs are functional in vivo. These data reveal a novel SIRPα-independent mechanism by which therapeutic CD47 antibodies could control tumor growth by autonomously forcing differentiation of CSC.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud M Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Song
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi Manu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poonam Mannan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan H Garfield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Tsai RYL. Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too? Cell Mol Life Sci 2016; 73:1803-23. [PMID: 26886024 PMCID: PMC5040593 DOI: 10.1007/s00018-016-2152-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of paramount importance that stem cells remain genomically stable throughout life. Given their unique biological and functional requirement, stem cells are thought to manage genotoxic stress somewhat differently from non-stem cells. The focus of this article is to review the current knowledge on how stem cells escape the barrage of oxidative and replicative DNA damage to stay in self-renewal. A clear statement on this subject should help us better understand tissue regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Abstract
Following the recognition that hematopoietic stem cells improve the outcome of myocardial infarction in animal models, bone marrow mononuclear cells, CD34-positive cells, and mesenchymal stromal cells have been introduced clinically. The intracoronary or intramyocardial injection of these cell classes has been shown to be safe and to produce a modest but significant enhancement in systolic function. However, the identification of resident cardiac stem cells in the human heart (hCSCs) has created great expectation concerning the potential implementation of this category of autologous cells for the management of the human disease. Although phase 1 clinical trials have been conducted with encouraging results, the search for the most powerful hCSC for myocardial regeneration is in its infancy. This manuscript discusses the efforts performed in our laboratory to characterize the critical biological variables that define the growth reserve of hCSCs. Based on the theory of the immortal DNA template, we propose that stem cells retaining the old DNA represent 1 of the most powerful cells for myocardial regeneration. Similarly, the expression of insulin-like growth factor-1 receptors in hCSCs recognizes a cell phenotype with superior replicating reserve. However, the impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this hCSC class for the treatment of human heart failure.
Collapse
|
8
|
Cardiac aging - Getting to the stem of the problem. J Mol Cell Cardiol 2015; 83:32-6. [PMID: 25886698 DOI: 10.1016/j.yjmcc.2015.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 01/08/2023]
Abstract
Cardiac aging is a heterogeneous process caused by a combination of stochastic events which manifests as loss of structure and function in the heart, however several recent studies draw attention to aging being primarily a stem cell problem. This review summarizes findings in support of the "stem cell hypothesis of aging" and discusses the impact of age on cardiac stem cells and the niche. This article is part of a Special Issue entitled 'CV Aging'.
Collapse
|
9
|
Abstract
This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Collapse
Affiliation(s)
- Annarosa Leri
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Marcello Rota
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francesco S Pasqualini
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Polina Goichberg
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Piero Anversa
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Madonna R, Ferdinandy P, De Caterina R, Willerson JT, Marian AJ. Recent developments in cardiovascular stem cells. Circ Res 2014; 115:e71-8. [PMID: 25477490 DOI: 10.1161/circresaha.114.305567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rosalinda Madonna
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Peter Ferdinandy
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Raffaele De Caterina
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - James T Willerson
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Ali J Marian
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.).
| |
Collapse
|
11
|
Huh YH, Sherley JL. Decreased H3K27 and H3K4 trimethylation on mortal chromosomes in distributed stem cells. Cell Death Dis 2014; 5:e1554. [PMID: 25476902 PMCID: PMC4649838 DOI: 10.1038/cddis.2014.522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/19/2014] [Accepted: 10/30/2014] [Indexed: 11/09/2022]
Abstract
The role of immortal DNA strands that co-segregate during mitosis of asymmetrically self-renewing distributed stem cells (DSCs) is unknown. Previously, investigation of immortal DNA strand function and molecular mechanisms responsible for their nonrandom co-segregation was precluded by difficulty in identifying DSCs and immortal DNA strands. Here, we report the use of two technological innovations, selective DSC expansion and establishment of H2A.Z chromosomal asymmetry as a specific marker of ‘immortal chromosomes,' to investigate molecular properties of immortal chromosomes and opposing ‘mortal chromosomes' in cultured mouse hair follicle DSCs. Although detection of the respective suppressive and activating H3K27me3 and H3K4me3 epigenetic marks on immortal chromosomes was similar to randomly segregated chromosomes, detection of both was lower on mortal chromosomes destined for lineage-committed sister cells. This global epigenomic feature of nonrandom co-segregation may reveal a mechanism that maintains an epigenome-wide ‘poised' transcription state, which preserves DSC identity, while simultaneously activating sister chromosomes for differentiation.
Collapse
Affiliation(s)
- Y H Huh
- 1] The Adult Stem Cell Technology Center, LLC, Boston, MA, USA [2] Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - J L Sherley
- The Adult Stem Cell Technology Center, LLC, Boston, MA, USA
| |
Collapse
|
12
|
Siddiqi S, Sussman MA. Cell and gene therapy for severe heart failure patients: the time and place for Pim-1 kinase. Expert Rev Cardiovasc Ther 2014; 11:949-57. [PMID: 23984924 DOI: 10.1586/14779072.2013.814830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure.
Collapse
Affiliation(s)
- Sailay Siddiqi
- Department of Biology and Heart Institute, Integrated Regenerative Research Institute, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
13
|
Abstract
Myocardial infarction leads to loss of cardiomyocytes, scar formation, ventricular remodeling and eventually deterioration of heart function. Over the past decade, stem cell therapy has emerged as a novel strategy for patients with ischemic heart disease and its beneficial effects have been demonstrated by substantial preclinical and clinical studies. Efficacy of several types of stem cells in the therapy of cardiovascular diseases has already been evaluated. However, repair of injured myocardium through stem cell transplantation is restricted by critical safety issues and ethic concerns. Recently, the discovery of cardiac stem cells (CSCs) that reside in the heart itself brings new prospects for myocardial regeneration and reconstitution of cardiac tissues. CSCs are positive for various stem cell markers and have the potential of self-renewal and multilineage differentiation. They play a pivotal role in the maintenance of heart homeostasis and cardiac repair. Elucidation of their biological characteristics and functions they exert in myocardial infarction are very crucial to further investigations on them. This review will focus on the field of cardiac stem cells and discuss technical and practical issues that may involve in their clinical applications in myocardial infarction.
Collapse
|
14
|
Toko H, Hariharan N, Konstandin MH, Ormachea L, McGregor M, Gude NA, Sundararaman B, Joyo E, Joyo AY, Collins B, Din S, Mohsin S, Uchida T, Sussman MA. Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem 2013; 289:5348-56. [PMID: 24375406 DOI: 10.1074/jbc.m113.526442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autologous c-kit(+) cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.
Collapse
Affiliation(s)
- Haruhiro Toko
- From the San Diego State University Heart Institute and Biology Department, San Diego State University, San Diego, California 92182 and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Sherley JL. New cancer diagnostics and therapeutics from a ninth 'hallmark of cancer': symmetric self-renewal by mutated distributed stem cells. Expert Rev Mol Diagn 2013; 13:797-810. [PMID: 24151848 DOI: 10.1586/14737159.2013.845087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A total of eight cellular alterations associated with human carcinogenesis have been framed as the 'hallmarks of cancer'. This representation overlooks a ninth hallmark of cancer: the requirement for tumor-originating distributed stem cells to shift sufficiently from asymmetric to symmetric self-renewal kinetics for attainment of the high cell production rate necessary to form clinically significant tumors within a human lifespan. Overlooking this ninth hallmark costs opportunities for discovery of more selective molecular targets for development of improved cancer therapeutics and missing cancer stem cell biomarkers of greater specificity. Here, the biological basis for the ninth hallmark of cancer is considered toward highlighting its importance in human carcinogenesis and, as such, its potential for revealing unique molecules for targeting cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- James L Sherley
- The Adult Stem Cell Technology Center, P.O. Box 301179, Boston, MA 02130, USA
| |
Collapse
|
17
|
Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci Rep 2013; 3:1673. [PMID: 23591719 PMCID: PMC3628113 DOI: 10.1038/srep01673] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022] Open
Abstract
Signaling through the thrombospondin-1 receptor CD47 broadly limits cell and tissue survival of stress, but the molecular mechanisms are incompletely understood. We now show that loss of CD47 permits sustained proliferation of primary murine endothelial cells, increases asymmetric division, and enables these cells to spontaneously reprogram to form multipotent embryoid body-like clusters. c-Myc, Klf4, Oct4, and Sox2 expression is elevated in CD47-null endothelial cells, in several tissues of CD47- and thrombospondin-1-null mice, and in a human T cell line lacking CD47. CD47 knockdown acutely increases mRNA levels of c-Myc and other stem cell transcription factors in cells and in vivo, whereas CD47 ligation by thrombospondin-1 suppresses c-Myc expression. The inhibitory effects of increasing CD47 levels can be overcome by maintaining c-Myc expression and are absent in cells with dysregulated c-Myc. Thus, CD47 antagonists enable cell self-renewal and reprogramming by overcoming negative regulation of c-Myc and other stem cell transcription factors.
Collapse
|
18
|
Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells. Proc Natl Acad Sci U S A 2013; 110:16862-7. [PMID: 24082118 DOI: 10.1073/pnas.1310323110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.
Collapse
|
19
|
The Editors. Circulation Research
Thematic Synopsis: Cardiovascular Development. Circ Res 2013. [DOI: 10.1161/circresaha.113.301305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Cottage CT, Neidig L, Sundararaman B, Din S, Joyo AY, Bailey B, Gude N, Hariharan N, Sussman MA. Increased mitotic rate coincident with transient telomere lengthening resulting from pim-1 overexpression in cardiac progenitor cells. Stem Cells 2013; 30:2512-22. [PMID: 22915504 PMCID: PMC3479348 DOI: 10.1002/stem.1211] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac regeneration following myocardial infarction rests with the potential of c-kit+ cardiac progenitor cells (CPCs) to repopulate damaged myocardium. The ability of CPCs to reconstitute the heart is restricted by patient age and disease progression. Increasing CPC proliferation, telomere length, and survival will improve the ability of autologous CPCs to be successful in myocardial regeneration. Prior studies have demonstrated enhancement of myocardial regeneration by engineering CPCs to express Pim-1 kinase, but cellular and molecular mechanisms for Pim-1-mediated effects on CPCs remain obscure. We find CPCs rapidly expand following overexpression of cardioprotective kinase Pim-1 (CPCeP), however, increases in mitotic rate are short-lived as late passage CPCePs proliferate similar to control CPCs. Telomere elongation consistent with a young phenotype is observed following Pim-1 modification of CPCeP; in addition, telomere elongation coincides with increased telomerase expression and activity. Interestingly, telomere length and telomerase activity normalize after several rounds of passaging, consistent with the ability of Pim-1 to transiently increase mitosis without resultant oncogenic transformation. Accelerating mitosis in CPCeP without immortalization represents a novel strategy to expand the CPC population in order to improve their therapeutic efficacy. Stem Cells2012;30:2512–2522
Collapse
Affiliation(s)
- Christopher T Cottage
- San Diego State Heart Institute, San Diego State University, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harbinder S, Lazzara CA, Klar AJ. Implication of the Strand-Specific Imprinting and Segregation Model: Integrating in utero Hormone Exposure, Stem Cell and Lateral Asymmetry Hypotheses in Breast Cancer Aetiology. HEREDITARY GENETICS : CURRENT RESEARCH 2013; 2013. [PMID: 34589269 PMCID: PMC8478350 DOI: 10.4172/2161-1041.s2-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Known genetic mutations and familial hereditary factors account for less than 20–25% of breast cancer cases in women, therefore, most instances have been classified as sporadic cases of unknown aetiologies. Single nucleotide polymorphisms (SNPs) were considered as breast cancer risk factors, but numerous studies have failed to support this assertion. Recent evidence correlates aberrant epigenetic mechanisms in the development and metastatic progression of breast cancer, yet there has been limited progress made to identify the primary aetiology underlying sporadic cases of breast cancer. This has led some researchers to consider alternative hypotheses including in utero exposure to deleterious chemical agents during early development, the immortal strand and the strand-specific imprinting and selective chromatid segregation hypotheses. Here, we integrate prominent alternate models to help guide future research on this very important topic concerning human health.
Collapse
Affiliation(s)
- Singh Harbinder
- Department of Biological Sciences, Delaware State University, Dover, USA
| | - Carol A Lazzara
- Department of Biological Sciences, Delaware State University, Dover, USA
| | - Amar Js Klar
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, USA
| |
Collapse
|
22
|
|
23
|
Tufan H, Zhang XH, Haghshenas N, Sussman MA, Cleemann L, Morad M. Cardiac progenitor cells engineered with Pim-1 (CPCeP) develop cardiac phenotypic electrophysiological properties as they are co-cultured with neonatal myocytes. J Mol Cell Cardiol 2012; 53:695-706. [PMID: 23010478 DOI: 10.1016/j.yjmcc.2012.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 02/04/2023]
Abstract
Stem cell transplantation has been successfully used for amelioration of cardiomyopathic injury using adult cardiac progenitor cells (CPC). Engineering of mouse CPC with the human serine/threonine kinase Pim-1 (CPCeP) enhances regeneration and cell survival in vivo, but it is unknown if such apparent lineage commitment is associated with maturation of electrophysiological properties and excitation-contraction coupling. This study aims to determine electrophysiology and Ca(2+)-handling properties of CPCeP using neonatal rat cardiomyocyte (NRCM) co-culture to promote cardiomyocyte lineage commitment. Measurements of membrane capacitance, dye transfer, expression of connexin 43 (Cx43), and transmission of ionic currents (I(Ca), I(Na)) from one cell to the next suggest that a subset of co-cultured CPCeP and NRCM becomes connected via gap junctions. Unlike NRCM, CPCeP had no significant I(Na), but expressed nifedipine-sensitive I(Ca) that could be measured more consistently with Ba(2+) as permeant ion using ramp-clamp protocols than with Ca(2+) and step-depolarization protocols. The magnitude of I(Ca) in CPCeP increased during culture (4-7 days vs. 1-3 days) and was larger in co-cultures with NRCM and with NRCM-conditioned medium, than in mono-cultured CPCeP. I(Ca) was virtually absent in CPC without engineered expression of Pim-1. Caffeine and KCl-activated Ca(2+)-transients were significantly present in co-cultured CPCeP, but smaller than in NRCM. Conversely, ATP-induced (IP(3)-mediated) Ca(2+) transients were larger in CPCeP than in NRCM. I(NCX) and I(ATP) were expressed in equivalent densities in CPCeP and NRCM. These in vitro studies suggest that CPCeP in co-culture with NRCM: a) develop I(Ca) current and Ca(2+) signaling consistent with cardiac lineage, b) form electrical connections via Cx43 gap junctions, and c) respond to paracrine signals from NRCM. These properties may be essential for durable and functional myocardial regeneration under in vivo conditions.
Collapse
Affiliation(s)
- Hale Tufan
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29403, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kajstura J, Bai Y, Cappetta D, Kim J, Arranto C, Sanada F, D'Amario D, Matsuda A, Bardelli S, Ferreira-Martins J, Hosoda T, Leri A, Rota M, Loscalzo J, Anversa P. Tracking chromatid segregation to identify human cardiac stem cells that regenerate extensively the infarcted myocardium. Circ Res 2012; 111:894-906. [PMID: 22851539 DOI: 10.1161/circresaha.112.273649] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE According to the immortal DNA strand hypothesis, dividing stem cells selectively segregate chromosomes carrying the old template DNA, opposing accumulation of mutations resulting from nonrepaired replication errors and attenuating telomere shortening. OBJECTIVE Based on the premise of the immortal DNA strand hypothesis, we propose that stem cells retaining the old DNA would represent the most powerful cells for myocardial regeneration. METHODS AND RESULTS Division of human cardiac stem cells (hCSCs) by nonrandom and random segregation of chromatids was documented by clonal assay of bromodeoxyuridine-tagged hCSCs. Additionally, their growth properties were determined by a series of in vitro and in vivo studies. We report that a small class of hCSCs retain during replication the mother DNA and generate 2 daughter cells, which carry the old and new DNA, respectively. hCSCs with immortal DNA form a pool of nonsenescent cells with longer telomeres and higher proliferative capacity. The self-renewal and long-term repopulating ability of these cells was shown in serial-transplantation assays in the infarcted heart; these cells created a chimeric organ, composed of spared rat and regenerated human cardiomyocytes and coronary vessels, leading to a remarkable restoration of cardiac structure and function. The documentation that hCSCs divide by asymmetrical and symmetrical chromatid segregation supports the view that the human heart is a self-renewing organ regulated by a compartment of resident hCSCs. CONCLUSIONS The impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this stem cell class for the management of heart failure in humans.
Collapse
Affiliation(s)
- Jan Kajstura
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Affiliation(s)
- Jesse L Mull
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|