1
|
Wang R, Li J, Li X, Guo Y, Chen P, Peng T. Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer's disease. Rev Neurosci 2025:revneuro-2025-0013. [PMID: 40366727 DOI: 10.1515/revneuro-2025-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is marked by cognitive decline, neuroinflammation, and neuronal loss. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression, influencing key pathways involved in neuroinflammation and neurodegeneration in AD. This review delves into the multifaceted role of exercise in modulating miRNA expression and its interplay with the gut microbiome, proposing a comprehensive framework for neuroprotection in AD. By synthesizing current research, we elucidate how exercise-induced changes in miRNA profiles can mitigate inflammatory responses, promote neurogenesis, and reduce amyloid-beta and tau pathologies. Additionally, we explore the gut-brain axis, highlighting how exercise-driven alterations in gut microbiota composition can further influence miRNA expression, thereby enhancing cognitive function and reducing neuroinflammatory markers. This holistic approach underscores the potential of targeting exercise-regulated miRNAs and gut microbiome interactions as a novel, noninvasive therapeutic strategy to decelerate AD progression and improve quality of life for patients. This approach aims to decelerate disease progression and improve patient outcomes, offering a promising avenue for enhancing the effectiveness of AD management.
Collapse
Affiliation(s)
- Rui Wang
- College of Physical Education, Guizhou Normal University, GuiYang 550025, China
| | - Juan Li
- Hanyang University Erica, AnSan 15588, Korea
| | - Xiaochen Li
- School of Physical Education, Huaibei Normal University, HuaiBei 235000, China
| | - Yan Guo
- Sichuan University Jinjiang College, ChengDu 610000, China
| | - Pei Chen
- School of Physical Education, Huaibei Normal University, HuaiBei 235000, China
| | - Tian Peng
- Department of Physical Education, 12377 Zhejiang University of Science and Technology , HangZhou 310023, China
| |
Collapse
|
2
|
Xie H, Xiong T, Guan J, Han Y, Feng H, Xu F, Chen S, Li J, Xie Z, Liu D, Chen R. Induction of mitochondrial damage via the CREB3L1/miR-34c/COX1 axis by porcine epidemic diarrhea virus infection facilitates pathogenicity. J Virol 2025; 99:e0059124. [PMID: 40071922 PMCID: PMC11998543 DOI: 10.1128/jvi.00591-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/23/2024] [Indexed: 03/26/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a primary cause of viral diarrhea in neonatal piglets, leading to substantial economic losses in the swine industry globally. It primarily targets epithelial cells of the small intestine, compromising intestinal function and resulting in the death of affected animals. As mitochondria are essential for maintaining gut health, this study investigates the effects of PEDV infection on mitochondrial function in small intestinal epithelial cells and its subsequent impacts. Using small RNA sequencing, fluorescence in situ hybridization, dual luciferase reporter assay, gene overexpression, and silencing experiments, we investigated the mitochondrial structural and functional impairments induced by PEDV infection in jejunum epithelial cells of piglets and characterized the regulatory pattern of miRNAs in mitochondria of jejunum epithelial cells during PEDV infection. The results indicate that PEDV infection leads to the upregulation and mitochondrial localization of the nuclear-encoded microRNA, miR-34c, which in turn suppresses COX1 expression. The activation of the miR-34c/COX1 axis diminishes mitochondrial complex III, IV, and V activities, depletes ATP, lowers mitochondrial oxygen consumption, induces mitochondrial depolarization, increases the accumulation of mitochondrial reactive oxygen species (mtROS), and stimulates mitophagy. Furthermore, we confirm that CREB3L1 acts as an upstream transcription factor regulating the miR-34c/COX1 axis during PEDV infection, modulating mitochondrial damage in the epithelial cells of the jejunum. These findings demonstrate for the first time that PEDV infection activates the miR-34c/COX1 axis via the transcription factor CREB3L1 and regulates the nuclear-mitochondrial communication and mitochondrial fate, providing a new perspective on the pathogenesis of PEDV.IMPORTANCEThis study reveals the mechanism by which the porcine epidemic diarrhea virus (PEDV) disrupts mitochondrial function in piglets, enhancing viral pathogenicity. By demonstrating how PEDV infection upregulates miR-34c, leading to COX1 suppression and subsequent mitochondrial dysfunction, the research highlights a novel aspect of viral manipulation of host cellular mechanisms. These findings provide a deeper understanding of the PEDV pathogenesis and identify potential targets for therapeutic intervention, advancing efforts to mitigate the economic impact of PEDV on the swine industry.
Collapse
Affiliation(s)
- Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Jinlian Guan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yin Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Haixia Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sixuan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahui Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziwei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dingxiang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Manufacture Technology of Veterinary Bioproducts, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Zhaoqing, China
- Zhaoqing Dahuanong Biology Medicine Co. Ltd., Zhaoqing, China
| |
Collapse
|
3
|
Ratajczak MZ, Thetchinamoorthy K, Wierzbicka D, Konopko A, Ratajczak J, Kucia M. Extracellular microvesicles/exosomes-magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity. Stem Cells 2025; 43:sxae086. [PMID: 39949038 PMCID: PMC11979747 DOI: 10.1093/stmcls/sxae086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Extracellular microvesicles (ExMVs) were one of the first communication platforms between cells that emerged early in evolution. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that plays an important role in cellular physiology and some pathological processes. ExMVs interact with target cells and may stimulate them by ligands expressed on their surface and/or transfer to the target cells their cargo comprising various RNA species, proteins, bioactive lipids, and signaling nucleotides. These small vesicles can also hijack some organelles from the cells and, in particular, transfer mitochondria, which are currently the focus of scientific interest for their potential application in clinical settings. Different mechanisms exist for transferring mitochondria between cells, including their encapsulation in ExMVs or their uptake in a "naked" form. It has also been demonstrated that mitochondria transfer may involve direct cell-cell connections by signaling nanotubules. In addition, evidence accumulated that ExMVs could be enriched for regulatory molecules, including some miRNA species and proteins that regulate the function of mitochondria in the target cells. Recently, a new beneficial effect of mitochondrial transfer has been reported based on inducing the mitophagy process, removing damaged mitochondria in the recipient cells to improve their energetic state. Based on this novel role of ExMVs in powering the energetic state of target cells, we present a current point of view on this topic and review some selected most recent discoveries and recently published most relevant papers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Kannathasan Thetchinamoorthy
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Diana Wierzbicka
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Adrian Konopko
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Magdalena Kucia
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
4
|
An X, Sun L, Zheng H, Xiao Y, Sun W, Yu D. Mitochondria-associated non-coding RNAs and their impact on drug resistance. Front Pharmacol 2025; 16:1472804. [PMID: 40078288 PMCID: PMC11897306 DOI: 10.3389/fphar.2025.1472804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Drug resistance is a prevalent challenge in clinical disease treatment, often leading to disease relapse and poor prognosis. Therefore, it is crucial to gain a deeper understanding of the molecular mechanisms underlying drug resistance and to develop targeted strategies for its effective prevention and management. Mitochondria, as vital energy-producing organelles within cells, have been recognized as key regulators of drug sensitivity. Processes such as mitochondrial fission, fusion, mitophagy, changes in membrane potential, reactive oxygen species (ROS) accumulation, and oxidative phosphorylation (OXPHOS) are all linked to drug sensitivity. Non-coding RNAs (ncRNAs) enriched in mitochondria (mtncRNA), whether transcribed from mitochondrial DNA (mtDNA) or from the nucleus and transported to mitochondria, can regulate the transcription and translation of mtDNA, thus influencing mitochondrial function, including mitochondrial substance exchange and energy metabolism. This, in turn, directly or indirectly affects cellular sensitivity to drugs. This review summarizes the types of mtncRNAs associated with drug resistance and the molecular mechanisms regulating drug resistance. Our aim is to provide insights and strategies for overcoming drug resistance by modulating mtncRNAs.
Collapse
Affiliation(s)
- Xingna An
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lina Sun
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Zheng
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yinghui Xiao
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Cruz-Ramos JA, de la Mora-Jiménez E, Llanes-Cervantes BA, Damián-Mejía MÁ. MicroRNAs in the Mitochondria-Telomere Axis: Novel Insights into Cancer Development and Potential Therapeutic Targets. Genes (Basel) 2025; 16:268. [PMID: 40149420 PMCID: PMC11941991 DOI: 10.3390/genes16030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The mitochondria-telomere axis is recognized as an important factor in the processes of metabolism, aging and oncogenesis. MicroRNAs (miRNAs) play an essential function in this complex interaction, having an impact on aspects such as cellular homeostasis, oxidative responses and apoptosis. In recent years, miRNAs have been found to be crucial for telomeric stability, as well as for mitochondrial behavior, factors that influence cell proliferation and viability. Furthermore, mitochondrial miRNAs (mitomiRs) are associated with gene expression and the activity of the cGAS/STING pathway activity, linking mitochondrial DNA recognition to immune system responses. Hence, miRNAs maintain a link to mitochondrial biogenesis, metabolic changes in cancer and cellular organelles. This review focuses on the roles of a variety of miRNAs in cancer progression and their potential application as biomarkers or therapeutic agents.
Collapse
Affiliation(s)
- José Alfonso Cruz-Ramos
- Departamento de Clínicas Médicas, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Dirección de Desarrollo Institucional, Instituto Jalisciense de Cancerología, Zapopan 45060, Mexico
| | | | | | - Miguel Ángel Damián-Mejía
- Licenciatura en Médico Cirujano y Partero, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico;
| |
Collapse
|
6
|
Yashooa RK, Duranti E, Conconi D, Lavitrano M, Mustafa SA, Villa C. Mitochondrial microRNAs: Key Drivers in Unraveling Neurodegenerative Diseases. Int J Mol Sci 2025; 26:626. [PMID: 39859339 PMCID: PMC11766038 DOI: 10.3390/ijms26020626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) crucial for regulating gene expression at the post-transcriptional level. Recent evidence has shown that miRNAs are also found in mitochondria, organelles that produce energy in the cell. These mitochondrial miRNAs, also known as mitomiRs, are essential for regulating mitochondrial function and metabolism. MitomiRs can originate from the nucleus, following traditional miRNA biogenesis pathways, or potentially from mitochondrial DNA, allowing them to directly affect gene expression and cellular energy dynamics within the mitochondrion. While miRNAs have been extensively investigated, the function and involvement of mitomiRs in the development of neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis remain to be elucidated. This review aims to discuss findings on the role of mitomiRs in such diseases and their potential as therapeutic targets, as well as to highlight future research directions.
Collapse
Affiliation(s)
- Raya Kh. Yashooa
- Department of Biology, College of Education for Pure Science, University of Al-Hamdaniya, Mosul 41002, Iraq;
| | - Elisa Duranti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| | - Suhad A. Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Kurdistan Region, Erbil 44001, Iraq;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| |
Collapse
|
7
|
Patange V, Ahirwar K, Tripathi T, Tripathi P, Shukla R. Scientific investigation of non-coding RNAs in mitochondrial epigenetic and aging disorders: Current nanoengineered approaches for their therapeutic improvement. Mitochondrion 2025; 80:101979. [PMID: 39505245 DOI: 10.1016/j.mito.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Genetic control is vital for the growth of cells and tissues, and it also helps living things, from single-celled organisms to complex creatures, maintain a stable internal environment. Within cells, structures called mitochondria act like tiny power plants, producing energy and keeping the cell balanced. The two primary categories of RNA are messenger RNA (mRNA) and non-coding RNA (ncRNA). mRNA carries the instructions for building proteins, while ncRNA does various jobs at the RNA level. There are different kinds of ncRNA, each with a specific role. Some help put RNA molecules together correctly, while others modify other RNAs or cut them into smaller pieces. Still others control how much protein is made from a gene. Scientists have recently discovered many more ncRNAs than previously known, and their functions are still being explored. This article analyzes the RNA molecules present within mitochondria, which have a crucial purpose in the operation of mitochondria. We'll also discuss how genes can be turned on and off without changing their DNA code, and how this process might be linked to mitochondrial RNA. Finally, we'll explore how scientists are using engineered particles to silence genes and develop new treatments based on manipulating ncRNA.
Collapse
Affiliation(s)
- Vaibhav Patange
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Tripti Tripathi
- Department of Physiology, Integral University, Kursi Road, Dashauli, UP 226026, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
8
|
Yuan L, Yin L, Lin X, Li J, Liang P, Jiang B. Revealing the Complex Interaction of Noncoding RNAs, Sirtuin Family, and Mitochondrial Function. J Gene Med 2025; 27:e70007. [PMID: 39842441 DOI: 10.1002/jgm.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Mitochondria are key organelles that perform and coordinate various metabolic processes in the cell, and their homeostasis is essential for the maintenance of eukaryotic life. To maintain mitochondrial homeostasis and cellular health, close communication between noncoding RNAs (ncRNAs) and proteins is required. For example, there are numerous crosstalk between ncRNAs and the sirtuin (SIRT1-7) family, which is a group of nicotinamide adenine dinucleotides (NAD(+))-dependent Type III deacetylases. NcRNAs are involved in the regulation of gene expression of sirtuin family members, and deacetylation of sirtuin family members can also influence the generation of ncRNAs. This review focuses on the relationship between the two mentioned above and summarizes the impact of their interactions on mitochondrial metabolism, oxidative stress, mitochondrial apoptotic pathways, mitochondrial biogenesis, mitochondrial dynamics, and other mitochondria-related pathophysiological processes. Finally, the review also describes targeted and appropriate treatment strategies. In conclusion, we provide an overview of the ncRNA-sirtuins/mitochondria relationship that could provide a reference for related research in the mitochondrial field and help the future development of new biomedical applications in this area.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Liang J, Cheng S, Song Q, Tang Y, Wang Q, Chen H, Feng J, Yang L, Li S, Wang Z, Fan J, Huang C. Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles Induced by Advanced Glycation End Products on Energy Metabolism in Vascular Endothelial Cells. Kidney Int Rep 2025; 10:227-246. [PMID: 39810759 PMCID: PMC11725971 DOI: 10.1016/j.ekir.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear. Methods Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated. The EVs were characterized by morphology, particle size, and protein markers of MSC-EVs, and microRNA (miRNA) sequencing was performed to identify differentially expressed miRNAs. MSC-EVs were cocultured with human umbilical vein endothelial cells (HUVECs) to assess effects on cell viability, metabolic activity, oxidative stress, and antioxidant capacity. Tube formation and glucose transporter protein analyses were conducted to evaluate the angiogenic ability and glucose metabolism capacity. Results MSC-EVs ranged from 30 to 150 nm, which is consistent with exosomal properties. AGEs treatment reduced MSC viability but had minimal effect on EV morphology and protein markers. miRNA sequencing showed downregulation of hsa-miR-223-3p and hsa-miR-126-3p_R-1, with upregulation of hsa-miR-574-5p, implicating changes in glycolytic and oxidative phosphorylation pathways. MSC-EVs treated with AGEs decreased HUVEC viability (P < 0.05), pH (P < 0.05), adenosine triphosphate (ATP) metabolism (P < 0.05), glucose metabolism (P < 0.05), while enhancing glycolysis processes, including glycolytic activity, capacity, and reserve (P < 0.05). This likely resulted from impaired mitochondrial function, including reduced ATP production, maximal respiration, basal respiration, and spare respiratory capacity (P < 0.05), or increased reactive oxygen species (ROS) (P < 0.05) and glucose-6-phosphate dehydrogenase (G6PD) activity (P < 0.05). In addition, AGEs reduced glucose transporter types 1, 3, and 4 (GLUT1, GLUT3, GLUT4), and synthesis of cytochrome c oxidase 2 expression (P < 0.05), along with angiogenic capacity (P < 0.05) in HUVECs. Conclusion Exposure to AGEs diminishes the therapeutic potential of MSC-derived EVs by disrupting energy metabolism and promoting metabolic reprogramming in endothelial cells. These findings suggest that adjusting the dosage or frequency of MSC-EVs may enhance their efficacy for treating diabetes-related vascular conditions. Further research is warranted to evaluate AGEs' broader impact on various cell types and metabolic pathways for improved exosome-based therapies.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qide Song
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Panyu Health Management Center, Guangzhou, China
| | - Jie Feng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shunli Li
- Panyu Health Management Center, Guangzhou, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghui Fan
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Silver J, Trewin AJ, Loke S, Croft L, Ziemann M, Soria M, Dillon H, Nielsen S, Lamon S, Wadley GD. Purification of mitochondria from skeletal muscle tissue for transcriptomic analyses reveals localization of nuclear-encoded noncoding RNAs. FASEB J 2024; 38:e70223. [PMID: 39625361 PMCID: PMC11613969 DOI: 10.1096/fj.202401618r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Mitochondria are central to cellular function, particularly in metabolically active tissues such as skeletal muscle. Nuclear-encoded RNAs typically localize within the nucleus and cytosol but a small population may also translocate to subcellular compartments such as mitochondria. We aimed to investigate the nuclear-encoded RNAs that localize within the mitochondria of skeletal muscle cells and tissue. Intact mitochondria were isolated via immunoprecipitation (IP) followed by enzymatic treatments (RNase-A and proteinase-K) optimized to remove transcripts located exterior to mitochondria, making it amenable for high-throughput transcriptomic sequencing. Small RNA sequencing libraries were successfully constructed from as little as 1.8 ng mitochondrial RNA input. Small RNA sequencing of mitochondria from rat myoblasts revealed the enrichment of over 200 miRNAs. Whole-transcriptome RNA sequencing of enzymatically purified mitochondria isolated by IP from skeletal muscle tissue showed a striking similarity in the degree of purity compared to mitoplast preparations which lack an outer mitochondrial membrane. In summary, we describe a novel, powerful sequencing approach applicable to animal and human tissues and cells that can facilitate the discovery of nuclear-encoded RNA transcripts localized within skeletal muscle mitochondria.
Collapse
MESH Headings
- Animals
- Rats
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/genetics
- Transcriptome
- Gene Expression Profiling/methods
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Mitochondria/metabolism
- Mitochondria/genetics
- Male
- RNA, Nuclear/metabolism
- RNA, Nuclear/genetics
- RNA, Mitochondrial/metabolism
- RNA, Mitochondrial/genetics
- Myoblasts/metabolism
- Myoblasts/cytology
- Humans
Collapse
Affiliation(s)
- Jessica Silver
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Adam J. Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Stella Loke
- Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Larry Croft
- Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Mark Ziemann
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- Burnet InstituteMelbourneVictoriaAustralia
| | - Megan Soria
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Hayley Dillon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
- Human Integrated Physiology and Sports Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Glenn D. Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
11
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
13
|
Song R, Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov Today 2024; 29:104179. [PMID: 39276921 DOI: 10.1016/j.drudis.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
microRNAs (miRNAs) are small regulatory RNAs implicated in various cardiac disorders. In this review, the role of miRNAs is discussed in relation to acute myocardial infarction and chronic heart failure. In both settings, miRNAs are altered, contributing to injury and adverse remodeling. Notably, miRNA profiles differ between acute ischemic injury and progressive heart failure. Owing to miRNA variabilities between disease stages and delivery difficulties, translation of animal studies to the clinic remains challenging. The identification of distinct miRNA signatures could lead to the development of miRNA therapies tailored to different disease stages. Here, we summarize the current understanding of miRNAs in acute and chronic cardiac diseases, identify knowledge gaps and discuss progress in developing miRNA-based treatment strategies.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
14
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
15
|
Abed S, Ebrahimi A, Fattahi F, Kouchakali G, Shekari-Khaniani M, Mansoori-Derakhshan S. The Role of Non-Coding RNAs in Mitochondrial Dysfunction of Alzheimer's Disease. J Mol Neurosci 2024; 74:100. [PMID: 39466447 DOI: 10.1007/s12031-024-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Although brain amyloid-β (Aβ) peptide buildup is the main cause of Alzheimer's disease (AD), mitochondrial abnormalities can also contribute to the illness's development, as either a primary or secondary factor, as programmed cell death and efficient energy generation depend on the proper operation of mitochondria. As a result, non-coding RNAs (ncRNAs) may play a crucial role in ensuring that nuclear genes related to mitochondria and mitochondrial genes function normally. Interestingly, a significant number of recent studies have focused on the impact of ncRNAs on the expression of nucleus and mitochondrial genes. Additionally, researchers have proposed some intriguing therapeutic approaches to treat and reduce the severity of AD by adjusting the levels of these ncRNAs. The goal of this work was to consolidate the existing knowledge in this field of study by systematically investigating ncRNAs, with a particular emphasis on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Therefore, the impact and processes by which ncRNAs govern mitochondrial activity in the onset and progression of AD are thoroughly reviewed in this article. Collectively, the effects of ncRNAs on physiological and molecular mechanisms associated with mitochondrial abnormalities that exacerbate AD are thoroughly reviewed in the current research, while also emphasizing the relationship between disturbed mitophagy in AD and ncRNAs.
Collapse
Affiliation(s)
- Samin Abed
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Fatemeh Fattahi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | | | | |
Collapse
|
16
|
Bao Z, Li J, Cai J, Yao S, Yang N, Yang J, Zhao B, Chen Y, Wu X. Plasma-derived exosome miR-10a-5p promotes premature ovarian failure by target BDNF via the TrkB/Akt/mTOR signaling pathway. Int J Biol Macromol 2024; 277:134195. [PMID: 39069050 DOI: 10.1016/j.ijbiomac.2024.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Premature ovarian failure (POF) is characterized by a significant decline in the ovarian follicle pool and oocyte reserve, alongside an increase in the number of low-quality oocytes and apoptosis of granulosa cells (GCs). Exosome-derived miRNA plays a regulatory role in crucial cellular activities and contributes to the onset and progression of POF. In this study, we successfully established a rabbit model of POF and conducted in vitro and in vivo experiments that confirmed DiI-labeled Pla-Exos (exosomes derived from plasma) could enter the follicle through blood circulation, with GCs capable of uptaking these exosomes. Our RNA-seq analysis revealed elevated expression of miR-10a-5p in Pla-Exos from POF rabbits. Moreover, our findings demonstrate that exosomal miR-10a-5p suppresses GCs proliferation and induces apoptosis via the mitochondrial pathway. Additionally, exosomal miR-10a-5p inhibits the TrkB/Akt/mTOR signaling pathway by downregulating BDNF expression, thereby modulating the expression levels of proteins and genes associated with the cell cycle, follicle development, and GCs senescence. In conclusion, our study highlights the role of Pla-Exos miR-10a-5p in promoting rabbit POF through the TrkB/Akt/mTOR signaling pathway by targeting BDNF. These findings provide new insights into potential therapeutic targets for POF, offering valuable references for addressing concerns related to female reproductive function.
Collapse
Affiliation(s)
- Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y, on behalf of EU-CardioRNA COST Action CA17129, AtheroNET COST Action CA21153. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
18
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
19
|
Robichaud K, Duffy B, Staples JF, Craig PM. Mitochondrial microRNA profiles are altered in thirteen-lined ground squirrels ( Ictidomys tridecemlineatus) during hibernation. Physiol Genomics 2024; 56:555-566. [PMID: 38881427 DOI: 10.1152/physiolgenomics.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
Thirteen-lined ground squirrels (TLGSs) are obligate hibernators that cycle between torpor (low metabolic rate and body temperature) and interbout euthermia (IBE; typical euthermic body temperature and metabolism) from late autumn to spring. Many physiological changes occur throughout hibernation, including a reduction in liver mitochondrial metabolism during torpor, which is reversed during arousal to interbout euthermia. Nuclear-encoded microRNA (miRNA, small posttranscriptional regulator molecules) differ in abundance throughout TLGS hibernation and have been shown to regulate mitochondrial gene expression in mammalian cell culture (where they are referred to as mitomiRs). This study characterized differences in mitomiR profiles from TLGS liver mitochondria isolated during summer, torpor, and IBE, and predicted their mitochondrial targets. Using small RNA sequencing, differentially abundant mitomiRs were identified between hibernation states, and using quantitative PCR analysis, we quantified the expression of predicted mitochondrial mRNA targets. Most differences in mitomiR abundances were seasonal (i.e., between summer and winter) with only one mitomiR differentially abundant between IBE and torpor. Multiple factor analysis (MFA) revealed three clusters divided by hibernation states, where clustering was predominantly driven by mitomiR abundances. Nine of these differentially abundant mitomiRs had predicted mitochondrial RNA targets, including subunits of electron transfer system complexes I and IV, 12S rRNA, and two tRNAs. Overall, mitomiRs were predicted to suppress the expression of their mitochondrial targets and may have some involvement in regulating protein translation in mitochondria. This study found differences in mitomiR abundances between seasons and hibernation states of TLGS and suggests potential mechanisms for regulating the mitochondrial electron transfer system.NEW & NOTEWORTHY During the hibernation season, thirteen-lined ground squirrels periodically increase metabolism remarkably between torpor and interbout euthermia (IBE). This process involves rapid reactivation of mitochondrial respiration. We predicted that mitochondrial microRNA (mitomiRs) might be altered during this response. We found that the abundance of 38 liver mitomiRs differs based on hibernation state (summer, IBE, and torpor). Small RNA sequencing identified mitomiR profiles, including some mitomiRs that are predicted to bind to mitochondrial RNAs.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brynne Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
21
|
Xiong J, Sun C, Wen X, Hou Y, Liang M, Liu J, Wei Q, Yuan F, Peng C, Chen Y, Chang Y, Wang C, Zhang J. miR-548ag promotes DPP4 expression in hepatocytes through activation of TLR(7/8)/NF-κB pathway. Int J Obes (Lond) 2024; 48:941-953. [PMID: 38424257 PMCID: PMC11217002 DOI: 10.1038/s41366-024-01504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE In our previous study, we identified a notable increase in miR-548ag content after obesity, which contributes to the progression of Type 2 diabetes Mellitus(T2DM) through the up-regulation of Dipeptidyl Peptidase-4(DPP4) expression within the liver. However, the precise molecular mechanisms underlying the upregulation of DPP4 by miR-548ag remain elusive. Mature miRNAs rich in GU sequences can activate the TLR(7/8)/NF-κB signalling pathway, which transcriptionally activates DPP4 expression. Notably, the proportion of GU sequences in hsa-miR-548ag was found to be 47.6%. The study proposes a hypothesis suggesting that miR-548ag could potentially increase DPP4 expression in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. METHODS Male C57BL/6J mice were fed normal chow diet (NCD, n = 16) or high-fat diet (HFD, n = 16) for 12 weeks. For a duration of 6 weeks, NCD mice received intraperitoneal injections of a miR-548ag mimic, while HFD mice and db/db mice (n = 16) were administered intraperitoneal injections of a miR-548ag inhibitor. qRT-PCR and Western Blot were used to detect the expression level of miR-548ag, DPP4 and the activation of TLR(7/8)/NF-κB signalling pathway. HepG2 and L02 cells were transfected with miR-548ag mimic, miR-548ag inhibitor, TLR7/8 interfering fragment, and overexpression of miR-548ag while inhibiting TLR7/8, respectively. RESULTS (1) We observed elevated levels of miR-548ag in the serum, adipose tissue, and liver of obese mice, accompanied by an upregulation of TLR7/8, pivotal protein in the NF-κB pathway, and DPP4 expression in the liver. (2) miR-548ag promotes DPP4 expression in hepatocytes via the TLR(7/8)/NF-κB signalling pathway, resulting in a reduction in the glucose consumption capacity of hepatocytes. (3) The administration of a miR-548ag inhibitor enhanced glucose tolerance and insulin sensitivity in db/db mice. CONCLUSIONS MiR-548ag promotes the expression of DPP4 in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. MiR-548ag may be a potential target for the treatment of T2DM.
Collapse
Affiliation(s)
- Jianyu Xiong
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Chaoyue Sun
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jie Liu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianqian Wei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yongsheng Chang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300000, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
22
|
Robichaud K, Bragg LM, Servos MR, Craig PM. Venlafaxine exposure alters mitochondrial respiration and mitomiR abundance in zebrafish brains. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1569-1582. [PMID: 38695684 DOI: 10.1002/etc.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/27/2024]
Abstract
Wastewater treatment plant (WWTP) effluent often releases pharmaceuticals like venlafaxine (a serotonin-norephinephrine reuptake inhibitor antidepressant) to freshwater ecosystems at levels causing adverse metabolic effects on fish. Changes to fish metabolism can be regulated by epigenetic mechanisms like microRNA (small RNA molecules that regulate mRNA translation), including regulating mitochondrial mRNAs. Nuclear-encoded microRNAs regulate mitochondrial gene expression in mammals, and have predicted effects in fish. We aimed to identify whether venlafaxine exposure changed mitochondrial respiration and resulted in differentially abundant mitochondrial microRNA (mitomiRs) in zebrafish brains. In vitro exposure of brain homogenate to below environmentally relevant concentrations of venlafaxine (<1 µg/L) caused a decrease in mitochondrial respiration, although this was not driven by changes to mitochondrial Complex I or II function. To identify whether these effects occur in vivo, zebrafish were exposed to 1 µg/L venlafaxine for 0, 1, 6, 12, 24, and 96 h. In vivo, venlafaxine exposure had no significant effects on brain mitochondrial respiration; however, select mitomiRs (dre-miR-301a-5p, dre-miR-301b-3p, and dre-miR-301c-3p) were also measured, because they were bioinformatically predicted to regulate mitochondrial cytochrome c oxidase subunit I (COI) abundance. These mitomiRs were differentially regulated based on venlafaxine exposure (with miR-301c-3p abundance differing during the day and miR-301b-3p being lower in exposed fish at night), and with respect to sex and time sampled. Overall, the results demonstrated that in vitro venlafaxine exposure to zebrafish brain caused a decrease in mitochondrial respiration, but these effects were not seen after acute in vivo exposure. Results may have differed because in vivo exposure allows for fish to mitigate effects through mechanisms that could include mitomiR regulation, and because fish were only acutely exposed. Environ Toxicol Chem 2024;43:1569-1582. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
23
|
Canale P, Borghini A. Mitochondrial microRNAs: New Emerging Players in Vascular Senescence and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2024; 25:6620. [PMID: 38928325 PMCID: PMC11204228 DOI: 10.3390/ijms25126620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play an important role by controlling gene expression in the cytoplasm in almost all biological pathways. Recently, scientists discovered that miRNAs are also found within mitochondria, the energy-producing organelles of cells. These mitochondrial miRNAs, known as mitomiRs, can originate from the nuclear or mitochondrial genome, and they are pivotal in controlling mitochondrial function and metabolism. New insights indicate that mitomiRs may influence key aspects of the onset and progression of cardiovascular disease, especially concerning mitochondrial function and metabolic regulation. While the importance of mitochondria in cardiovascular health and disease is well-established, our understanding of mitomiRs' specific functions in crucial biological pathways, including energy metabolism, oxidative stress, inflammation, and cell death, is still in its early stages. Through this review, we aimed to delve into the mechanisms of mitomiR generation and their impacts on mitochondrial metabolic pathways within the context of vascular cell aging and atherosclerotic cardiovascular disease. The relatively unexplored field of mitomiR biology holds promise for future research investigations, with the potential to yield novel diagnostic tools and therapeutic interventions.
Collapse
Affiliation(s)
- Paola Canale
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy;
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
| | | |
Collapse
|
24
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
26
|
Li Z, Mao K, Liu L, Xu S, Zeng M, Fu Y, Huang J, Li T, Gao G, Teng ZQ, Sun Q, Chen D, Cheng Y. Nuclear microRNA-mediated transcriptional control determines adult microglial homeostasis and brain function. Cell Rep 2024; 43:113964. [PMID: 38489263 DOI: 10.1016/j.celrep.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Microglia are versatile regulators in brain development and disorders. Emerging evidence links microRNA (miRNA)-mediated regulation to microglial function; however, the exact underlying mechanism remains largely unknown. Here, we uncover the enrichment of miR-137, a neuropsychiatric-disorder-associated miRNA, in the microglial nucleus, and reveal its unexpected nuclear functions in maintaining the microglial global transcriptomic state, phagocytosis, and inflammatory response. Mechanistically, microglial Mir137 deletion increases chromatin accessibility, which contains binding motifs for the microglial master transcription factor Pu.1. Through biochemical and bioinformatics analyses, we propose that miR-137 modulates Pu.1-mediated gene expression by suppressing Pu.1 binding to chromatin. Importantly, we find that increased Pu.1 binding upregulates the target gene Jdp2 (Jun dimerization protein 2) and that knockdown of Jdp2 significantly suppresses the impaired phagocytosis and pro-inflammatory response in Mir137 knockout microglia. Collectively, our study provides evidence supporting the notion that nuclear miR-137 acts as a transcriptional modulator and that this microglia-specific function is essential for maintaining normal adult brain function.
Collapse
Affiliation(s)
- Zhu Li
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Kexin Mao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China
| | - Lin Liu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Shengyun Xu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Min Zeng
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yu Fu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Jintao Huang
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Tingting Li
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Guoan Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinmiao Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
27
|
Currim F, Shukla S, Singh J, Gohel D, Mane M, Shinde A, Roy M, Goyani S, Vasiyani H, Chandran A, Rochet JC, Cannon J, Singh R. Neuronal exosomal miRNAs modulate mitochondrial functions and cell death in bystander neuronal cells under Parkinson's disease stress conditions. Neurotoxicology 2024; 101:102-116. [PMID: 38401688 DOI: 10.1016/j.neuro.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra part of the brain. Pathology spread to numerous brain regions and cell types suggests that intercellular communication is essential to PD progression. Exosomes mediate intercellular communication between neurons, glia, and other cell types throughout PD-relevant brain regions. However, the mechanism remains unclear, and its implication in PD pathology, is not well understood. In the current study, we explored the role of exosomes in modulating the response to PD-relevant toxicants. In cellular models of PD, neuronal cell-derived exosomes are readily internalized by recipient neuronal cells as intact vesicles. Internalized exosomes in bystander neuronal cells localize to mitochondria and dysregulate mitochondrial functions, leading to cell death under PD stress conditions. NGS analysis of exosomes released by neuronal cells subjected to PD stress conditions showed that levels of specific miRNAs were altered in exosomes under PD stress conditions. Bioinformatic analysis of the miRNA targets revealed enriched pathways related to neuronal processes and morphogenesis, apoptosis and ageing. Levels of two miRNAs, hsa-miR-30a-5p and hsa-miR-181c-5p, were downregulated in exosomes under PD stress conditions. Expression of the identified miRNAs in neuronal cells led to their enrichment in exosomes, and exosome uptake in neuronal cells ameliorated mitochondrial dysfunction induced by PD stress conditions and rescued cell death. In conclusion, loss of enrichment of specific miRNAs, including miR-30a-5p and miR-181c-5p, under PD stress conditions causes mitochondrial dysfunction and neuronal death, and hence may lead to progression of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India; School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Dhruv Gohel
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Milton Roy
- Institute for Cell Engineering, John Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD 21205, USA
| | - Shani Goyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Aswathy Chandran
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India; Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi, UP 221005, India.
| |
Collapse
|
28
|
Xu H, Li W, Wang D. The promising role of miRNAs in radioresistance and chemoresistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1299249. [PMID: 38482204 PMCID: PMC10933132 DOI: 10.3389/fonc.2024.1299249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 01/03/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor that develops in the nasopharynx. It has a distinct ethnic and geographical distribution, and emerging evidence suggests that it is an ecological disease. Most patients respond well to radiation combined with chemotherapy as the primary treatment for NPC. However, some patients will eventually develop radio resistance and chemoresistance, resulting in recurrence and metastasis, which is a primary cause of poor prognosis. The processes underlying radio resistance and chemoresistance in NPC are complex and unknown. MicroRNAs (miRNAs) are endogenic non-coding RNA molecules. They play a role in a variety of cell functions as well as development of disease such as cancer. There has been considerable data demonstrating the existence of numerous aberrant miRNAs in cancer tissues, cells, and biofluids, which indicates the importance of studying the influence of miRNAs on NPC. Therefore, this review comprehensively analyzes the elaborate mechanisms of miRNAs affecting the radio resistance and chemoresistance of NPC. Multiple tumor-specific miRNAs can be employed as therapeutic and prognostic biological indicators.
Collapse
Affiliation(s)
| | | | - Dehui Wang
- Department of Otolaryngology - Head and Neck Surgery, Affiliated Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
30
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Siniscalchi C, Di Palo A, Petito G, Senese R, Manfrevola F, Leo ID, Mosca N, Chioccarelli T, Porreca V, Marchese G, Ravo M, Chianese R, Cobellis G, Lanni A, Russo A, Potenza N. A landscape of mouse mitochondrial small non-coding RNAs. PLoS One 2024; 19:e0293644. [PMID: 38165955 PMCID: PMC10760717 DOI: 10.1371/journal.pone.0293644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/17/2023] [Indexed: 01/04/2024] Open
Abstract
Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.
Collapse
Affiliation(s)
- Chiara Siniscalchi
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Armando Di Palo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ilenia De Leo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
- Genomix4Life S.r.l., Baronissi (SA), Italy
| | - Nicola Mosca
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Marchese
- Genomix4Life S.r.l., Baronissi (SA), Italy
- Genome Research Center for Health, CRGS, Baronissi, Italy
| | - Maria Ravo
- Genomix4Life S.r.l., Baronissi (SA), Italy
- Genome Research Center for Health, CRGS, Baronissi, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonia Lanni
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
32
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
33
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
35
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
36
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Potel KN, Cornelius VA, Yacoub A, Chokr A, Donaghy CL, Kelaini S, Eleftheriadou M, Margariti A. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1165302. [PMID: 37719978 PMCID: PMC10502732 DOI: 10.3389/fcvm.2023.1165302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular complications are the main cause of diabetes mellitus-associated morbidity and mortality. Oxidative stress and metabolic dysfunction underly injury to the vascular endothelium and myocardium, resulting in diabetic angiopathy and cardiomyopathy. Mitochondrial dysfunction has been shown to play an important role in cardiomyopathic disruptions of key cellular functions, including energy metabolism and oxidative balance. Both non-coding RNAs and RNA-binding proteins are implicated in diabetic cardiomyopathy, however, their impact on mitochondrial dysfunction in the context of this disease is largely unknown. Elucidating the effects of non-coding RNAs and RNA-binding proteins on mitochondrial pathways in diabetic cardiomyopathy would allow further insights into the pathophysiological mechanisms underlying diabetic vascular complications and could facilitate the development of new therapeutic strategies. Stem cell-based models can facilitate the study of non-coding RNAs and RNA-binding proteins and their unique characteristics make them a promising tool to improve our understanding of mitochondrial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Koray N. Potel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Victoria A. Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew Yacoub
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ali Chokr
- Faculty of Medicine, University of Picardie Jules Verne, Amiens, France
| | - Clare L. Donaghy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
38
|
Mongelli A, Mengozzi A, Geiger M, Gorica E, Mohammed SA, Paneni F, Ruschitzka F, Costantino S. Mitochondrial epigenetics in aging and cardiovascular diseases. Front Cardiovasc Med 2023; 10:1204483. [PMID: 37522089 PMCID: PMC10382027 DOI: 10.3389/fcvm.2023.1204483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Mitochondria are cellular organelles which generate adenosine triphosphate (ATP) molecules for the maintenance of cellular energy through the oxidative phosphorylation. They also regulate a variety of cellular processes including apoptosis and metabolism. Of interest, the inner part of mitochondria-the mitochondrial matrix-contains a circular molecule of DNA (mtDNA) characterised by its own transcriptional machinery. As with genomic DNA, mtDNA may also undergo nucleotide mutations that have been shown to be responsible for mitochondrial dysfunction. During physiological aging, the mitochondrial membrane potential declines and associates with enhanced mitophagy to avoid the accumulation of damaged organelles. Moreover, if the dysfunctional mitochondria are not properly cleared, this could lead to cellular dysfunction and subsequent development of several comorbidities such as cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases as well as inflammatory disorders and psychiatric diseases. As reported for genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA methylation. Changes in mtDNA methylation have shown to be associated with altered transcriptional programs and mitochondrial dysfunction during aging. In addition, other epigenetic signals have been observed in mitochondria, in particular the interaction between mtDNA methylation and non-coding RNAs. Mitoepigenetic modifications are also involved in the pathogenesis of CVDs where oxygen chain disruption, mitochondrial fission, and ROS formation alter cardiac energy metabolism leading to hypertrophy, hypertension, heart failure and ischemia/reperfusion injury. In the present review, we summarize current evidence on the growing importance of epigenetic changes as modulator of mitochondrial function in aging. A better understanding of the mitochondrial epigenetic landscape may pave the way for personalized therapies to prevent age-related diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Martin Geiger
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Kong L, Zhou Y, Yuan J, Lv T, Yang J, Shi Y, Yang J. Mitochondrial miR-23b-5p is a new biomarker of warm ischaemic injury in donor livers and a candidate for graft evaluation: experimental studies. Int J Surg 2023; 109:1880-1892. [PMID: 37184476 PMCID: PMC10389456 DOI: 10.1097/js9.0000000000000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Warm ischaemic injury (WII) stems from incorrect energy metabolism and is the main cause of graft dysfunction. Mitochondria, as the centre of cellular metabolic activities, may be the key in identifying accurate indicators for evaluating the quality of grafts. Our research focuses on the screening, clinical application, and mechanism of the optimal WII mitochondrion biomarker. APPROACH AND RESULTS Using a 100% hepatic warm ischaemia mouse model, without reperfusion, transmission electron microscopy demonstrated evident morphological changes of hepatic mitochondria at 15 min of ischaemia. However, all 13 mt-mRNAs could not display continuously upregulated consistency at 0-15-30-60 min during WII. High-throughput analysis of miRNA expression in both purified mitochondria and liver tissues suggested miR-23b-5p was a potential mitochondrial microRNA (mitomiR) biomarker with high sensitivity and 0-15-30-60 min change consistency. Fluorescence in-situ hybridization and reverse transcription quantitative polymerase chain reaction (RT-qPCR) further confirmed the results. Through overexpression and inhibition, the functionality of this mitomiR during WII was identified as a protective regulator in vitro and then verified in Dicer1 fl/fl Alb Cre mice by downregulation of other miRNAs and supplementation of mature mitomiR-23b-5p. Dual-luciferase reporter assay and the Seahorse XF analyzer determined that mitomiR-23b-5p reduced mitochondrial respiratory function by silencing mt-RNR2 (16S). Clinically, mitomiR-23b-5p was positively correlated with serum alanine aminotransferase levels 3 days after the operation ( P =0.032), and the C-statistic for 90-day graft survival rate was 0.698. CONCLUSIONS MitomiR-23b-5p plays a protective regulatory role and implements a special mitochondrial regulation mechanism not yet reported in WII. These clinical results further support the experimental result that the expression of MitomiR-23b-5p is closely related to the prognosis of clinical liver transplantation patients. This is a promising new biomarker for WII evaluation of donor livers.
Collapse
Affiliation(s)
- Lingxiang Kong
- Department of Liver transplantation Laboratory
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Jingsheng Yuan
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Lv
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Yang
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yujun Shi
- Department of Liver transplantation Laboratory
| | - Jiayin Yang
- Department of Liver transplantation Laboratory
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
40
|
Saikia BJ, Bhardwaj J, Paul S, Sharma S, Neog A, Paul SR, Binukumar BK. Understanding the Roles and Regulation of Mitochondrial microRNAs (MitomiRs) in Neurodegenerative Diseases: Current Status and Advances. Mech Ageing Dev 2023:111838. [PMID: 37329989 DOI: 10.1016/j.mad.2023.111838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNA) are a class of small non-coding RNA, roughly 21 - 22 nucleotides in length, which are master gene regulators. These miRNAs bind to the mRNA's 3' - untranslated region and regulate post-transcriptional gene regulation, thereby influencing various physiological and cellular processes. Another class of miRNAs known as mitochondrial miRNA (MitomiRs) has been found to either originate from the mitochondrial genome or be translocated directly into the mitochondria. Although the role of nuclear DNA encoded miRNA in the progression of various neurological diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, etc. is well known, accumulating evidence suggests the possible role of deregulated mitomiRs in the progression of various neurodegenerative diseases with unknown mechanism. We have attempted to outline the current state of mitomiRs role in controlling mitochondrial gene expression and function through this review, paying particular attention to their contribution to neurological processes, their etiology, and their potential therapeutic use.
Collapse
Affiliation(s)
- Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Srishti Sharma
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - Swaraj Ranjan Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - B K Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
41
|
Kobayashi A, Takeiwa T, Ikeda K, Inoue S. Roles of Noncoding RNAs in Regulation of Mitochondrial Electron Transport Chain and Oxidative Phosphorylation. Int J Mol Sci 2023; 24:9414. [PMID: 37298366 PMCID: PMC10253563 DOI: 10.3390/ijms24119414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) plays an essential role in energy production by inducing oxidative phosphorylation (OXPHOS) to drive numerous biochemical processes in eukaryotic cells. Disorders of ETC and OXPHOS systems are associated with mitochondria- and metabolism-related diseases, including cancers; thus, a comprehensive understanding of the regulatory mechanisms of ETC and OXPHOS systems is required. Recent studies have indicated that noncoding RNAs (ncRNAs) play key roles in mitochondrial functions; in particular, some ncRNAs have been shown to modulate ETC and OXPHOS systems. In this review, we introduce the emerging roles of ncRNAs, including microRNAs (miRNAs), transfer-RNA-derived fragments (tRFs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the mitochondrial ETC and OXPHOS regulation.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA;
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| |
Collapse
|
42
|
Roiz-Valle D, Caravia XM, López-Otín C. Mechanisms of mitochondrial microRNA regulation in cardiovascular diseases. Mech Ageing Dev 2023; 212:111822. [PMID: 37182718 DOI: 10.1016/j.mad.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
In the past years, microRNAs (miRNAs) have emerged as important biomarkers and essential regulators of many pathophysiological processes. Several studies have focused on the importance of these noncoding RNAs (ncRNAs) in maintaining mitochondrial function, introducing the term mitochondrial microRNAs (mitomiRs) to refer to those miRNAs controlling mitochondrial activity, either by targeting cytoplasmatic messenger RNAs (mRNAs) or by acting inside the mitochondria. Mitochondrial homeostasis is paramount in the cardiovascular system, where an important energy supply is needed to maintain the homeostasis of tissues, such as the myocardium. In this review, we will address the relevance of mitomiRs in cardiovascular pathologies by dissecting and categorizing their effect in mitochondrial function in order to provide a robust framework for new mitomiR-based therapeutical approaches to this group of diseases.
Collapse
Affiliation(s)
- David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo.
| | - Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| |
Collapse
|
43
|
Patel D, Thankachan S, Abu Fawaz PP, Venkatesh T, Prasada Kabekkodu S, Suresh PS. Deciphering the role of MitomiRs in cancer: A comprehensive review. Mitochondrion 2023; 70:118-130. [PMID: 37120081 DOI: 10.1016/j.mito.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/01/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate many metabolic and signal transduction pathways. The role of miRNAs, usually found in the cytoplasm, in regulating gene expression and cancer progression has been extensively studied in the last few decades. However, very recently, miRNAs were found to localize in the mitochondria. MiRNAs that specifically localize in the mitochondria and the cytoplasmic miRNAs associated with mitochondria that directly or indirectly modulate specific mitochondrial functions are termed as "mitomiRs". Although it is not clear about the origin of mitomiRs that are situated within mitochondria (nuclear or mitochondrial origin), it is evident that they have specific functions in modulating gene expression and regulating important mitochondrial metabolic pathways. Through this review, we aim to delineate the mechanisms by which mitomiRs alter mitochondrial metabolic pathways and influence the initiation and progression of cancer. We further discuss the functions of particular mitomiRs, which have been widely studied in the context of mitochondrial metabolism and oncogenic signaling pathways. Based on the current knowledge, we can conclude that mitomiRs contribute significantly to mitochondrial function and metabolic regulation, and that dysregulation of mitomiRs can aid the proliferation of cancer cells. Therefore, the less explored area of mitomiRs' biology can be an important topic of research investigation in the future for targeting cancer cells.
Collapse
Affiliation(s)
- Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - P P Abu Fawaz
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India.
| |
Collapse
|
44
|
Velasquez FC, Roman B, Hernández-Ochoa EO, Leppo MK, Truong SK, Steenbergen C, Schneider MF, Weiss RG, Das S. Contribution of skeletal muscle-specific microRNA-133b to insulin resistance in heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H598-H609. [PMID: 36827227 PMCID: PMC10069972 DOI: 10.1152/ajpheart.00250.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.
Collapse
Affiliation(s)
- Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Barbara Roman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Michelle K Leppo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Sharon K Truong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Robert G Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
45
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
46
|
Bhatti JS, Khullar N, Vijayvergiya R, Navik U, Bhatti GK, Reddy PH. Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens. Ageing Res Rev 2023; 86:101882. [PMID: 36780957 DOI: 10.1016/j.arr.2023.101882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Aging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Rajesh Vijayvergiya
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
47
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
49
|
Gareev I, Beylerli O, Liang Y, Lu E, Ilyasova T, Sufianov A, Sufianova G, Shi H, Ahmad A, Yang G. The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1065-1080. [PMID: 35524670 PMCID: PMC10286585 DOI: 10.2174/1570159x20666220507021445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Arterial hypertension (AH) is most often the cause of ICH, followed by atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication and vitamin deficiencies. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. AH is difficult to treat, requires surgery and can lead to disability or death. One of the important directions in the study of the pathogenesis of ICH is mitochondrial dysfunction and its regulation. The key role of mitochondrial dysfunction in AH and atherosclerosis, as well as in the development of brain damage after hemorrhage, has been acknowledged. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that regulate a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., primarily through gene repression. There is growing evidence to support dysregulated miRNAs in various cardiovascular diseases, including ICH. Further, the realization of miRNAs within mitochondrial compartment has challenged the traditional knowledge of signaling pathways involved in the regulatory network of cardiovascular diseases. However, the role of miRNAs in mitochondrial dysfunction for ICH is still under-appreciated, with comparatively much lesser studies and investigations reported, than those in other cardiovascular diseases. In this review, we summarize the up-to-date findings on the published role miRNAs in mitochondrial function for ICH, and the potential use of miRNAs in clinical settings, such as potential therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ozal Beylerli
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Albert Sufianov
- Federal Centre of Neurosurgery, Tyumen, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
50
|
Gambardella J, Fiordelisi A, Sorriento D, Cerasuolo F, Buonaiuto A, Avvisato R, Pisani A, Varzideh F, Riccio E, Santulli G, Iaccarino G. Mitochondrial microRNAs Are Dysregulated in Patients with Fabry Disease. J Pharmacol Exp Ther 2023; 384:72-78. [PMID: 35764328 PMCID: PMC9827504 DOI: 10.1124/jpet.122.001250] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder caused by mutations in the gene for α-galactosidase A, inducing a progressive accumulation of globotriaosylceramide (GB3) and its metabolites in different organs and tissues. GB3 deposition does not fully explain the clinical manifestations of FD, and other pathogenetic mechanisms have been proposed, requiring the identification of new biomarkers for monitoring FD patients. Emerging evidence suggests the involvement of mitochondrial alterations in FD. Here, we propose mitochondrial-related microRNAs (miRs) as potential biomarkers of mitochondrial involvement in FD. Indeed, we demonstate that miRs regulating different aspects of mitochondrial homeostasis including expression and assembly of respiratory chain, mitogenesis, antioxidant capacity, and apoptosis are consistently dysregulated in FD patients. Our data unveil a novel noncoding RNA signature of FD patients, indicating mitochondrial-related miRs as new potential pathogenic players and biomarkers in FD. SIGNIFICANCE STATEMENT: This study demonstrates for the first time that a specific signature of circulating mitochondrial miRs (mitomiRs) is dysregulated in FD patients. MitomiRs regulating fundamental aspects of mitochondrial homeostasis and fitness, including expression and assembly of the respiratory chain, mitogenesis, antioxidant capacity, and apoptosis are significantly dysregulated in FD patients. Taken together, these new findings introduce mitomiRs as unprecedented biomarkers of FD and point at mitochondrial dysfunction as a novel potential mechanistic target for therapeutic approaches.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Federica Cerasuolo
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Antonietta Buonaiuto
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Roberta Avvisato
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Antonio Pisani
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Fahimeh Varzideh
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Eleonora Riccio
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences (J.G., A.F., D.S., F.C., A.B., R.A., G.I.); Interdepartmental Center of Research on Hypertension and Related Conditions (J.G., G.I.), and Department of Public Health (A.P., E.R.); Federico II University, Naples, Italy; and Departments of Medicine (Cardiology) and Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York City, New York (J.G., F.V., G.S.)
| |
Collapse
|