1
|
Zhang C, Weintraub NL, Tang Y. Identification of Critical Molecular Pathways Induced by HDAC11 Overexpression in Cardiac Mesenchymal Stem Cells. Biomolecules 2025; 15:662. [PMID: 40427555 PMCID: PMC12109384 DOI: 10.3390/biom15050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
HDAC11, the only class IV histone deacetylase, primarily functions as a fatty acid deacylase and has been implicated in metabolic regulation, cancer stemness, and muscle regeneration. However, its role in cardiac mesenchymal stem cells (CMSCs) remains unexplored. To investigate the effects of HDAC11 overexpression on the gene regulatory networks in CMSCs, we treated mouse CMSCs with an adenoviral vector encoding human HDAC11 (Ad-HDAC11) versus adenoviral GFP (Ad-GFP) as a control. Gene expression and pathway enrichment were assessed using RNA sequencing (RNA-seq), and HDAC11 overexpression was validated at the RNA and protein levels through qRT-PCR and Western blot. RNA-seq and Gene Ontology (GO) analysis revealed that HDAC11 overexpression activated cell cycle pathways while suppressing nucleotide transport and phagolysosome-related processes. Furthermore, pHH3 protein level was increased, suggested enhanced proliferation in HDAC11-overexpressed CMSCs. qRT-PCR also confirmed the downregulation of GM11266, a long non-coding RNA, in HDAC11-overexpressing CMSCs. In summary, HDAC11 overexpression promotes transcriptional reprogramming, cell cycle progression, and CMSC proliferation, underscoring its potential role in regulating CMSC growth and division.
Collapse
Affiliation(s)
| | | | - Yaoliang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (C.Z.); (N.L.W.)
| |
Collapse
|
2
|
Wang YL, Yu SN, Shen HR, Wang HJ, Wu XP, Wang QL, Zhou B, Tan YZ. Thymosin β4 released from functionalized self-assembling peptide activates epicardium and enhances repair of infarcted myocardium. Theranostics 2021; 11:4262-4280. [PMID: 33754060 PMCID: PMC7977468 DOI: 10.7150/thno.52309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The epicardium plays an important role in cardiomyogenesis during development, while it becomes quiescent in adult heart during homeostasis. This study investigates the efficiency of thymosin β4 (Tβ4) release with RPRHQGVM conjugated to the C-terminus of RADA16-I (RADA-RPR), the functionalized self-assembling peptide (SAP), to activate the epicardium and repairing the infarcted myocardium. Methods: The functionalized SAP was constituted with self-assembling motif, Tβ4-binding site, and cell adhesive ligand. Myocardial infarction (MI) models of the transgenic mice were established by ligation of the left anterior descending coronary artery. At one week after intramyocardial injection of Tβ4-conjugated SAP, the activation of the epicardium was assessed. At four weeks after implantation, the migration and differentiation of epicardium-derived cells (EPDCs) as well as angiogenesis, lymphangiogenesis and myocardial regeneration were examined. Results: We found that the designer RADA-RPR bound Tβ4 and adhered to EPDCs and that Tβ4 released from the functionalized SAP could effectively activate the epicardium and induce EPDCs to differentiate towards cardiovascular cells as well as lymphatic endothelial cells. Moreover, SAP-released Tβ4 (SAP-Tβ4) promoted proliferation of cardiomyocytes. Furthermore, angiogenesis, lymphangiogenesis and myocardial regeneration were enhanced in the MI models at 4 weeks after delivery of SAP-Tβ4 along with attenuation of adverse myocardial remodeling and significantly improved cardiac function. Conclusions: These results demonstrate that sustained release of Tβ4 from the functionalized SAP can activate the epicardium and effectively enhance the repair of infarcted myocardium. We believe the delivery of SAP-Tβ4 may be a promising strategy for MI therapy.
Collapse
Affiliation(s)
- Yong-li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shu-na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Hao-ran Shen
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Hai-jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Xue-ping Wu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Qiang-li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Zhou
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Yagyu T, Yasuda S, Nagaya N, Doi K, Nakatani T, Satomi K, Shimizu W, Kusano K, Anzai T, Noguchi T, Ohgushi H, Kitamura S, Kangawa K, Ogawa H. Long-Term Results of Intracardiac Mesenchymal Stem Cell Transplantation in Patients With Cardiomyopathy. Circ J 2019; 83:1590-1599. [PMID: 31105128 DOI: 10.1253/circj.cj-18-1179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs), which have the potential to differentiate into cardiomyocytes or vascular endothelial cells, have been used clinically as therapy for cardiomyopathy. In this study, we aimed to evaluate the long-term follow-up results. METHODS AND RESULTS We studied 8 patients with symptomatic heart failure (HF) on guideline-directed therapy (ischemic cardiomyopathy, n=3; nonischemic cardiomyopathy, n=5) who underwent intracardiac MSC transplantation using a catheter-based injection method between May 2004 and April 2006. Major adverse events and hospitalizations were investigated up to 10 years afterward. Compared with baseline, there were no significant differences in B-type natriuretic peptide (BNP) (from 211 to 173 pg/mL), left ventricular ejection fraction (LVEF) (from 24% to 26%), and peak oxygen uptake (from 16.5 to 19.2 mL/min/kg) at 2 months. During the follow-up period, no patients experienced serious adverse events such as arrhythmias. Three patients died of pneumonia in the 1st year, liver cancer in the 6th year, and HF in the 7th year. Of the remaining 5 patients, 3 patients were hospitalized for exacerbated HF, 1 of whom required heart transplantation in the 2nd year; 2 patients survived for 10 years without worsening HF. CONCLUSIONS The results of this exploratory study of intracardiac MSCs administration suggest further research regarding the feasibility and efficacy is warranted.
Collapse
Affiliation(s)
- Takeshi Yagyu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences
| | | | - Kaori Doi
- Research Institute, National Cerebral and Cardiovascular Center
| | - Takeshi Nakatani
- Department of Transplantation, National Cerebral and Cardiovascular Center
| | - Kazuhiro Satomi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiology, Tokyo Medical University
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hajime Ohgushi
- National Institute of Advanced Industrial Science and Technology
| | - Soichiro Kitamura
- Department of Transplantation, National Cerebral and Cardiovascular Center
| | - Kenji Kangawa
- Research Institute, National Cerebral and Cardiovascular Center
| | - Hisao Ogawa
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Research Institute, National Cerebral and Cardiovascular Center
| |
Collapse
|
4
|
Xu J, Lian W, Li L, Huang Z. Generation of induced cardiac progenitor cells via somatic reprogramming. Oncotarget 2018; 8:29442-29457. [PMID: 28199972 PMCID: PMC5438743 DOI: 10.18632/oncotarget.15272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that cardiac progenitor cells (CPCs) represent a more effective cell-based therapy for treatment of myocardial infarction. Unfortunately, their therapeutic application is limited by low yield of cell harvesting, declining quality and quantity during the ageing process, and the need for highly invasive heart biopsy. Therefore, there is an emerging interest in generating CPC-like stem cells from somatic cells via somatic reprogramming. This novel approach would provide an unlimited source of stem cells with cardiac differentiation potential. Here we would firstly discuss the different types of CPC and their importance in stem cell therapy for treatment of myocardial infarction; secondly, the necessity of generating induced CPC from somatic cells via somatic reprogramming; and finally the current progress of somatic reprogramming in cardiac cells, especially induced CPC generation.
Collapse
Affiliation(s)
- Jianyong Xu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Wei Lian
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| |
Collapse
|
5
|
Wang Q, Wang H, Li Z, Wang Y, Wu X, Tan Y. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med 2017; 21:1751-1766. [PMID: 28244640 PMCID: PMC5571540 DOI: 10.1111/jcmm.13097] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 01/13/2023] Open
Abstract
Cardiac patch is considered a promising strategy for enhancing stem cell therapy of myocardial infarction (MI). However, the underlying mechanisms for cardiac patch repairing infarcted myocardium remain unclear. In this study, we investigated the mechanisms of PCL/gelatin patch loaded with MSCs on activating endogenous cardiac repair. PCL/gelatin patch was fabricated by electrospun. The patch enhanced the survival of the seeded MSCs and their HIF-1α, Tβ4, VEGF and SDF-1 expression and decreased CXCL14 expression in hypoxic and serum-deprived conditions. In murine MI models, the survival and distribution of the engrafted MSCs and the activation of the epicardium were examined, respectively. At 4 weeks after transplantation of the cell patch, the cardiac functions were significantly improved. The engrafted MSCs migrated across the epicardium and into the myocardium. Tendency of HIF-1α, Tβ4, VEGF, SDF-1 and CXCL14 expression in the infarcted myocardium was similar with expression in vitro. The epicardium was activated and epicardial-derived cells (EPDCs) migrated into deep tissue. The EPDCs differentiated into endothelial cells and smooth muscle cells, and some of EPDCs showed to have differentiated into cardiomyocytes. Density of blood and lymphatic capillaries increased significantly. More c-kit+ cells were recruited into the infarcted myocardium after transplantation of the cell patch. The results suggest that epicardial transplantation of the cell patch promotes repair of the infarcted myocardium and improves cardiac functions by enhancing the survival of the transplanted cells, accelerating locality paracrine, and then activating the epicardium and recruiting endogenous c-kit+ cells. Epicardial transplantation of the cell patch may be applied as a novel effective MI therapy.
Collapse
Affiliation(s)
- Qiang‐li Wang
- Department of Anatomy, Histology and EmbryologyShanghai Medical School of Fudan UniversityShanghaiChina
| | - Hai‐jie Wang
- Department of Anatomy, Histology and EmbryologyShanghai Medical School of Fudan UniversityShanghaiChina
| | - Zhi‐hua Li
- Department of Anatomy, Histology and EmbryologyShanghai Medical School of Fudan UniversityShanghaiChina
| | - Yong‐li Wang
- Department of Anatomy, Histology and EmbryologyShanghai Medical School of Fudan UniversityShanghaiChina
| | - Xue‐ping Wu
- Department of Anatomy, Histology and EmbryologyShanghai Medical School of Fudan UniversityShanghaiChina
| | - Yu‐zhen Tan
- Department of Anatomy, Histology and EmbryologyShanghai Medical School of Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
Combined Analysis of Endothelial, Hematopoietic, and Mesenchymal Stem Cell Compartments Shows Simultaneous but Independent Effects of Age and Heart Disease. Stem Cells Int 2017; 2017:5237634. [PMID: 28819363 PMCID: PMC5551513 DOI: 10.1155/2017/5237634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Clinical trials using stem cell therapy for heart diseases have not reproduced the initial positive results obtained with animal models. This might be explained by a decreased regenerative capacity of stem cells collected from the patients. This work aimed at the simultaneous investigation of endothelial stem/progenitor cells (EPCs), mesenchymal stem/progenitor cells (MSCs), and hematopoietic stem/progenitor cells (HSCs) in sternal bone marrow samples of patients with ischemic or valvular heart disease, using flow cytometry and colony assays. The study included 36 patients referred for coronary artery bypass grafting or valve replacement surgery. A decreased frequency of stem cells was observed in both groups of patients. Left ventricular dysfunction, diabetes, and intermediate risk in EuroSCORE and SYNTAX score were associated with lower EPCs frequency, and the use of aspirin and β-blockers correlated with a higher frequency of HSCs and EPCs, respectively. Most importantly, the distribution of frequencies in the three stem cell compartments showed independent patterns. The combined investigation of the three stem cell compartments in patients with cardiovascular diseases showed that they are independently affected by the disease, suggesting the investigation of prognostic factors that may be used to determine when autologous stem cells may be used in cell therapy.
Collapse
|
7
|
Müller P, Gaebel R, Lemcke H, Wiekhorst F, Hausburg F, Lang C, Zarniko N, Westphal B, Steinhoff G, David R. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS ® purified stem cell products. Biomaterials 2017; 135:74-84. [PMID: 28494265 DOI: 10.1016/j.biomaterials.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Magnetic activated cell sorting (MACS®) is routinely used to isolate stem cell subpopulations intended for the treatment of cardiovascular diseases. In strong contrast, studies examining the amount, effect and intramyocardial distribution of iron nanoparticles used for magnetic cell labelling are missing, although iron excess can cause functional disorders in the heart. METHODS AND RESULTS CD133+ haematopoietic and CD271+ mesenchymal stem cells were purified from bone marrow using automatically and manually MACS® based systems. Flow cytometric measurements demonstrated a rapid loss of MACS® MicroBeads from cells under culture conditions, while storage under hypothermic conditions decelerated their detachment. Moreover, an average loading of ∼11 fg iron/cell caused by magnetic labelling was determined in magnetic particle spectroscopy. Importantly, hemodynamic measurements as well as histological examinations using a myocardial ischemia/reperfusion mouse model showed no influence of MACS® MicroBeads on cardiac regeneration, while the transplantation of stem cells caused a significant improvement. Furthermore, immunostainings demonstrated the clearance of co-injected iron nanoparticles from stem cells and the surrounding heart tissue within 48 h post transplantation. CONCLUSIONS Our results indicate that iron amounts typically co-injected with MACS® purified stem cells do not harm cardiac functions and are cleared from heart tissue within a few hours. Therefore, we conclude that MACS® MicroBeads exhibit a good compatibility in the cardiac environment.
Collapse
Affiliation(s)
- Paula Müller
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Ralf Gaebel
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany.
| | - Frauke Hausburg
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Cajetan Lang
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department of Cardiology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany.
| | - Nicole Zarniko
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| | - Bernd Westphal
- Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany.
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| |
Collapse
|
8
|
Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells Int 2015; 2016:1384658. [PMID: 26839552 PMCID: PMC4709699 DOI: 10.1155/2016/1384658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
Stem cell therapy has attracted increasing attention as a promising treatment strategy for cardiac repair in ischemic heart disease. Nanoparticles (NPs), with their superior physical and chemical properties, have been widely utilized to assist stem cell therapy. With the help of NPs, stem cells can be genetically engineered for enhanced paracrine profile. To further understand the fate and behaviors of stem cells in ischemic myocardium, imaging NPs can label stem cells and be tracked in vivo under multiple modalities. Besides that, NPs can also be used to enhance stem cell retention in myocardium. These facts have raised efforts on the development of more intelligent and multifunctional NPs for cellular application. Herein, an overview of the applications of NPs-assisted stem cell therapy is given. Key issues and future prospects are also critically addressed.
Collapse
|
9
|
Abstract
Myocardial infarction is defined as sudden ischemic death of myocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic occlusion of a coronary vessel caused by rupture of a vulnerable plaque. Ischemia induces profound metabolic and ionic perturbations in the affected myocardium and causes rapid depression of systolic function. Prolonged myocardial ischemia activates a "wavefront" of cardiomyocyte death that extends from the subendocardium to the subepicardium. Mitochondrial alterations are prominently involved in apoptosis and necrosis of cardiomyocytes in the infarcted heart. The adult mammalian heart has negligible regenerative capacity, thus the infarcted myocardium heals through formation of a scar. Infarct healing is dependent on an inflammatory cascade, triggered by alarmins released by dying cells. Clearance of dead cells and matrix debris by infiltrating phagocytes activates anti-inflammatory pathways leading to suppression of cytokine and chemokine signaling. Activation of the renin-angiotensin-aldosterone system and release of transforming growth factor-β induce conversion of fibroblasts into myofibroblasts, promoting deposition of extracellular matrix proteins. Infarct healing is intertwined with geometric remodeling of the chamber, characterized by dilation, hypertrophy of viable segments, and progressive dysfunction. This review manuscript describes the molecular signals and cellular effectors implicated in injury, repair, and remodeling of the infarcted heart, the mechanistic basis of the most common complications associated with myocardial infarction, and the pathophysiologic effects of established treatment strategies. Moreover, we discuss the implications of pathophysiological insights in design and implementation of new promising therapeutic approaches for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
10
|
Li X, Zhao H, Qi C, Zeng Y, Xu F, Du Y. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis. Protein Cell 2015; 6:735-45. [PMID: 26271509 DOI: 10.1007/s13238-015-0196-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023] Open
Abstract
The onset of cardiac fibrosis post myocardial infarction greatly impairs the function of heart. Recent advances of cell transplantation showed great benefits to restore myocardial function, among which the mesenchymal stem cells (MSCs) has gained much attention. However, the underlying cellular mechanisms of MSC therapy are still not fully understood. Although paracrine effects of MSCs on residual cardiomyocytes have been discussed, the amelioration of fibrosis was rarely studied as the hostile environment cannot support the survival of most cell populations and impairs the diffusion of soluble factors. Here in order to decipher the potential mechanism of MSC therapy for cardiac fibrosis, we investigated the interplay between MSCs and cardiac myofibroblasts (mFBs) using interactive co-culture method, with comparison to paracrine approaches, namely treatment by MSC conditioned medium and gap co-culture method. Various fibrotic features of mFBs were analyzed and the most prominent anti-fibrosis effects were always obtained using direct co-culture that allowed cell-to-cell contacts. Hepatocyte growth factor (HGF), a well-known anti-fibrosis factor, was demonstrated to be a major contributor for MSCs' anti-fibrosis function. Moreover, physical contacts and tube-like structures between MSCs and mFBs were observed by live cell imaging and TEM which demonstrate the direct cellular interactions.
Collapse
Affiliation(s)
- Xiaokang Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treament of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Hui Zhao
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treament of Infectious Diseases, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chunxiao Qi
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treament of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yang Zeng
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treament of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treament of Infectious Diseases, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
|
12
|
Keith MCL, Bolli R. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 2015; 116:1216-30. [PMID: 25814683 DOI: 10.1161/circresaha.116.305557] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c-kit(pos) cell administration to ischemically damaged hearts despite the observed paucity of cardiomyogenic differentiation of these cells.
Collapse
Affiliation(s)
- Matthew C L Keith
- From the Division of Cardiovascular Medicine, Department of Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Division of Cardiovascular Medicine, Department of Cardiology, University of Louisville, KY.
| |
Collapse
|
13
|
Madonna R, Ferdinandy P, De Caterina R, Willerson JT, Marian AJ. Recent developments in cardiovascular stem cells. Circ Res 2014; 115:e71-8. [PMID: 25477490 DOI: 10.1161/circresaha.114.305567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rosalinda Madonna
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Peter Ferdinandy
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Raffaele De Caterina
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - James T Willerson
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Ali J Marian
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.).
| |
Collapse
|
14
|
Jansen Of Lorkeers SJ, Eding JEC, Vesterinen HM, van der Spoel TIG, Sena ES, Duckers HJ, Doevendans PA, Macleod MR, Chamuleau SAJ. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 2014; 116:80-6. [PMID: 25186794 DOI: 10.1161/circresaha.116.304872] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE In regenerative therapy for ischemic heart disease, use of both autologous and allogeneic stem cells has been investigated. Autologous cell can be applied without immunosuppression, but availability is restricted, and cells have been exposed to risk factors and aging. Allogeneic cell therapy enables preoperative production of potent cell lines and immediate availability of cell products, allowing off-the-shelf therapy. It is unknown which cell source is preferred with regard to improving cardiac function. OBJECTIVE We performed a meta-analysis of preclinical data of cell therapy for ischemic heart disease. METHODS AND RESULTS We conducted a systematic literature search to identify publications describing controlled preclinical trials of unmodified stem cell therapy in large animal models of myocardial ischemia. Data from 82 studies involving 1415 animals showed a significant improvement in mean left ventricular ejection fraction in treated compared with control animals (8.3%, 95% confidence interval, 7.1-9.5; P<0.001). Meta-regression revealed a similar difference in left ventricular ejection fraction in autologous (8.8%, 95% confidence interval, 7.3-10.3; n=981) and allogeneic (7.3%, 95% confidence interval, 4.4-10.2, n=331; P=0.3) cell therapies. CONCLUSIONS Autologous and allogeneic cell therapy for ischemic heart disease show a similar improvement in left ventricular ejection fraction in large animal models of myocardial ischemia, compared with placebo. These results are important for the design of future clinical trials.
Collapse
Affiliation(s)
- Sanne Johanna Jansen Of Lorkeers
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Joep Egbert Coenraad Eding
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Hanna Mikaela Vesterinen
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Tycho Ids Gijsbert van der Spoel
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Emily Shamiso Sena
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Henricus Johannes Duckers
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Pieter Adrianus Doevendans
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Malcolm Robert Macleod
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.)
| | - Steven Anton Jozef Chamuleau
- From the Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (S.J.J.o.L., J.E.C.E., T.I.G.v.d.S., H.J.D., P.A.D., S.A.J.C.); and Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (H.M.V., E.S.S., M.R.M.).
| |
Collapse
|
15
|
Huang CC, Liao ZX, Chen DY, Hsiao CW, Chang Y, Sung HW. Injectable cell constructs fabricated via culture on a thermoresponsive methylcellulose hydrogel system for the treatment of ischemic diseases. Adv Healthc Mater 2014; 3:1133-48. [PMID: 24470263 DOI: 10.1002/adhm.201300605] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/06/2013] [Indexed: 01/06/2023]
Abstract
Cell transplantation via direct intramuscular injection is a promising therapy for patients with ischemic diseases. However, following injections, retention of transplanted cells in engrafted areas remains problematic, and can be deleterious to cell-transplantation therapy. In this Progress Report, a thermoresponsive hydrogel system composed of aqueous methylcellulose (MC) blended with phosphate-buffered saline is constructed to grow cell sheet fragments and cell bodies for the treatment of ischemic diseases. The as-prepared MC hydrogel system undergoes a sol-gel reversible transition upon heating or cooling at ≈32 °C. Via this unique property, the grown cell sheet fragments (cell bodies) can be harvested without using proteolytic enzymes; consequently, their inherent extracellular matrices (ECMs) and integrative adhesive agents remain well preserved. In animal studies using rats and pigs with experimentally created myocardial infarction, the injected cell sheet fragments (cell bodies) become entrapped in the interstices of muscular tissues and adhere to engraftment sites, while a minimal number of cells exist in the group receiving dissociated cells. Moreover, transplantation of cell sheet fragments (cell bodies) significantly increases vascular density, thereby improving the function of an infarcted heart. These experimental results demonstrate that cell sheet fragments (cell bodies) function as a cell-delivery construct by providing a favorable ECM environment to retain transplanted cells locally and consequently, improving the efficacy of therapeutic cell transplantation.
Collapse
Affiliation(s)
- Chieh-Cheng Huang
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Zi-Xian Liao
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Ding-Yuan Chen
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Chun-Wen Hsiao
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Yen Chang
- Division of Cardiovascular Surgery; Veterans General Hospital at Taichung; Taichung 40705 Taiwan (ROC)
- College of Medicine, National Yang-Ming University; Taipei 11221 Taiwan (ROC)
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| |
Collapse
|
16
|
Endomyocardial Implantation of Autologous Bone Marrow Mononuclear Cells in Advanced Ischemic Heart Failure: a Randomized Placebo-Controlled Trial (END-HF). J Cardiovasc Transl Res 2014; 7:545-52. [DOI: 10.1007/s12265-014-9580-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/22/2014] [Indexed: 01/10/2023]
|
17
|
de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ. Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv 2014; 7:156-67. [PMID: 24668227 DOI: 10.1161/circinterventions.113.001009] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Several cell-based therapies for adjunctive treatment of acute myocardial infarction have been investigated in multiple clinical trials, but the benefits still remain controversial. This meta-analysis aims to evaluate the efficacy of bone marrow-derived mononuclear cell (BMMNC) therapy in patients with acute myocardial infarction, but also explores the effect of newer generations of stem cells. METHODS AND RESULTS A random-effects meta-analysis was performed on randomized controlled trials investigating the effects of stem cell therapy in patients with acute myocardial infarction that were published between January 2002 and September 2013. The defined end points were left ventricular (LV) ejection fraction, LV end-systolic and end-diastolic volumes, infarct size, and major adverse cardiac and cerebrovascular event rates. Also, several subgroup analyses were performed on BMMNC trials. Overall, combining the results of 22 randomized controlled trials (RCTs), LV ejection fraction increased by +2.10% (95% confidence interval [CI], 0.68-3.52; P=0.004) in the BMMNC group as compared with controls, evoked by a preservation of LV end-systolic volume (-4.05 mL; 95% CI, -6.91 to -1.18; P=0.006) and a reduction in infarct size (-2.69%; 95% CI, -4.83 to -0.56; P=0.01). However, there is no effect on cardiac function, volumes, or infarct size, when only RCTs (n=9) that used MRI-derived end points were analyzed. Moreover, no beneficial effect could be detected on major adverse cardiac and cerebrovascular event rates after BMMNC infusion after a median follow-up duration of 6 months. CONCLUSIONS Intracoronary infusion of BMMNC is safe, but does not enhance cardiac function on MRI-derived parameters, nor does it improve clinical outcome. New and possibly more potent stem cells are emerging in the field, but their clinical efficacy still needs to be defined in future trials.
Collapse
Affiliation(s)
- Renate de Jong
- From the Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.d.J., J.H.H., S.S., E.B.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (H.J.D.)
| | | | | | | | | |
Collapse
|
18
|
Endoh M. Amrinone, forerunner of novel cardiotonic agents, caused paradigm shift of heart failure pharmacotherapy. Circ Res 2014; 113:358-61. [PMID: 23908328 DOI: 10.1161/circresaha.113.301689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masao Endoh
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata, Japan.
| |
Collapse
|
19
|
Liao SY, Tse HF. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons? Stem Cell Res Ther 2013; 4:151. [PMID: 24476362 PMCID: PMC4056686 DOI: 10.1186/scrt381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.
Collapse
|
20
|
The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. Biomaterials 2013; 35:92-104. [PMID: 24099712 DOI: 10.1016/j.biomaterials.2013.09.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/17/2013] [Indexed: 01/10/2023]
Abstract
Despite the enormous progress in the treatment of coronary artery diseases, they remain the most common cause of heart failure in the Western countries. New translational therapeutic approaches explore cardiomyogenic differentiation of various types of stem cells in combination with tissue-engineered scaffolds. In this study we fabricated PHBHV/gelatin constructs mimicking myocardial structural properties. Chemical structure and molecular interaction between material components induced specific properties to the substrate in terms of hydrophilicity degree, porosity and mechanical characteristics. Viability and proliferation assays demonstrated that these constructs allow adhesion and growth of mesenchymal stem cells (MSCs) and cardiac resident non myocytic cells (NMCs). Immunofluorescence analysis demonstrated that stem cells cultured on these constructs adopt a distribution mimicking the three-dimensional cell alignment of myocardium. qPCR and immunofluorescence analyses showed the ability of this construct to direct initial MSC and NMC lineage specification towards cardiomyogenesis: both MSCs and NMCs showed the expression of the cardiac transcription factor GATA-4, fundamental for early cardiac commitment. Moreover NMCs also acquired the expression of the cardiac transcription factors Nkx2.5 and TBX5 and produced sarcomeric proteins. This work may represent a new approach to induce both resident and non-resident stem cells to cardiac commitment in a 3-D structure, without using additional stimuli.
Collapse
|
21
|
Saparov A, Chen CW, Beckman SA, Wang Y, Huard J. The role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair. Int J Mol Sci 2013; 14:16258-79. [PMID: 23924945 PMCID: PMC3759910 DOI: 10.3390/ijms140816258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation play major roles in the pathogenesis of coronary heart disease including myocardial infarction (MI). The pathological progression following MI is very complex and involves a number of cell populations including cells localized within the heart, as well as cells recruited from the circulation and other tissues that participate in inflammatory and reparative processes. These cells, with their secretory factors, have pleiotropic effects that depend on the stage of inflammation and regeneration. Excessive inflammation leads to enlargement of the infarction site, pathological remodeling and eventually, heart dysfunction. Stem cell therapy represents a unique and innovative approach to ameliorate oxidative stress and inflammation caused by ischemic heart disease. Consequently, it is crucial to understand the crosstalk between stem cells and other cells involved in post-MI cardiac tissue repair, especially immune cells, in order to harness the beneficial effects of the immune response following MI and further improve stem cell-mediated cardiac regeneration. This paper reviews the recent findings on the role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair following ischemic heart disease, particularly acute MI and focuses specifically on mesenchymal, muscle and blood-vessel-derived stem cells due to their antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
- Arman Saparov
- Nazarbayev University Research and Innovation System, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; E-Mails: (C.-W.C.); (S.A.B.)
- Authors to whom correspondence should be addressed; E-Mails: (A.S.); (J.H.); Tel.: +7-717-270-6140 (A.S.); +1-412-648-2798 (J.H.); Fax: +7-717-270-6054 (A.S.); +1-412-648-4066 (J.H.)
| | - Chien-Wen Chen
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; E-Mails: (C.-W.C.); (S.A.B.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; E-Mail:
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sarah A. Beckman
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; E-Mails: (C.-W.C.); (S.A.B.)
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; E-Mail:
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; E-Mail:
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; E-Mails: (C.-W.C.); (S.A.B.)
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Authors to whom correspondence should be addressed; E-Mails: (A.S.); (J.H.); Tel.: +7-717-270-6140 (A.S.); +1-412-648-2798 (J.H.); Fax: +7-717-270-6054 (A.S.); +1-412-648-4066 (J.H.)
| |
Collapse
|