1
|
Beckham J, Kim YJ, Vargas Paniagua E, Kent N, Nagao K, Selvaraji S, Koehler F, Malkin E, Smith X, Tabet A, Kang S, Anikeeva P. Magnetite Nanodiscs Activate Mechanotransductive Calcium Signaling in Diverse Cell Types. J Am Chem Soc 2025; 147:13303-13314. [PMID: 40215485 PMCID: PMC12024462 DOI: 10.1021/jacs.4c18227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Remote magnetomechanical stimulation using magnetic nanomaterials has emerged as a robust and minimally invasive technique for modulating neuronal activity. However, despite the presence of machinery to convert mechanical force into biochemical signals in many types of cells, magnetomechanical stimulation of non-neuronal tissue remains largely unexplored. Here, we demonstrate that in the presence of weak magnetic fields (12-56 mT) with frequencies 5-125 Hz, magnetite nanodiscs (MNDs) activate ubiquitous mechano-sensitive calcium signaling pathways, including transmembrane calcium entry, the release of intracellular calcium reserves, and store-operated calcium signaling. MNDs mediate calcium transients in cells with disparate calcium signaling machinery, such as cardiomyocytes and hippocampal astrocytes. The characteristics of these calcium responses depend on the protein machinery available in each cell type. These findings expand the reach of cellular modulation strategies using magnetic nanoparticles to non-neuronal cells and thereby open new applications probing endocrine, immune, and circulatory functions and related disorders with remote magnetic approaches.
Collapse
Affiliation(s)
- Jacob
L. Beckham
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ye Ji Kim
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emmanuel Vargas Paniagua
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Noah Kent
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Keisuke Nagao
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sharmelee Selvaraji
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Florian Koehler
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elian Malkin
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xavier Smith
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony Tabet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sehoon Kang
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Yang S, Pu J, Yu J, Wang H, Wu Y, Lu Y, Zhao N, Wu Q, Dong Q, Du Y. TRPV4 inhibition suppresses myocardial ischemia-reperfusion arrhythmia of mice by alleviating calcium handling abnormalities. Heart Rhythm 2025:S1547-5271(25)02313-6. [PMID: 40246044 DOI: 10.1016/j.hrthm.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Transient receptor potential vanilloid 4 (TRPV4), a calcium (Ca2+) permeable channel, is upregulated during myocardial ischemia-reperfusion (IR). Although TRPV4 inhibition has cardioprotective effects, its impact on arrhythmogenesis remains unclear. OBJECTIVE This study aimed to evaluate the antiarrhythmic effects of TRPV4 inhibition, using the TRPV4 antagonist GSK2193874 (GSK219) and TRPV4 knockout (TRPV4-/-) mice, after IR. METHODS Surface electrocardiogram and optical mapping recordings were performed during 15 minutes of global ischemia and 10 minutes of reperfusion in Langendorff perfused mouse hearts. Ca2+ sparks were detected by confocal microscopy, and protein expression was analyzed by Western blot. RESULTS GSK219 or TRPV4 deletion significantly decreased the incidence and duration of ventricular tachycardia during reperfusion. TRPV4 inhibition shortened Ca2+ transient (CaT) recovery, suppressed CaT alternans, and decreased Ca2+ leak without affecting IR-induced prolongation of action potential duration (APD) and APD alternations. Activation of TRPV4 by GSK101790A (GSK101) increased arrhythmia susceptibility and Ca2+ leak. Moreover, GSK101 prolonged CaT recovery and promoted CaT alternans, which were greatly avoided by pretreatment with Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor. Interestingly, IR or GSK101 markedly increased the phosphorylation of CaMKII, ryanodine receptors, and phospholamban, which was significantly blocked by TRPV4 inhibition. CONCLUSION TRPV4 inhibition exerts antiarrhythmic effects after IR by modulating CaMKII-dependent Ca2+ handling abnormalities, reducing CaT alternans and Ca2+ leak, without affecting APD.
Collapse
Affiliation(s)
- Shuaitao Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Jiu Pu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Jinfang Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Yuwei Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China.
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
3
|
Sato D, Hegyi B, Ripplinger CM, Bers DM. Dynamical instability is a major cause of cardiac action potential variability. Biophys J 2025; 124:1042-1048. [PMID: 39943687 PMCID: PMC11993915 DOI: 10.1016/j.bpj.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
Increased beat-to-beat QT interval variability (QTV) in the electrocardiogram is strongly associated with ventricular arrhythmias and sudden cardiac death, yet its origins remain poorly understood. While heart rate variability decreases with deteriorating cardiac health, QTV increases, suggesting distinct underlying mechanisms. The stochastic nature of ion channel gating is a potential source of cardiac variability. However, the law of large numbers suggests that, with billions of channels in the heart, this stochasticity should be minimized. In this study, we tested the hypothesis that dynamical instability amplifies stochastic ion channel fluctuations, leading to increased action potential (AP) variability. Using a mathematical model of ventricular myocytes, we investigated the relationship between AP variability and voltage instability. Our results demonstrate that stochastic gating alone cannot cause large AP variability, but dynamical instability significantly amplifies this variability. We found a positive correlation between voltage instability, indicated by the slope of the AP duration restitution curve, and AP duration variability. Notably, the largest variability occurred at the onset of alternans when considering every other beat. These findings provide a mechanistic explanation for increased QTV in pathological conditions and suggest that measuring QTV using every other beat may predict the onset of alternans and severity of alternans. Our study highlights the critical role of dynamical instability in cardiac electrical variability and offers new insights into the mechanisms underlying arrhythmogenesis.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California, Davis, Davis, California.
| | - Bence Hegyi
- Department of Pharmacology, University of California, Davis, Davis, California
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, California
| |
Collapse
|
4
|
Tomek J, Zhou X, Martinez-Navarro H, Holmes M, Bury T, Berg LA, Tomkova M, Jo E, Nagy N, Bertrand A, Bueno-Orovio A, Colman M, Rodriguez B, Bers D, Heijma J. T-World: A highly general computational model of a human ventricular myocyte. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645031. [PMID: 40196542 PMCID: PMC11974879 DOI: 10.1101/2025.03.24.645031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cardiovascular disease is the leading cause of death, demanding new tools to improve mechanistic understanding and overcome limitations of stem cell and animal-based research. We introduce T-World, a highly general virtual model of human ventricular cardiomyocyte suitable for multiscale studies. T-World shows comprehensive agreement with human physiology, from electrical activation to contraction, and is the first to replicate all key cellular mechanisms driving life-threatening arrhythmias. Extensively validated on unseen data, it demonstrates strong predictivity across applications and scales. Using T-World we revealed a likely sex-specific arrhythmia risk in females related to restitution properties, identified arrhythmia drivers in type 2 diabetes, and describe unexpected pro-arrhythmic role of NaV1.8 in heart failure. T-World demonstrates strong performance in predicting drug-induced arrhythmia risk and opens new opportunities for predicting and explaining drug efficacy, demonstrated by unpicking effects of mexiletine in Long QT syndrome 2. T-World is available as open-source code and an online app.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Anatomy, Physiology and Genetics (University of Oxford)
- Department of Pharmacology (UC Davis)
| | - Xin Zhou
- Department of Computer Science (University of Oxford)
| | | | - Maxx Holmes
- Department of Computer Science (University of Oxford)
| | - Thomas Bury
- Department of Physiology (McGill University)
| | | | | | - Emily Jo
- Department of Anatomy, Physiology and Genetics (University of Oxford)
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy (University of Szeged)
| | | | | | | | | | | | - Jordi Heijma
- Medical Physics and Biophysics (Medical University of Graz)
| |
Collapse
|
5
|
Lv T, Li S, Li Q, Meng L, Yang J, Liu L, Lv C, Zhang P. The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms. J Cardiovasc Electrophysiol 2025; 36:683-692. [PMID: 39803791 DOI: 10.1111/jce.16569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 01/01/2025] [Indexed: 03/14/2025]
Abstract
Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF). Additionally, RyR2 mutations have been associated with multiple genetic cardiomyopathies, such as left ventricular non-compaction cardiomyopathy (LVNC), arrhythmogenic right ventricular cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Through various cell and animal models, researchers have developed mutant RyR2 models demonstrated that these mutations often lead to calcium dysregulation, typically resulting in either a gain or loss of function. This comprehensive review delves into the current understanding of RyR2 mutations and their impact on cardiac electrophysiology, focusing on the molecular mechanisms linking these mutations to arrhythmias and cardiomyopathies-an essential step in advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qing Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lianfeng Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changhua Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Shen J, Liang J, Yuan P, Sun H, Rejiepu M, Guo F, Zhou X, Liu H, Zhang L, Tang B. Melatonin lessens the susceptibility to atrial fibrillation in sleep deprivation by ameliorating Ca 2+ mishandling in response to mitochondrial oxidative stress. Int Immunopharmacol 2025; 148:114093. [PMID: 39842139 DOI: 10.1016/j.intimp.2025.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND The antiarrhythmic effect of melatonin(MLT) has been demonstrated in several studies; however, this hypothesis has recently been contested. Our research seeks to determine if exogenous MLT supplementation can reduce atrial fibrillation (AF) susceptibility due to sleep deprivation (SD) by addressing Ca2+ mishandling and atrial mitochondrial oxidative stress. METHODS Adult rats received daily MLT or vehicle injections and were exposed to a modified water tank. We evaluated MLT's impact on AF susceptibility by analyzing atrial electrical and structural changes, calcium handling, and oxidative stress markers. Techniques used included electrophysiological recording, echocardiography, optical mapping, histopathology, and molecular assays to understand MLT's protective effects against sleep deprivation-induced AF. RESULTS Our findings indicate that MLT treatment effectively mitigates SD-induced AF, safeguards against atrial structural alterations, diminishes mitochondrial oxidative stress and normalizes calcium dynamics. Notably, MLT corrected calcium transient duration (CaD), action potential duration (APD), and conduction heterogeneity, shortened calcium transient refractoriness, and improved arrhythmogenic atrial alternans and spatially discordant alternans, thereby lowering the arrhythmogenic potential of the atria during sleep deprivation. In terms of mechanisms, MLT prevents SD-induced activation of ROS/CaMKII in atrial cardiomyocytes, reversing calcium transient refractoriness and inhibiting arrhythmogenic alternans. CONCLUSIONS MLT significantly decreases the susceptibility to SD-induced AF by ameliorating mitochondrial oxidative stress and Ca2+ mishandling. These findings suggest a potential therapeutic application of MLT as an antiarrhythmic intervention for SD-related AF and underscore the need for further investigation, including clinical studies, to validate these mechanisms.
Collapse
Affiliation(s)
- Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Junqing Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Ping Yuan
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huaxin Sun
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manzeremu Rejiepu
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Fei Guo
- Department of Cardiology, The First Afffliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaolin Zhou
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
7
|
Hinata Y, Sasaki D, Matsuura K, Shimizu T. Induction of cardiac alternans in human iPS-derived cardiomyocytes through β-adrenergic receptor stimulation. Physiol Rep 2024; 12:e70152. [PMID: 39715724 DOI: 10.14814/phy2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac alternans (C-ALT) is a phenomenon of alternating strong and weak contractions in the heart and is considered a risk factor for the development of heart failure and arrhythmias. However, no model has been reported that can induce C-ALT in vitro using human cells, and the developmental mechanism of C-ALT has not been studied using human cells. In this study, we successfully induced C-ALT in vitro using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). By stimulating β-adrenergic receptor with isoproterenol on hiPSC-CMs cultured in atmospheric condition (with ~0.04% CO2), contractility and calcium transient were observed to alternately increase and decrease with each beat. In contrast, C-ALT was not induced in hiPSC-CMs cultured at 5% CO2 concentration. Since previous studies have linked C-ALT to problems with calcium regulation in the sarcoplasmic reticulum (SR), we exposed hiPSC-CMs to compounds that alter SR Ca2+ loading and analyzed their contractile responses. The results showed that exposure to verapamil, thapsigargin, and ryanodine either suppressed or eliminated C-ALT. In contrast, omecamtiv mecarbil and blebbistatin, which alter contractility without SR Ca2+ loading, did not induce or suppress C-ALT. These results suggest that C-ALT in hiPSC-CMs induced by isoproterenol may be due to abnormal regulation of the ryanodine receptor's opening and closing caused by excessive Ca2+ load in the SR from β-adrenergic receptor stimulation.
Collapse
Affiliation(s)
- Yuto Hinata
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, Shinjuku-ku, Tokyo, Japan
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Scalco A, Lee EN, Johnson MA, Sorensen ML, Hilton TN, Omonaka RK, Zeimantz S, Aicher SA, Woodward WR, Habecker BA. Hypertension-induced heart failure disrupts cardiac sympathetic innervation. Am J Physiol Heart Circ Physiol 2024; 327:H1544-H1558. [PMID: 39485300 PMCID: PMC11684885 DOI: 10.1152/ajpheart.00380.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
About 26 million people worldwide live with heart failure (HF), and hypertension is the primary cause in 25% of these cases. Autonomic dysfunction and sympathetic hyperactivity accompany cardiovascular diseases, including HF. However, changes in cardiac sympathetic innervation in HF are not well understood. We hypothesized that cardiac sympathetic innervation is disrupted in hypertension-induced HF. Male and female C57BL6/J mice were infused with angiotensin II (ANG II) for 4 wk to generate hypertension leading to HF; controls were infused with saline. ANG II-treated mice displayed HF phenotype, including reduced cardiac function, hypertrophy, and fibrosis. ANG II-treated mice also had significantly reduced sympathetic nerve density in the left ventricle, intraventricular septum, and right ventricle. In the left ventricle, the subepicardium remained normally innervated, whereas the subendocardium was almost devoid of sympathetic nerves. Loss of sympathetic fibers led to loss of norepinephrine content in the left ventricle. Several potential triggers for axon degeneration were tested and ruled out. ANG II-treated mice had increased premature ventricular contractions after isoproterenol and caffeine injection. Although HF can induce a cholinergic phenotype and neuronal hypertrophy in stellate ganglia, ANG II treatment did not induce a cholinergic phenotype or activation of trophic factors in this study. Cardiac neurons in the left stellate ganglion were significantly smaller in ANG II-treated mice, whereas neurons in the right stellate were unchanged. Our findings show that ANG II-induced HF disrupts sympathetic innervation, particularly in the left ventricle. Further investigations are imperative to unveil the mechanisms of denervation in HF and to develop neuromodulatory therapies for patients with autonomic imbalance.NEW & NOTEWORTHY Angiotensin II (ANG II)-induced hypertension leads to a heart failure phenotype and cardiac sympathetic denervation with the endocardial region of the left ventricle being the most affected. Denervation is accompanied by loss of norepinephrine content in the left ventricle and increased premature ventricular contractions (PVCs) after isoproterenol and caffeine injection. ANG II treatment also causes morphological changes in cardiac-projecting left stellate ganglion neurons.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Ethan N Lee
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Biology, Pomona College, Claremont, California, United States
| | - Morgan A Johnson
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Michelle L Sorensen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Thomas N Hilton
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Riley K Omonaka
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Biology, Linfield University, McMinnville, Oregon, United States
| | - Shae Zeimantz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
9
|
Su Y, Liang Y, Xu M, Gao B, Zhang S, Yang E, Yin S, Li D, Huang Z, Xie W. Modeling sarcoplasmic reticulum Ca 2+ in rat cardiomyocytes. BIOPHYSICS REPORTS 2024; 10:328-335. [PMID: 39539287 PMCID: PMC11554579 DOI: 10.52601/bpr.2024.240012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Abstract
The sarcoplasmic reticulum (SR) primarily serves as the intracellular Ca2+ store in cardiac myocytes, mediating cellular function under cardiac physiology and diseases. However, the properties of cardiac SR Ca2+ have not yet been fully determined, particularly in rats and mice, which are the most commonly used experimental species in studies on cardiac physiology and diseases. Here, we developed a spatially detailed numerical model to deduce Ca2+ movements inside the junctional SR (jSR) cisternae of rat cardiomyocytes. Our model accurately reproduced the jSR Ca2+ kinetics of local and global SR Ca2+ releases reported in a recent experimental study. With this model, we revealed that jSR Ca2+ kinetics was mostly determined by the total release flux via type 2 ryanodine receptor (RyR2) channels but not by RyR2 positioning. Although Ca2+ diffusion in global SR was previously reported to be slow, our simulation demonstrated that Ca2+ diffused very quickly inside local jSR cisternae and the decrease in the diffusion coefficient resulted in a significant reduction of jSR Ca2+ depletion amplitude. Intracellular Ca2+ was typically experimentally detected with fluorescence dye. Our simulation revealed that when the dynamical characteristics of fluorescence dye exerted a minimal effect on actual Ca2+ mobility inside jSR, the reaction rate of the dye with Ca2+ could significantly affect apparent jSR Ca2+ kinetics. Therefore, loading a chemical fluorescence dye with fast kinetics, such as Fluo-5N, into SR is important for Ca2+ measurement inside SR. Overall, our model provides new insights into deciphering Ca2+ handling inside nanoscopic jSR cisternae in rat cardiomyocytes.
Collapse
Affiliation(s)
- Yutong Su
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Yongshen Liang
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Menghao Xu
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Beibei Gao
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Siyuan Zhang
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Eric Yang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| | - Shuai Yin
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Da Li
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Zhangqin Huang
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Wenjun Xie
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
10
|
Liang Y, Wang G, Fan S, Zhang J, He S, Pan G, Hao G, Zhu Y. Brain-to-heart cholinergic synapse-calcium signaling mediates ischemic stroke-induced atrial fibrillation. Theranostics 2024; 14:6625-6651. [PMID: 39479451 PMCID: PMC11519791 DOI: 10.7150/thno.99065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Stroke-related cardiovascular diseases have attracted considerable attention, with atrial fibrillation (AF) being among the most frequent complications. Despite increasing clinical evidence, experimental models of stroke-induced AF are still lacking, hindering mechanistic discoveries and the development of adequate therapeutics targeting this stroke-heart syndrome (SHS). This study aims to create a rat model of ischemic stroke-induced AF (ISIAF) and to explore the efficacy and mechanism of Wenxin Keli (WK), an antiarrhythmic Chinese medicine. Method: The middle cerebral artery occlusion/reperfusion model was adapted to create subacute brain ischemia in rats with normal cardiac function. Invasive electrophysiologic studies and ex vivo optical mapping were performed to evaluate the altered electrophysiological parameters and Ca2+ handling properties. RNA-seq analysis, RT-PCR, and immunohistochemistry (IHC) with immunofluorescence (IF) were employed to assess the SHS model and elucidate the mechanisms of ISIAF and the effects of WK. UPLC/Q-TOF-MS, molecular docking, and whole-cell patch recordings were used to identify the active components of WK for SHS. Results: Ischemic stroke aggravated atrial electrical instability, altered action potential duration (APD), Ca2+ transient duration (CaT), conduction heterogeneity, and spatially discordant alternans in SHS rat hearts. These abnormalities were alleviated by WK. RNA-seq analysis revealed that M3-mediated cholinergic synapse signaling and L-type calcium channel (LTCCs)-mediated Ca2+ signaling play prominent roles in ISIAF development and its reversal by WK. UPLC/Q-TOF-MS analysis identified 19 WK components as the main components in plasma after WK treatment. Molecular docking screening identified Dioscin as the major active component of WK. WK and Dioscin reduced ICa-L in a concentration-dependent manner with a half-maximal inhibitory concentration of 24.254 ± 2.051 mg/mL and 8.666 ± 0.777 µmol/L, respectively. Conclusion: This study established an experimental model of ISIAF capable of characterizing clinically relevant atrial electrophysiological changes post-cerebral ischemia. Molecular mechanistic studies revealed that the cholinergic-calcium signaling pathway is central to this brain-heart syndrome. Ischemic stroke-induced atrial fibrillation is partially reversible by the Chinese medicine Wenxin Keli, which acts via regulation of the cholinergic-calcium signaling pathway, with its active component Dioscin directly binding to IKM3 and inhibiting ICa-L.
Collapse
Affiliation(s)
- Yingran Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Gongxin Wang
- Henan Academy of Innovations in Medical Science, Institute of Electrophysiology, Zhengzhou 450000, China
- Henan SCOPE Research Institute of Electrophysiology, Kaifeng 475000, China
| | - Siwen Fan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Junyi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Guoliang Hao
- Henan Academy of Innovations in Medical Science, Institute of Electrophysiology, Zhengzhou 450000, China
- Henan SCOPE Research Institute of Electrophysiology, Kaifeng 475000, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
11
|
Erhardt J, Ludwig S, Brock J, Hörning M. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1443156. [PMID: 39381499 PMCID: PMC11458432 DOI: 10.3389/fnetp.2024.1443156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( E ≃ 12 kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.
Collapse
Affiliation(s)
| | | | | | - Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Guevara A, Smith CER, Caldwell JL, Ngo L, Mott LR, Lee IJ, Tapa S, Wang Z, Wang L, Woodward WR, Ng GA, Habecker BA, Ripplinger CM. Chronic nicotine exposure is associated with electrophysiological and sympathetic remodeling in the intact rabbit heart. Am J Physiol Heart Circ Physiol 2024; 326:H1337-H1349. [PMID: 38551482 PMCID: PMC11381014 DOI: 10.1152/ajpheart.00749.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and β-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in β-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished β-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.
Collapse
Affiliation(s)
- Amanda Guevara
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Charlotte E R Smith
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Jessica L Caldwell
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Lena Ngo
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Lilian R Mott
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - I-Ju Lee
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Srinivas Tapa
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Zhen Wang
- Department of Pharmacology, University of California Davis, Davis, California, United States
- Shantou University Medical College, Shantou, People's Republic of China
| | - Lianguo Wang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - G Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research, Leicester Biomedical Research Centre, Leicester, United Kingdom
- Glenfield Hospital, Leicester, United Kingdom
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
13
|
Gondal MUR, Mehmood RS, Khan RP, Malik J. Atrial myopathy. Curr Probl Cardiol 2024; 49:102381. [PMID: 38191102 DOI: 10.1016/j.cpcardiol.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
This paper delves into the progressive concept of atrial myopathy, shedding light on its development and its impact on atrial characteristics. It extensively explores the intricate connections between atrial myopathy, atrial fibrillation (AF), and strokes. Researchers have sought additional contributors to AF-related strokes due to the absence of a clear timing correlation between paroxysmal AF episodes and strokes in patients with cardiac implantable electronic devices. Through various animal models and human investigations, a close interrelation among aging, inflammation, oxidative stress, and stretching mechanisms has been identified. These mechanisms contribute to fibrosis, alterations in electrical properties, autonomic remodeling, and a heightened pro-thrombotic state. These interconnected factors establish a detrimental cycle, exacerbating atrial myopathy and elevating the risk of sustained AF and strokes. By emphasizing the significance of atrial myopathy and the risk of strokes that are distinct from AF, the paper also discusses methods for identifying patients with atrial myopathy. Moreover, it proposes an approach to incorporate the concept of atrial myopathy into clinical practice to guide anticoagulation decisions in individuals with AF.
Collapse
Affiliation(s)
| | - Raja Sadam Mehmood
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | | | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
14
|
Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. Europace 2024; 26:euae017. [PMID: 38227822 PMCID: PMC10847904 DOI: 10.1093/europace/euae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Olivia Baines
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Rina Sha
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Manish Kalla
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Cardiology, Northwestern University, Evanston, IL, USA
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Guevara A, Smith CER, Caldwell JL, Ngo L, Mott LR, Lee IJ, Tapa I, Wang Z, Wang L, Woodward WR, Ng GA, Habecker BA, Ripplinger CM. Chronic nicotine exposure is associated with electrophysiological and sympathetic remodeling in the intact rabbit heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.567754. [PMID: 38045290 PMCID: PMC10690259 DOI: 10.1101/2023.11.23.567754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nicotine is the primary addictive component in tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. However, the underlying mechanisms are unclear. To address this, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days prior to performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca 2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the 1 st - 3 rd thoracic vertebrae, and β-adrenergic responsiveness was additionally evaluated as changes in heart rate (HR) following norepinephrine (NE) perfusion. Baseline ex vivo HR and SNS stimulation threshold were increased in NIC vs. CT ( P = 0.004 and P = 0.003 respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC vs. CT at baseline ( P = 0.002) and during SNS ( P = 0.0003), with similar results obtained for Ca 2+ transient alternans. SNS reduced the PCL at which alternans emerged in CT but not NIC hearts. NIC exposed hearts also tended to have slower and reduced HR responses to NE perfusion. While fibrosis was unaltered, NIC hearts had lower sympathetic nerve density ( P = 0.03) but no difference in NE content vs. CT. These results suggest both sympathetic hypo-innervation of the myocardium and diminished β-adrenergic responsiveness with NIC. This autonomic remodeling may underlie the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with continued long-term usage. NEW & NOTEWORTHY Here we show that chronic nicotine exposure was associated with increased heart rate, lower threshold for alternans and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to the sympathetic hypo-innervation of the myocardium and diminished β- adrenergic responsiveness observed following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this pro-arrhythmic remodeling.
Collapse
|
16
|
Alvarez JAE, Jafri MS, Ullah A. Local Control Model of a Human Ventricular Myocyte: An Exploration of Frequency-Dependent Changes and Calcium Sparks. Biomolecules 2023; 13:1259. [PMID: 37627324 PMCID: PMC10452762 DOI: 10.3390/biom13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium (Ca2+) sparks are the elementary events of excitation-contraction coupling, yet they are not explicitly represented in human ventricular myocyte models. A stochastic ventricular cardiomyocyte human model that adapts to intracellular Ca2+ ([Ca2+]i) dynamics, spark regulation, and frequency-dependent changes in the form of locally controlled Ca2+ release was developed. The 20,000 CRUs in this model are composed of 9 individual LCCs and 49 RyRs that function as couplons. The simulated action potential duration at 1 Hz steady-state pacing is ~0.280 s similar to human ventricular cell recordings. Rate-dependence experiments reveal that APD shortening mechanisms are largely contributed by the L-type calcium channel inactivation, RyR open fraction, and [Ca2+]myo concentrations. The dynamic slow-rapid-slow pacing protocol shows that RyR open probability during high pacing frequency (2.5 Hz) switches to an adapted "nonconducting" form of Ca2+-dependent transition state. The predicted force was also observed to be increased in high pacing, but the SR Ca2+ fractional release was lower due to the smaller difference between diastolic and systolic [Ca2+]SR. Restitution analysis through the S1S2 protocol and increased LCC Ca2+-dependent activation rate show that the duration of LCC opening helps modulate its effects on the APD restitution at different diastolic intervals. Ultimately, a longer duration of calcium sparks was observed in relation to the SR Ca2+ loading at high pacing rates. Overall, this study demonstrates the spontaneous Ca2+ release events and ion channel responses throughout various stimuli.
Collapse
Affiliation(s)
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
17
|
Enríquez-Vázquez D, Quintanilla JG, García-Escolano A, Couselo-Seijas M, Simón-Chica A, Lee P, Alfonso-Almazán JM, Mahía P, Redondo-Rodríguez A, Modrego J, Ortega-Hernández A, Marcos-Alberca P, Magni R, Calvo E, Gómez-Gordo R, Yan P, La Rosa G, Bustamante-Madrión J, Pérez-García CN, Martín-Sánchez FJ, Calvo D, de la Hera JM, García-Torrent MJ, García-Osuna Á, Ordonez-Llanos J, Vázquez J, Pérez-Villacastín J, Pérez-Castellano N, Loew LM, Sánchez-González J, Gómez-Garre D, Filgueiras-Rama D. Non-invasive electromechanical assessment during atrial fibrillation identifies underlying atrial myopathy alterations with early prognostic value. Nat Commun 2023; 14:4613. [PMID: 37542075 PMCID: PMC10403561 DOI: 10.1038/s41467-023-40196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Electromechanical characterization during atrial fibrillation (AF) remains a significant gap in the understanding of AF-related atrial myopathy. This study reports mechanistic insights into the electromechanical remodeling process associated with AF progression and further demonstrates its prognostic value in the clinic. In pigs, sequential electromechanical assessment during AF progression shows a progressive decrease in mechanical activity and early dissociation from its electrical counterpart. Atrial tissue samples from animals with AF reveal an abnormal increase in cardiomyocytes death and alterations in calcium handling proteins. High-throughput quantitative proteomics and immunoblotting analyses at different stages of AF progression identify downregulation of contractile proteins and progressive increase in atrial fibrosis. Moreover, advanced optical mapping techniques, applied to whole heart preparations during AF, demonstrate that AF-related remodeling decreases the frequency threshold for dissociation between transmembrane voltage signals and intracellular calcium transients compared to healthy controls. Single cell simulations of human atrial cardiomyocytes also confirm the experimental results. In patients, non-invasive assessment of the atrial electromechanical relationship further demonstrate that atrial electromechanical dissociation is an early prognostic indicator for acute and long-term rhythm control.
Collapse
Affiliation(s)
- Daniel Enríquez-Vázquez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Servicio de Cardiología, Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge G Quintanilla
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Alba García-Escolano
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marinela Couselo-Seijas
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Peter Lee
- Essel Research and Development Inc., Toronto, ON, Canada
| | - José Manuel Alfonso-Almazán
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Patricia Mahía
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Andrés Redondo-Rodríguez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Modrego
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Adriana Ortega-Hernández
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pedro Marcos-Alberca
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ricardo Magni
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Calvo
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rubén Gómez-Gordo
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Giulio La Rosa
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José Bustamante-Madrión
- Emergency Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carlos Nicolás Pérez-García
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - F Javier Martín-Sánchez
- Emergency Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - David Calvo
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Jesús M de la Hera
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | - Álvaro García-Osuna
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques, IIB Sant Pau, Barcelona, Spain
| | - Jordi Ordonez-Llanos
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universidad Autónoma, Barcelona, Spain
- Foundation for Clinical Biochemistry & Molecular Pathology, Madrid, Spain
| | - Jesús Vázquez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Julián Pérez-Villacastín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Dulcenombre Gómez-Garre
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
18
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
19
|
Sun H, Song J, Li K, Li Y, Shang L, Zhou Q, Lu Y, Zong Y, He X, Kari M, Yang H, Zhou X, Zhang L, Tang B. Increased β1-adrenergic receptor antibody confers a vulnerable substrate for atrial fibrillation via mediating Ca2+ mishandling and atrial fibrosis in active immunization rabbit models. Clin Sci (Lond) 2023; 137:195-217. [PMID: 36597894 PMCID: PMC9885845 DOI: 10.1042/cs20220654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Autoimmune disorder is the emerging mechanism of atrial fibrillation (AF). The β1-adrenergic receptor antibody (β1-AAb) is associated with AF progress. Our study aims to investigate whether β1-AAbs involves in atrial vulnerable substrate by mediating Ca2+ mishandling and atrial fibrosis in autoimmune associated AF. METHODS Active immunization models were established via subcutaneous injection of the second extracellular loop (ECL2) peptide for β1 adrenergic receptor (β1AR). Invasive electrophysiologic study and ex vivo optical mapping were used to evaluate the changed electrophysiology parameters and calcium handling properties. Phospho-proteomics combined with molecular biology assay were performed to identify the potential mechanisms of remodeled atrial substrate elicited by β1-AAbs. Exogenous β1-AAbs were used to induce the cellular phenotypes of HL-1 cells and atrial fibroblasts to AF propensity. RESULTS β1-AAbs aggravated the atrial electrical instability and atrial fibrosis. Bisoprolol alleviated the alterations of action potential duration (APD), Ca2+ transient duration (CaD), and conduction heterogeneity challenged by β1-AAbs. β1-AAbs prolonged calcium transient refractoriness and promoted arrhythmogenic atrial alternans and spatially discordant alternans, which were partly counteracted through blocking β1AR. Its underlying mechanisms are related to β1AR-drived CaMKII/RyR2 activation of atrial cardiomyocytes and the myofibroblasts phenotype formation of fibroblasts. CONCLUSION Suppressing β1-AAbs effectively protects the atrial vulnerable substrate by ameliorating intracellular Ca2+ mishandling and atrial fibrosis, preventing the process of the autoimmune associated AF.
Collapse
Affiliation(s)
- Huaxin Sun
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Song
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Kai Li
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yao Li
- Psychosomatic Medical Center, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Luxiang Shang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Qina Zhou
- School of Nursing, Midwifery and Social Work, University of Queensland, Brisbane, Queensland, Australia
| | - Yanmei Lu
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yazhen Zong
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xiuyuan He
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Muzappar Kari
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Hang Yang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xianhui Zhou
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Correspondence: Baopeng Tang () or Ling Zhang () or Xianhui Zhou ()
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Correspondence: Baopeng Tang () or Ling Zhang () or Xianhui Zhou ()
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Correspondence: Baopeng Tang () or Ling Zhang () or Xianhui Zhou ()
| |
Collapse
|
20
|
Wei J, Guo W, Wang R, Paul Estillore J, Belke D, Chen YX, Vallmitjana A, Benitez R, Hove-Madsen L, Chen SRW. RyR2 Serine-2030 PKA Site Governs Ca 2+ Release Termination and Ca 2+ Alternans. Circ Res 2023; 132:e59-e77. [PMID: 36583384 DOI: 10.1161/circresaha.122.321177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.
Collapse
Affiliation(s)
- Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.).,School of Medicine, Northwest University, Xi 'an, China (J.W.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Yong-Xiang Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | | | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (A.V., R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, IIB Sant Pau and CIBERCV, Hospital de Sant Pau, 08025, Barcelona, Spain (L.H.-M.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| |
Collapse
|
21
|
Niort BC, Recalde A, Cros C, Brette F. Critical Link between Calcium Regional Heterogeneity and Atrial Fibrillation Susceptibility in Sheep Left Atria. J Clin Med 2023; 12:jcm12030746. [PMID: 36769395 PMCID: PMC9917890 DOI: 10.3390/jcm12030746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Atrial fibrillation is the most sustained form of arrhythmia in the human population that leads to important electrophysiological and structural cardiac remodeling as it progresses into a chronic form. Calcium is an established key player of cellular electrophysiology in the heart, yet to date, there is no information that maps calcium signaling across the left atrium. OBJECTIVE The aim of this study is to determine whether calcium signaling is homogenous throughout the different regions of the left atrium. This work tests the hypothesis that differences across the healthy left atrium contribute to a unique, region-dependent calcium cycling and participates in the pro-arrhythmic activity during atrial fibrillation. METHODS An animal model relevant to human cardiac function (the sheep) was used to characterize both the electrical activity and the calcium signaling of three distinct left atrium regions (appendage, free wall and pulmonary veins) in control conditions and after acetylcholine perfusion (5 μM) to induce acute atrial fibrillation. High-resolution dual calcium-voltage optical mapping on the left atria of sheep was performed to explore the spatiotemporal dynamics of calcium signaling in relation to electrophysiological properties. RESULTS Action potential duration (at 80% repolarization) was not significantly different in the three regions of interest for the three pacing sites. In contrast, the time to 50% calcium transient decay was significantly different depending on the region paced and recorded. Acetylcholine perfusion and burst pacing-induced atrial fibrillation when pulmonary veins and appendage regions were paced but not when the free wall region was. Dantrolene (a ryanodine receptor blocker) did not reduce atrial fibrillation susceptibility. CONCLUSION These data provide the first evidence of heterogenous calcium signaling across the healthy left atrium. Such basal regional differences may be exacerbated during the progression of atrial fibrillation and thus play a crucial role in focal arrhythmia initiation without ryanodine receptor gating modification.
Collapse
Affiliation(s)
- Barbara C. Niort
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
| | - Alice Recalde
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
| | - Caroline Cros
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
| | - Fabien Brette
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
- Phymedexp Inserm, CNRS, Université de Montpellier, CHRU, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
22
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
23
|
Kanaporis G, Blatter LA. Activation of small conductance Ca 2+ -activated K + channels suppresses Ca 2+ transient and action potential alternans in ventricular myocytes. J Physiol 2023; 601:51-67. [PMID: 36426548 PMCID: PMC9878619 DOI: 10.1113/jp283870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We tested the hypothesis that in single rabbit ventricular myocytes pharmacological modulation of SK channels plays a causative role for the development of pacing-induced CaT and AP duration (APD) alternans. SK channel blockers (apamin, UCL1684) had only a minor effect on AP repolarization. However, SK channel activation by NS309 resulted in significant APD shortening, demonstrating that functional SK channels are well expressed in ventricular myocytes. The effects of NS309 were prevented or reversed by apamin and UCL1684, indicating that NS309 acted on SK channels. SK channel activation abolished or reduced the degree of pacing-induced CaT and APD alternans. Inhibition of KV 7.1 (with HMR1556) and KV 11.1 (with E4031) channels was used to mimic conditions of long QT syndromes type-1 and type-2, respectively. Both HMR1556 and E4031 enhanced CaT alternans that was prevented by SK channel activation. In AP voltage-clamped cells the SK channel activator had no effect on CaT alternans, confirming that suppression of CaT alternans was caused by APD shortening. APD shortening contributed to protection from alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest that SK activation could be a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy for patients with long QT syndrome. KEY POINTS: At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and intracellular Ca2+ release amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We investigated whether pharmacological modulation of SK channels affects the development of cardiac alternans in normal ventricular cells and in cells with drug-induced long QT syndrome (LQTS). While SK channel blockers have only a minor effect on AP morphology, their activation leads to AP shortening and abolishes or reduces the degree of pacing-induced Ca2+ and AP alternans. AP shortening contributed to protection against alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest SK activation as a potential intervention to avert the development of alternans with important ramifications for arrhythmia prevention for patients with LQTS.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
24
|
Banach K, Blatter LA. The 'Reverse FDUF' Mechanism of Atrial Excitation-Contraction Coupling Sustains Calcium Alternans-A Hypothesis. Biomolecules 2022; 13:biom13010007. [PMID: 36671392 PMCID: PMC9855423 DOI: 10.3390/biom13010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac calcium alternans is defined as beat-to-beat alternations of Ca transient (CaT) amplitude and has been linked to cardiac arrhythmia, including atrial fibrillation. We investigated the mechanism of atrial alternans in isolated rabbit atrial myocytes using high-resolution line scan confocal Ca imaging. Alternans was induced by increasing the pacing frequency until stable alternans was observed (1.6-2.5 Hz at room temperature). In atrial myocytes, action potential-induced Ca release is initiated in the cell periphery and subsequently propagates towards the cell center by Ca-induced Ca release (CICR) in a Ca wave-like fashion, driven by the newly identified 'fire-diffuse-uptake-fire' (FDUF) mechanism. The development of CaT alternans was accompanied by characteristic changes of the spatio-temporal organization of the CaT. During the later phase of the CaT, central [Ca]i exceeded peripheral [Ca]i that was indicative of a reversal of the subcellular [Ca]i gradient from centripetal to centrifugal. This gradient reversal resulted in a reversal of CICR propagation, causing a secondary Ca release during the large-amplitude alternans CaT, thereby prolonging the CaT, enhancing Ca-release refractoriness and reducing Ca release on the subsequent beat, thus enhancing the degree of CaT alternans. Here, we propose the 'reverse FDUF' mechanism as a novel cellular mechanism of atrial CaT alternans, which explains how the uncoupling of central from peripheral Ca release leads to the reversal of propagating CICR and to alternans.
Collapse
Affiliation(s)
- Kathrin Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lothar A. Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
25
|
Martinez-Hernandez E, Kanaporis G, Blatter LA. Mechanism of carvedilol induced action potential and calcium alternans. Channels (Austin) 2022; 16:97-112. [PMID: 35501948 PMCID: PMC9067505 DOI: 10.1080/19336950.2022.2055521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Carvedilol is a nonspecific β-blocker clinically used for the treatment of cardiovascular diseases but has also been shown to have profound effects on excitation-contraction coupling and Ca signaling at the cellular level. We investigate the mechanism by which carvedilol facilitates Ca transient (CaT) and action potential duration (APD) alternans in rabbit atrial myocytes. Carvedilol lowered the frequency threshold for pacing-induced CaT alternans and facilitated alternans in a concentration-dependent manner. Carvedilol prolonged the sarcoplasmic reticulum (SR) Ca release refractoriness by significantly increasing the time constant τ of recovery of SR Ca release; however, no changes in L-type calcium current recovery from inactivation or SR Ca load were found after carvedilol treatment. Carvedilol enhanced the degree of APD alternans nearly two-fold. Carvedilol slowed the APD restitution kinetics and steepened the APD restitution curve at the pacing frequency (2 Hz) where alternans were elicited. No effect on the CaT or APD alternans ratios was observed in experiments with a different β-blocker (metoprolol), excluding the possibility that the carvedilol effect on CaT and APD alternans was determined by its β-blocking properties. These data suggest that carvedilol contributes to the generation of CaT and APD alternans in atrial myocytes by modulating the restitution of CaT and APD.
Collapse
Affiliation(s)
| | - Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Lothar A. Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA,CONTACT Lothar A. Blatter Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL60612, USA
| |
Collapse
|
26
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
27
|
Dissanayake KN, Redman RR, Mackenzie H, Eddleston M, Ribchester RR. "Calcium bombs" as harbingers of synaptic pathology and their mitigation by magnesium at murine neuromuscular junctions. Front Mol Neurosci 2022; 15:937974. [PMID: 35959105 PMCID: PMC9361872 DOI: 10.3389/fnmol.2022.937974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Excitotoxicity is thought to be an important factor in the onset and progression of amyotrophic lateral sclerosis (ALS). Evidence from human and animal studies also indicates that early signs of ALS include degeneration of motor nerve terminals at neuromuscular junctions (NMJs), before degeneration of motor neuron cell bodies. Here we used a model of excitotoxicity at NMJs in isolated mouse muscle, utilizing the organophosphorus (OP) compound omethoate, which inhibits acetylcholinesterase activity. Acute exposure to omethoate (100 μM) induced prolonged motor endplate contractures in response to brief tetanic nerve stimulation at 20-50 Hz. In some muscle fibers, Fluo-4 fluorescence showed association of these contractures with explosive increases in Ca2+ ("calcium bombs") localized to motor endplates. Calcium bombs were strongly and selectively mitigated by increasing Mg2+ concentration in the bathing medium from 1 to 5 mM. Overnight culture of nerve-muscle preparations from WldS mice in omethoate or other OP insecticide components and their metabolites (dimethoate, cyclohexanone, and cyclohexanol) induced degeneration of NMJs. This degeneration was also strongly mitigated by increasing [Mg2+] from 1 to 5 mM. Thus, equivalent increases in extracellular [Mg2+] mitigated both post-synaptic calcium bombs and degeneration of NMJs. The data support a link between Ca2+ and excitotoxicity at NMJs and suggest that elevating extracellular [Mg2+] could be an effective intervention in treatment of synaptic pathology induced by excitotoxic triggers.
Collapse
Affiliation(s)
- Kosala N. Dissanayake
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert R. Redman
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Mackenzie
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Eddleston
- Clinical Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Richard R. Ribchester,
| |
Collapse
|
28
|
Blake MR, Parrish DC, Staffenson MA, Sueda S, Woodward WR, Habecker BA. Chondroitin sulfate proteoglycan 4,6 sulfation regulates sympathetic nerve regeneration after myocardial infarction. eLife 2022; 11:e78387. [PMID: 35604022 PMCID: PMC9197393 DOI: 10.7554/elife.78387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sympathetic denervation of the heart following ischemia/reperfusion induced myocardial infarction (MI) is sustained by chondroitin sulfate proteoglycans (CSPGs) in the cardiac scar. Denervation predicts risk of sudden cardiac death in humans. Blocking CSPG signaling restores sympathetic axon outgrowth into the cardiac scar, decreasing arrhythmia susceptibility. Axon growth inhibition by CSPGs can depend on the sulfation status of the glycosaminoglycan (CS-GAG) side chains. Tandem sulfation of CS-GAGs at the 4th (4S) and 6th (6S) positions of n-acetyl-galactosamine inhibits outgrowth in several types of central neurons, but we don't know if sulfation is similarly critical during peripheral nerve regeneration. We asked if CSPG sulfation prevented sympathetic axon outgrowth after MI. Reducing 4S with the 4-sulfatase enzyme Arylsulfatase-B (ARSB) enhanced outgrowth of dissociated rat sympathetic neurons over CSPGs. Likewise, reducing 4S with ARSB restored axon outgrowth from mouse sympathetic ganglia co-cultured with cardiac scar tissue. We quantified enzymes responsible for adding and removing sulfation, and found that CHST15 (4S dependent 6-sulfotransferase) was upregulated, and ARSB was downregulated after MI. This suggests a mechanism for production and maintenance of sulfated CSPGs in the cardiac scar. We decreased 4S,6S CS-GAGs in vivo by transient siRNA knockdown of Chst15 after MI, and found that reducing 4S,6S restored tyrosine hydroxylase (TH) positive sympathetic nerve fibers in the cardiac scar. Reinnervation reduced isoproterenol induced arrhythmias. Our results suggest that modulating CSPG-sulfation after MI may be a therapeutic target to promote sympathetic nerve regeneration in the cardiac scar and reduce post-MI cardiac arrhythmias.
Collapse
Affiliation(s)
- Matthew R Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Diana C Parrish
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Melanie A Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Shanice Sueda
- Portland State University EXITO Scholars Program, Portland State UniversityPortlandUnited States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
29
|
Martinez‐Hernandez E, Blatter LA, Kanaporis G. L-type Ca 2+ channel recovery from inactivation in rabbit atrial myocytes. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2022; 10:e15222. [PMID: 35274829 PMCID: PMC8915713 DOI: 10.14814/phy2.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Adaptation of the myocardium to varying workloads critically depends on the recovery from inactivation (RFI) of L-type Ca2+ channels (LCCs) which provide the trigger for cardiac contraction. The goal of the present study was a comprehensive investigation of LCC RFI in atrial myocytes. The study was performed on voltage-clamped rabbit atrial myocytes using a double pulse protocol with variable diastolic intervals in cells held at physiological holding potentials, with intact intracellular Ca2+ release, and preserved Na+ current and Na+ /Ca2+ exchanger (NCX) activity. We demonstrate that the kinetics of RFI of LCCs are co-regulated by several factors including resting membrane potential, [Ca2+ ]i , Na+ influx, and activity of CaMKII. In addition, activation of CaMKII resulted in increased ICa amplitude at higher pacing rates. Pharmacological inhibition of NCX failed to have any significant effect on RFI, indicating that impaired removal of Ca2+ by NCX has little effect on LCC recovery. Finally, RFI of intracellular Ca2+ release was substantially slower than LCC RFI, suggesting that inactivation kinetics of LCC do not significantly contribute to the beat-to-beat refractoriness of SR Ca2+ release. The study demonstrates that CaMKII and intracellular Ca2+ dynamics play a central role in modulation of LCC activity in atrial myocytes during increased workloads that could have important consequences under pathological conditions such as atrial fibrillations, where Ca2+ cycling and CaMKII activity are altered.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - Giedrius Kanaporis
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
30
|
Liao J, Zhang S, Yang S, Lu Y, Lu K, Wu Y, Wu Q, Zhao N, Dong Q, Chen L, Du Y. Interleukin-6-Mediated-Ca 2+ Handling Abnormalities Contributes to Atrial Fibrillation in Sterile Pericarditis Rats. Front Immunol 2022; 12:758157. [PMID: 34975847 PMCID: PMC8716408 DOI: 10.3389/fimmu.2021.758157] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Pre-existing Ca2+ handling abnormalities constitute the arrhythmogenic substrate in patients developing postoperative atrial fibrillation (POAF), a common complication after cardiac surgery. Postoperative interleukin (IL)-6 levels are associated with atrial fibrosis in several animal models of POAF, contributing to atrial arrhythmias. Here, we hypothesize that IL-6-mediated-Ca2+ handling abnormalities contribute to atrial fibrillation (AF) in sterile pericarditis (SP) rats, an animal model of POAF. SP was induced in rats by dusting atria with sterile talcum powder. Anti-rat-IL-6 antibody (16.7 μg/kg) was administered intraperitoneally at 30 min after the recovery of anesthesia. In vivo electrophysiology, ex vivo optical mapping, western blots, and immunohistochemistry were performed to elucidate mechanisms of AF susceptibility. IL-6 neutralization ameliorated atrial inflammation and fibrosis, as well as AF susceptibility in vivo and the frequency of atrial ectopy and AF with a reentrant pattern in SP rats ex vivo. IL-6 neutralization reversed the prolongation and regional heterogeneity of Ca2+ transient duration, relieved alternans, reduced the incidence of discordant alternans, and prevented the reduction and regional heterogeneity of the recovery ratio of Ca2+ transient. In agreement, western blots showed that IL-6 neutralization reversed the reduction in the expression of ryanodine receptor 2 (RyR2) and phosphorylated phospholamban. Acute IL-6 administration to isolated rat hearts recapitulated partial Ca2+ handling phenotype in SP rats. In addition, intraperitoneal IL-6 administration to rats increased AF susceptibility, independent of fibrosis. Our results reveal that IL-6-mediated-Ca2+ handling abnormalities in SP rats, especially RyR2-dysfunction, independent of IL-6-induced-fibrosis, early contribute to the development of POAF by increasing propensity for arrhythmogenic alternans.
Collapse
Affiliation(s)
- Jie Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoshao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaitao Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Ge C, Xu D, Yu P, Fang M, Guo J, Xu D, Qiao Y, Chen S, Zhang Y, Wang H. P-gp expression inhibition mediates placental glucocorticoid barrier opening and fetal weight loss. BMC Med 2021; 19:311. [PMID: 34876109 PMCID: PMC8653610 DOI: 10.1186/s12916-021-02173-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prenatal adverse environments can cause fetal intrauterine growth retardation (IUGR) and higher susceptibility to multiple diseases after birth, related to multi-organ development programming changes mediated by intrauterine overexposure to maternal glucocorticoids. As a glucocorticoid barrier, P-glycoprotein (P-gp) is highly expressed in placental syncytiotrophoblasts; however, the effect of P-gp on the occurrence of IUGR remains unclear. METHODS Human placenta and fetal cord blood samples of IUGR fetuses were collected, and the related indexes were detected. Pregnant Wistar rats were administered with 30 mg/kg·d (low dose) and 120 mg/kg·d (high dose) caffeine from gestational day (GD) 9 to 20 to construct the rat IUGR model. Pregnant mice were administered with caffeine (120 mg/kg·d) separately or combined with sodium ferulate (50 mg/kg·d) from gestational day GD 9 to 18 to confirm the intervention target on fetal weight loss caused by prenatal caffeine exposure (PCE). The fetal serum/placental corticosterone level, placental P-gp expression, and related indicator changes were analyzed. In vitro, primary human trophoblasts and BeWo cells were used to confirm the effect of caffeine on P-gp and its mechanism. RESULTS The placental P-gp expression was significantly reduced, but the umbilical cord blood cortisol level was increased in clinical samples of the IUGR neonates, which were positively and negatively correlated with the neonatal birth weight, respectively. Meanwhile, in the PCE-induced IUGR rat model, the placental P-gp expression of IUGR rats was decreased while the corticosterone levels of the placentas/fetal blood were increased, which were positively and negatively correlated with the decreased placental/fetal weights, respectively. Combined with the PCE-induced IUGR rat model, in vitro caffeine-treated placental trophoblasts, we confirmed that caffeine decreased the histone acetylation and expression of P-gp via RYR/JNK/YB-1/P300 pathway, which inhibited placental and fetal development. We further demonstrated that P-gp inducer sodium ferulate could reverse the inhibitory effect of caffeine on the fetal body/placental weight. Finally, clinical specimens and other animal models of IUGR also confirmed that the JNK/YB-1 pathway is a co-regulatory mechanism of P-gp expression inhibition, among which the expression of YB-1 is the most stable. Therefore, we proposed that YB-1 could be used as the potential early warning target for the opening of the placental glucocorticoid barrier, the occurrence of IUGR, and the susceptibility of a variety of diseases. CONCLUSIONS This study, for the first time, clarified the critical role and epigenetic regulation mechanism of P-gp in mediating the opening mechanism of the placental glucocorticoid barrier, providing a novel idea for exploring the early warning, prevention, and treatment strategies of IUGR.
Collapse
Affiliation(s)
- Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuan Qiao
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
32
|
Cooper BL, Gloschat C, Swift LM, Prudencio T, McCullough D, Jaimes R, Posnack NG. KairoSight: Open-Source Software for the Analysis of Cardiac Optical Data Collected From Multiple Species. Front Physiol 2021; 12:752940. [PMID: 34777017 PMCID: PMC8586513 DOI: 10.3389/fphys.2021.752940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a “gold standard” for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named “KairoSight” in reference to the Greek word for “opportune time” (Kairos) and the ability to “see” voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States
| | - Chris Gloschat
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Tomas Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States.,Department of Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
33
|
Millet J, Aguilar-Sanchez Y, Kornyeyev D, Bazmi M, Fainstein D, Copello JA, Escobar AL. Thermal modulation of epicardial Ca2+ dynamics uncovers molecular mechanisms of Ca2+ alternans. J Gen Physiol 2021; 153:211659. [PMID: 33410862 PMCID: PMC7797898 DOI: 10.1085/jgp.202012568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/16/2023] Open
Abstract
Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR. In all three cases, the RYR2 mobilizes less Ca2+ from the SR in an alternating manner, thereby generating an alternating profile of the Ca2+ transients. We used a new experimental approach, fluorescence local field optical mapping (FLOM), to record at the epicardial layer of an intact heart with subcellular resolution. In conjunction with a local cold finger, a series of images were recorded within an area where the local cooling induced a temperature gradient. Ca-Alts were larger in colder regions and occurred without changes in action potential duration. Analysis of the change in the enthalpy and Q10 of several kinetic processes defining intracellular Ca2+ dynamics indicated that the effects of temperature change on the relaxation of intracellular Ca2+ transients involved both passive and active mechanisms. The steep temperature dependency of Ca-Alts during tachycardia suggests Ca-Alts are generated by insufficient SERCA-mediated Ca2+ uptake into the SR. We found that Ca-Alts are heavily dependent on intra-SR Ca2+ and can be promoted through partial pharmacologic inhibition of SERCA2a. Finally, the FLOM experimental approach has the potential to help us understand how arrhythmogenesis correlates with the spatial distribution of metabolically impaired myocytes along the myocardium.
Collapse
Affiliation(s)
- Jose Millet
- Institute of Information and Communication Technologies, Universitat Politècnica de València and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Valencia, Spain
| | - Yuriana Aguilar-Sanchez
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL.,School of Natural Sciences, University of California, Merced, Merced, CA
| | - Dmytro Kornyeyev
- Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA
| | - Maedeh Bazmi
- School of Natural Sciences, University of California, Merced, Merced, CA
| | - Diego Fainstein
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Entre Ríos, Argentina.,Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA
| | - Julio A Copello
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA
| |
Collapse
|
34
|
Marina-Breysse M, García-Escolano A, Vila-García J, Reale-Nosei G, Alfonso-Almazán JM, Yan P, Quintanilla JG, Loew LM, Lee P, Filgueiras-Rama D. A Complete and Low-Cost Cardiac Optical Mapping System in Translational Animal Models. Front Physiol 2021; 12:696270. [PMID: 34489722 PMCID: PMC8417781 DOI: 10.3389/fphys.2021.696270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Clinicians, biologists, physicists, engineers, and computer scientists are coming together to better understand heart disease, which is currently the leading cause of death globally. Optical mapping, a high-speed fluorescence imaging technique that visualizes and measures key cardiac parameters such as action potentials, cytosolic calcium transients, and fibrillation dynamics, is a core research tool that has arisen from such interdisciplinary collaborations. In an effort to broaden its use, especially among clinical scientists and students, we developed a complete and low-cost optical mapping system, including a constant-flow Langendorff perfusion system, which minimizes the economic threshold to widespread use of this powerful tool in cardiac electrophysiology research. The system described here provides high spatiotemporal resolution data about action potentials, intracellular calcium transients and fibrillation wave dynamics in isolated Langendorff-perfused hearts (pigs and rabbits), relevant for translational research. All system components and software elements are fully disclosed with the aim of increasing the use of this affordable and highly versatile tool among clinicians, basic scientists and students wishing to tackle their own research questions with their own customizable systems.
Collapse
Affiliation(s)
- Manuel Marina-Breysse
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alba García-Escolano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Joaquín Vila-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - Gabriel Reale-Nosei
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - José M Alfonso-Almazán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, United States
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, United States
| | - Peter Lee
- Essel Research and Development Inc., Toronto, ON, Canada
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
35
|
Cely-Ortiz A, Felice JI, Díaz-Zegarra LA, Valverde CA, Federico M, Palomeque J, Wehrens XHT, Kranias EG, Aiello EA, Lascano EC, Negroni JA, Mattiazzi A. Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling. J Gen Physiol 2021; 152:152125. [PMID: 32986800 PMCID: PMC7594441 DOI: 10.1085/jgp.201912512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023] Open
Abstract
Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.
Collapse
Affiliation(s)
- Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leandro A Díaz-Zegarra
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marilén Federico
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Xander H T Wehrens
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Neuroscience, Pediatrics, Center for Space Medicine, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX
| | - Evangelia G Kranias
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elena C Lascano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Negroni
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
36
|
Hegyi B, Shimkunas R, Jian Z, Izu LT, Bers DM, Chen-Izu Y. Mechanoelectric coupling and arrhythmogenesis in cardiomyocytes contracting under mechanical afterload in a 3D viscoelastic hydrogel. Proc Natl Acad Sci U S A 2021; 118:e2108484118. [PMID: 34326268 PMCID: PMC8346795 DOI: 10.1073/pnas.2108484118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heart pumps blood against the mechanical afterload from arterial resistance, and increased afterload may alter cardiac electrophysiology and contribute to life-threatening arrhythmias. However, the cellular and molecular mechanisms underlying mechanoelectric coupling in cardiomyocytes remain unclear. We developed an innovative patch-clamp-in-gel technology to embed cardiomyocytes in a three-dimensional (3D) viscoelastic hydrogel that imposes an afterload during regular myocyte contraction. Here, we investigated how afterload affects action potentials, ionic currents, intracellular Ca2+ transients, and cell contraction of adult rabbit ventricular cardiomyocytes. We found that afterload prolonged action potential duration (APD), increased transient outward K+ current, decreased inward rectifier K+ current, and increased L-type Ca2+ current. Increased Ca2+ entry caused enhanced Ca2+ transients and contractility. Moreover, elevated afterload led to discordant alternans in APD and Ca2+ transient. Ca2+ alternans persisted under action potential clamp, indicating that the alternans was Ca2+ dependent. Furthermore, all these afterload effects were significantly attenuated by inhibiting nitric oxide synthase 1 (NOS1). Taken together, our data reveal a mechano-chemo-electrotransduction (MCET) mechanism that acutely transduces afterload through NOS1-nitric oxide signaling to modulate the action potential, Ca2+ transient, and contractility. The MCET pathway provides a feedback loop in excitation-Ca2+ signaling-contraction coupling, enabling autoregulation of contractility in cardiomyocytes in response to afterload. This MCET mechanism is integral to the individual cardiomyocyte (and thus the heart) to intrinsically enhance its contractility in response to the load against which it has to do work. While this MCET is largely compensatory for physiological load changes, it may also increase susceptibility to arrhythmias under excessive pathological loading.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Rafael Shimkunas
- Department of Pharmacology, University of California, Davis, CA 95616
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA 95616;
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| |
Collapse
|
37
|
Sadredini M, Haugsten Hansen M, Frisk M, Louch WE, Lehnart SE, Sjaastad I, Stokke MK. CaMKII inhibition has dual effects on spontaneous Ca 2+ release and Ca 2+ alternans in ventricular cardiomyocytes from mice with a gain-of-function RyR2 mutation. Am J Physiol Heart Circ Physiol 2021; 321:H446-H460. [PMID: 34270372 DOI: 10.1152/ajpheart.00011.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In conditions with abnormally increased activity of the cardiac ryanodine receptor (RyR2), Ca2+/calmodulin-dependent protein kinase II (CaMKII) can contribute to a further destabilization of RyR2 that results in triggered arrhythmias. Therefore, inhibition of CaMKII in such conditions has been suggested as a strategy to suppress RyR2 activity and arrhythmias. However, suppression of RyR2 activity can lead to the development of arrhythmogenic Ca2+ alternans. The aim of this study was to test whether the suppression of RyR2 activity caused by inhibition of CaMKII increases propensity for Ca2+ alternans. We studied spontaneous Ca2+ release events and Ca2+ alternans in isolated left ventricular cardiomyocytes from mice carrying the gain-of-function RyR2 mutation RyR2-R2474S and from wild-type mice. CaMKII inhibition by KN-93 effectively decreased the frequency of spontaneous Ca2+ release events in RyR2-R2474S cardiomyocytes exposed to the β-adrenoceptor agonist isoprenaline. However, KN-93-treated RyR2-R2474S cardiomyocytes also showed increased propensity for Ca2+ alternans and increased Ca2+ alternans ratio compared with both an inactive analog of KN-93 and with vehicle-treated controls. This increased propensity for Ca2+ alternans was explained by prolongation of Ca2+ release refractoriness. Importantly, the increased propensity for Ca2+ alternans in KN-93-treated RyR2-R2474S cardiomyocytes did not surpass that of wild type. In conclusion, inhibition of CaMKII efficiently reduces spontaneous Ca2+ release but promotes Ca2+ alternans in RyR2-R2474S cardiomyocytes with a gain-of-function RyR2 mutation. The dominant effect in RyR2-R2474S is to reduce spontaneous Ca2+ release, which supports this intervention as a therapeutic strategy in this specific condition. However, future studies on CaMKII inhibition in conditions with increased propensity for Ca2+ alternans should include investigation of both phenomena.NEW & NOTEWORTHY Genetically increased RyR2 activity promotes arrhythmogenic Ca2+ release. Inhibition of CaMKII suppresses RyR2 activity and arrhythmogenic Ca2+ release. Suppression of RyR2 activity prolongs refractoriness of Ca2+ release. Prolonged refractoriness of Ca2+ release leads to arrhythmogenic Ca2+ alternans. CaMKII inhibition promotes Ca2+ alternans by prolonging Ca2+ release refractoriness.
Collapse
Affiliation(s)
- Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
38
|
Wang L, Myles RC, Lee IJ, Bers DM, Ripplinger CM. Role of Reduced Sarco-Endoplasmic Reticulum Ca 2+-ATPase Function on Sarcoplasmic Reticulum Ca 2+ Alternans in the Intact Rabbit Heart. Front Physiol 2021; 12:656516. [PMID: 34045974 PMCID: PMC8144333 DOI: 10.3389/fphys.2021.656516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ cycling is tightly regulated by ryanodine receptor (RyR) Ca2+ release and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ uptake during each excitation–contraction coupling cycle. We previously showed that RyR refractoriness plays a key role in the onset of SR Ca2+ alternans in the intact rabbit heart, which contributes to arrhythmogenic action potential duration (APD) alternans. Recent studies have also implicated impaired SERCA function, a key feature of heart failure, in cardiac alternans and arrhythmias. However, the relationship between reduced SERCA function and SR Ca2+ alternans is not well understood. Simultaneous optical mapping of transmembrane potential (Vm) and SR Ca2+ was performed in isolated rabbit hearts (n = 10) using the voltage-sensitive dye RH237 and the low-affinity Ca2+ indicator Fluo-5N-AM. Alternans was induced by rapid ventricular pacing. SERCA was inhibited with cyclopiazonic acid (CPA; 1–10 μM). SERCA inhibition (1, 5, and 10 μM of CPA) resulted in dose-dependent slowing of SR Ca2+ reuptake, with the time constant (tau) increasing from 70.8 ± 3.5 ms at baseline to 85.5 ± 6.6, 129.9 ± 20.7, and 271.3 ± 37.6 ms, respectively (p < 0.05 vs. baseline for all doses). At fast pacing frequencies, CPA significantly increased the magnitude of SR Ca2+ and APD alternans, most strongly at 10 μM (pacing cycle length = 220 ms: SR Ca2+ alternans magnitude: 57.1 ± 4.7 vs. 13.4 ± 8.9 AU; APD alternans magnitude 3.8 ± 1.9 vs. 0.2 ± 0.19 AU; p < 0.05 10 μM of CPA vs. baseline for both). SERCA inhibition also promoted the emergence of spatially discordant alternans. Notably, at all CPA doses, alternation of SR Ca2+ release occurred prior to alternation of diastolic SR Ca2+ load as pacing frequency increased. Simultaneous optical mapping of SR Ca2+ and Vm in the intact rabbit heart revealed that SERCA inhibition exacerbates pacing-induced SR Ca2+ and APD alternans magnitude, particularly at fast pacing frequencies. Importantly, SR Ca2+ release alternans always occurred before the onset of SR Ca2+ load alternans. These findings suggest that even in settings of diminished SERCA function, relative refractoriness of RyR Ca2+ release governs the onset of intracellular Ca2+ alternans.
Collapse
Affiliation(s)
- Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - I-Ju Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
39
|
Szlovák J, Tomek J, Zhou X, Tóth N, Veress R, Horváth B, Szentandrássy N, Levijoki J, Papp JG, Herring N, Varró A, Eisner DA, Rodriguez B, Nagy N. Blockade of sodium‑calcium exchanger via ORM-10962 attenuates cardiac alternans. J Mol Cell Cardiol 2021; 153:111-122. [PMID: 33383036 PMCID: PMC8035081 DOI: 10.1016/j.yjmcc.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
Repolarization alternans, a periodic oscillation of long-short action potential duration, is an important source of arrhythmogenic substrate, although the mechanisms driving it are insufficiently understood. Despite its relevance as an arrhythmia precursor, there are no successful therapies able to target it specifically. We hypothesized that blockade of the sodium‑calcium exchanger (NCX) could inhibit alternans. The effects of the selective NCX blocker ORM-10962 were evaluated on action potentials measured with microelectrodes from canine papillary muscle preparations, and calcium transients measured using Fluo4-AM from isolated ventricular myocytes paced to evoke alternans. Computer simulations were used to obtain insight into the drug's mechanisms of action. ORM-10962 attenuated cardiac alternans, both in action potential duration and calcium transient amplitude. Three morphological types of alternans were observed, with differential response to ORM-10962 with regards to APD alternans attenuation. Analysis of APD restitution indicates that calcium oscillations underlie alternans formation. Furthermore, ORM-10962 did not markedly alter APD restitution, but increased post-repolarization refractoriness, which may be mediated by indirectly reduced L-type calcium current. Computer simulations reproduced alternans attenuation via ORM-10962, suggesting that it is acts by reducing sarcoplasmic reticulum release refractoriness. This results from the ORM-10962-induced sodium‑calcium exchanger block accompanied by an indirect reduction in L-type calcium current. Using a computer model of a heart failure cell, we furthermore demonstrate that the anti-alternans effect holds also for this disease, in which the risk of alternans is elevated. Targeting NCX may therefore be a useful anti-arrhythmic strategy to specifically prevent calcium driven alternans.
Collapse
Affiliation(s)
- Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary
| | - Jakub Tomek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, United Kingdom; Department of Computer Science, University of Oxford, United Kingdom.
| | - Xin Zhou
- Department of Computer Science, University of Oxford, United Kingdom
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary; Faculty of Pharmacy, University of Debrecen, Hungary
| | | | | | - Julius Gy Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Neil Herring
- Department of Physiology, Anatomy, and Genetics, University of Oxford, United Kingdom
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - David A Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility, Manchester, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
40
|
You T, Luo C, Zhang K, Zhang H. Electrophysiological Mechanisms Underlying T-Wave Alternans and Their Role in Arrhythmogenesis. Front Physiol 2021; 12:614946. [PMID: 33746768 PMCID: PMC7969788 DOI: 10.3389/fphys.2021.614946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
T-wave alternans (TWA) reflects every-other-beat alterations in the morphology of the electrocardiogram ST segment or T wave in the setting of a constant heart rate, hence, in the absence of heart rate variability. It is believed to be associated with the dispersion of repolarization and has been used as a non-invasive marker for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death as numerous studies have shown. This review aims to provide up-to-date review on both experimental and simulation studies in elucidating possible mechanisms underlying the genesis of TWA at the cellular level, as well as the genesis of spatially concordant/discordant alternans at the tissue level, and their transition to cardiac arrhythmia. Recent progress and future perspectives in antiarrhythmic therapies associated with TWA are also discussed.
Collapse
Affiliation(s)
- Tingting You
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Kevin Zhang
- School of Medicine, Imperial College of London, London, United Kingdom
| | - Henggui Zhang
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Sun B, Yao J, Ni M, Wei J, Zhong X, Guo W, Zhang L, Wang R, Belke D, Chen YX, Lieve KVV, Broendberg AK, Roston TM, Blankoff I, Kammeraad JA, von Alvensleben JC, Lazarte J, Vallmitjana A, Bohne LJ, Rose RA, Benitez R, Hove-Madsen L, Napolitano C, Hegele RA, Fill M, Sanatani S, Wilde AAM, Roberts JD, Priori SG, Jensen HK, Chen SRW. Cardiac ryanodine receptor calcium release deficiency syndrome. Sci Transl Med 2021; 13:eaba7287. [PMID: 33536282 DOI: 10.1126/scitranslmed.aba7287] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/07/2020] [Indexed: 11/02/2022]
Abstract
Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia, a condition characterized by prominent ventricular ectopy in response to catecholamine stress, which can be reproduced on exercise stress testing (EST). However, reports of sudden cardiac death (SCD) have emerged in EST-negative individuals who have loss-of-function (LOF) RyR2 mutations. The clinical relevance of RyR2 LOF mutations including their pathogenic mechanism, diagnosis, and treatment are all unknowns. Here, we performed clinical and genetic evaluations of individuals who suffered from SCD and harbored an LOF RyR2 mutation. We carried out electrophysiological studies using a programed electrical stimulation protocol consisting of a long-burst, long-pause, and short-coupled (LBLPS) ventricular extra-stimulus. Linkage analysis of RyR2 LOF mutations in six families revealed a combined logarithm of the odds ratio for linkage score of 11.479 for a condition associated with SCD with negative EST. A RyR2 LOF mouse model exhibited no catecholamine-provoked ventricular arrhythmias as in humans but did have substantial cardiac electrophysiological remodeling and an increased propensity for early afterdepolarizations. The LBLPS pacing protocol reliably induced ventricular arrhythmias in mice and humans having RyR2 LOF mutations, whose phenotype is otherwise concealed before SCD. Furthermore, treatment with quinidine and flecainide abolished LBLPS-induced ventricular arrhythmias in model mice. Thus, RyR2 LOF mutations underlie a previously unknown disease entity characterized by SCD with normal EST that we have termed RyR2 Ca2+ release deficiency syndrome (CRDS). Our study provides insights into the mechanism of CRDS, reports a specific CRDS diagnostic test, and identifies potentially efficacious anti-CRDS therapies.
Collapse
Affiliation(s)
- Bo Sun
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Jinjing Yao
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Xiaowei Zhong
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Lin Zhang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Krystien V V Lieve
- Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam 1105AZ, Netherlands
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
| | - Anders K Broendberg
- Department of Cardiology, Aarhus University Hospital, and Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Blv 99, DK-8200 Aarhus N, Denmark
| | - Thomas M Roston
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Ivan Blankoff
- C.H.U. Charleroi, Hôpital Civil Marie Curie Chaussée de Bruxelles 140 6042 Charleroi, Belgium
| | - Janneke A Kammeraad
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Johannes C von Alvensleben
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado, Aurora, CO 80045, USA
| | - Julieta Lazarte
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Loryn J Bohne
- Departments of Cardiac Sciences and Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Robert A Rose
- Departments of Cardiac Sciences and Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC) and IIB Sant Pau, Hospital de Sant Pau, Barcelona 08025, Spain
| | - Carlo Napolitano
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
- Division of Cardiology and Molecular Cardiology, IRCCS Maugeri Foundation-University of Pavia, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Shubhayan Sanatani
- Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
| | - Arthur A M Wilde
- Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam 1105AZ, Netherlands.
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON N6A 5A5, Canada.
| | - Silvia G Priori
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands.
- Division of Cardiology and Molecular Cardiology, IRCCS Maugeri Foundation-University of Pavia, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Molecular Cardiology Laboratory, Centro de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital, and Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Blv 99, DK-8200 Aarhus N, Denmark.
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada.
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
42
|
He L, Liu R, Yue H, Ren S, Zhu G, Guo Y, Qin C. Actin-granule formation is an additional step in cardiac myofibroblast differentiation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:165. [PMID: 33569467 PMCID: PMC7867932 DOI: 10.21037/atm-20-8231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Atrial fibrillation is the most common and long-lasting cardiac arrhythmia, and profoundly effects the daily lives of patients. The pathogenesis and persistence of atrial fibrillation is closely related to the cardiac fibroblast and its myofibroblast differentiation as increased collagen synthesis and migration capability. Thus better understanding of myofibroblast differentiation is essential for the prevention and treatment of atrial fibrillation. Methods Cardiac fibroblasts were isolated from neonatal rats and its actin structure was analyzed by immunofluorescence staining. Myofibroblast differentiation was induced by Angiotensin II (Ang II) and ROCK signaling related proteins were determined by western blot. Fasudil and Ricolinostat were employed to abrogate ROCK signaling and their effects on myofibroblast differentiation were assessed by IF microscopy and Celigo Image Cytometry. Results Stress actin fibers similar to actin filaments in myofibroblast differentiation are regulated by ROCK signaling, and our results also suggested Guanine nucleotide exchange factor-H1 (GEF-H1) phosphorylation could be induced by Ang II. In addition, Fasudil could down-regulate RhoA, GEF-H1, and phosphorylated GEF-H1 to inhibit ROCK signaling and further reduce Col I expression and the myofibroblast proportion. Conclusions An individual phase characterized by actin-granule formation was identified in cardiac myofibroblast differentiation. In the meanwhile, myofibroblast differentiation and its F-actin assembly could be detained in this phase by Fasudil abrogating the ROCK signaling pathway.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuofang Ren
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Wei J, Yao J, Belke D, Guo W, Zhong X, Sun B, Wang R, Paul Estillore J, Vallmitjana A, Benitez R, Hove-Madsen L, Alvarez-Lacalle E, Echebarria B, Chen SRW. Ca 2+-CaM Dependent Inactivation of RyR2 Underlies Ca 2+ Alternans in Intact Heart. Circ Res 2020; 128:e63-e83. [PMID: 33375811 DOI: 10.1161/circresaha.120.318429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Ca2+ alternans plays an essential role in cardiac alternans that can lead to ventricular fibrillation, but the mechanism underlying Ca2+ alternans remains undefined. Increasing evidence suggests that Ca2+ alternans results from alternations in the inactivation of cardiac RyR2 (ryanodine receptor 2). However, what inactivates RyR2 and how RyR2 inactivation leads to Ca2+ alternans are unknown. OBJECTIVE To determine the role of CaM (calmodulin) on Ca2+ alternans in intact working mouse hearts. METHODS AND RESULTS We used an in vivo local gene delivery approach to alter CaM function by directly injecting adenoviruses expressing CaM-wild type, a loss-of-function CaM mutation, CaM (1-4), and a gain-of-function mutation, CaM-M37Q, into the anterior wall of the left ventricle of RyR2 wild type or mutant mouse hearts. We monitored Ca2+ transients in ventricular myocytes near the adenovirus-injection sites in Langendorff-perfused intact working hearts using confocal Ca2+ imaging. We found that CaM-wild type and CaM-M37Q promoted Ca2+ alternans and prolonged Ca2+ transient recovery in intact RyR2 wild type and mutant hearts, whereas CaM (1-4) exerted opposite effects. Altered CaM function also affected the recovery from inactivation of the L-type Ca2+ current but had no significant impact on sarcoplasmic reticulum Ca2+ content. Furthermore, we developed a novel numerical myocyte model of Ca2+ alternans that incorporates Ca2+-CaM-dependent regulation of RyR2 and the L-type Ca2+ channel. Remarkably, the new model recapitulates the impact on Ca2+ alternans of altered CaM and RyR2 functions under 9 different experimental conditions. Our simulations reveal that diastolic cytosolic Ca2+ elevation as a result of rapid pacing triggers Ca2+-CaM dependent inactivation of RyR2. The resultant RyR2 inactivation diminishes sarcoplasmic reticulum Ca2+ release, which, in turn, reduces diastolic cytosolic Ca2+, leading to alternations in diastolic cytosolic Ca2+, RyR2 inactivation, and sarcoplasmic reticulum Ca2+ release (ie, Ca2+ alternans). CONCLUSIONS Our results demonstrate that inactivation of RyR2 by Ca2+-CaM is a major determinant of Ca2+ alternans, making Ca2+-CaM dependent regulation of RyR2 an important therapeutic target for cardiac alternans.
Collapse
Affiliation(s)
- Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Xiaowei Zhong
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.).,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain (R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, CIBERCV and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
| | - Enrique Alvarez-Lacalle
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain (E.A.-L., B.E.)
| | - Blas Echebarria
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain (E.A.-L., B.E.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| |
Collapse
|
44
|
Christoph J, Lebert J. Inverse mechano-electrical reconstruction of cardiac excitation wave patterns from mechanical deformation using deep learning. CHAOS (WOODBURY, N.Y.) 2020; 30:123134. [PMID: 33380038 DOI: 10.1063/5.0023751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The inverse mechano-electrical problem in cardiac electrophysiology is the attempt to reconstruct electrical excitation or action potential wave patterns from the heart's mechanical deformation that occurs in response to electrical excitation. Because heart muscle cells contract upon electrical excitation due to the excitation-contraction coupling mechanism, the resulting deformation of the heart should reflect macroscopic action potential wave phenomena. However, whether the relationship between macroscopic electrical and mechanical phenomena is well-defined and unique enough to be utilized for an inverse imaging technique in which mechanical activation mapping is used as a surrogate for electrical mapping has yet to be determined. Here, we provide a numerical proof-of-principle that deep learning can be used to solve the inverse mechano-electrical problem in phenomenological two- and three-dimensional computer simulations of the contracting heart wall, or in elastic excitable media, with muscle fiber anisotropy. We trained a convolutional autoencoder neural network to learn the complex relationship between electrical excitation, active stress, and tissue deformation during both focal or reentrant chaotic wave activity and, consequently, used the network to successfully estimate or reconstruct electrical excitation wave patterns from mechanical deformation in sheets and bulk-shaped tissues, even in the presence of noise and at low spatial resolutions. We demonstrate that even complicated three-dimensional electrical excitation wave phenomena, such as scroll waves and their vortex filaments, can be computed with very high reconstruction accuracies of about 95% from mechanical deformation using autoencoder neural networks, and we provide a comparison with results that were obtained previously with a physics- or knowledge-based approach.
Collapse
Affiliation(s)
- Jan Christoph
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Lebert
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
45
|
Tapa S, Wang L, Francis Stuart SD, Wang Z, Jiang Y, Habecker BA, Ripplinger CM. Adrenergic supersensitivity and impaired neural control of cardiac electrophysiology following regional cardiac sympathetic nerve loss. Sci Rep 2020; 10:18801. [PMID: 33139790 PMCID: PMC7608682 DOI: 10.1038/s41598-020-75903-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.
Collapse
Affiliation(s)
- Srinivas Tapa
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Lianguo Wang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Samantha D Francis Stuart
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Zhen Wang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Yanyan Jiang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
O'Shea C, Winter J, Holmes AP, Johnson DM, Correia JN, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. Temporal irregularity quantification and mapping of optical action potentials using wave morphology similarity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:84-93. [PMID: 31899215 PMCID: PMC7607254 DOI: 10.1016/j.pbiomolbio.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cardiac optical mapping enables direct and high spatio-temporal resolution recording of action potential (AP) morphology. Temporal alterations in AP morphology are both predictive and consequent of arrhythmia. Here we sought to test if methods that quantify regularity of recorded waveforms could be applied to detect and quantify periods of temporal instability in optical mapping datasets in a semi-automated, user-unbiased manner. METHODS AND RESULTS We developed, tested and applied algorithms to quantify optical wave similarity (OWS) to study morphological temporal similarity of optically recorded APs. Unlike other measures (e.g. alternans ratio, beat-to-beat variability, arrhythmia scoring), the quantification of OWS is achieved without a restrictive definition of specific signal points/features and is instead derived by analysing the complete morphology from the entire AP waveform. Using model datasets, we validated the ability of OWS to measure changes in AP morphology, and tested OWS mapping in guinea pig hearts and mouse atria. OWS successfully detected and measured alterations in temporal regularity in response to several proarrhythmic stimuli, including alterations in pacing frequency, premature contractions, alternans and ventricular fibrillation. CONCLUSION OWS mapping provides an effective measure of temporal regularity that can be applied to optical datasets to detect and quantify temporal alterations in action potential morphology. This methodology provides a new metric for arrhythmia inducibility and scoring in optical mapping datasets.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, UK; EPSRC Centre for Doctoral Training in Physical Sciences for Health, School of Chemistry, University of Birmingham, UK; School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, UK; Institute of Clinical Sciences, University of Birmingham, UK
| | - Daniel M Johnson
- Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Joao N Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, UK; Department of Cardiology, UHB NHS Foundation Trust, Birmingham, UK; Cardiology Specialty, SWBH NHS Trust, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, UK; Department of Cardiology, UHB NHS Foundation Trust, Birmingham, UK
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, UK.
| |
Collapse
|
47
|
Orini M, Yanni J, Taggart P, Hanson B, Hayward M, Smith A, Zhang H, Colman M, Jones G, Jie X, Dobrzynski H, Boyett MR, Lambiase PD. Mechanistic insights from targeted molecular profiling of repolarization alternans in the intact human heart. Europace 2020; 21:981-989. [PMID: 30753421 PMCID: PMC6545501 DOI: 10.1093/europace/euz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/17/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
AIMS Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| | - Joseph Yanni
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, UK
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, UK
| | - Martin Hayward
- Department of Cardiothoracic Surgery, The Heart Hospital, University College London Hospitals, London, UK
| | - Andrew Smith
- Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| | - Henggui Zhang
- Division of Cardiovascular Science, University of Manchester, Manchester, UK.,School of Physics and Astronomy, University of Manchester, Manchester, UK
| | | | - Gareth Jones
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Xiao Jie
- Institute of Cardiovascular Science, University College London, London, UK
| | - Halina Dobrzynski
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Mark R Boyett
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| |
Collapse
|
48
|
Wang Z, Tapa S, Francis Stuart SD, Wang L, Bossuyt J, Delisle BP, Ripplinger CM. Aging Disrupts Normal Time-of-Day Variation in Cardiac Electrophysiology. Circ Arrhythm Electrophysiol 2020; 13:e008093. [PMID: 32706628 DOI: 10.1161/circep.119.008093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac gene expression and arrhythmia occurrence have time-of-day variation; however, daily changes in cardiac electrophysiology, arrhythmia susceptibility, and Ca2+ handling have not been characterized. Furthermore, how these patterns change with age is unknown. METHODS Hearts were isolated during the light (zeitgeber time [ZT] 4 and ZT9) and dark cycle (ZT14 and ZT21) from adult (12-18 weeks) male mice. Hearts from aged (18-20 months) male mice were isolated at ZT4 and ZT14. All hearts were Langendorff-perfused for optical mapping with voltage- and Ca2+-sensitive dyes (n=4-7/group). Cardiac gene and protein expression were assessed with real-time polymerase chain reaction (n=4-6/group) and Western blot (n=3-4/group). RESULTS Adult hearts had the shortest action potential duration (APD) and Ca2+ transient duration (CaTD) at ZT14 (APD80: ZT4: 45.4±4.1 ms; ZT9: 45.1±8.6 ms; ZT14: 34.7±4.2 ms; ZT21: 49.2±7.6 ms, P<0.05 versus ZT4 and ZT21; and CaTD80: ZT4: 70.1±3.3 ms; ZT9: 72.7±2.7 ms; ZT14: 64.3±3.3 ms; ZT21: 74.4±1.2 ms, P<0.05 versus other time points). The pacing frequency at which CaT alternans emerged was faster, and average CaT alternans magnitude was significantly reduced at ZT14 compared with the other time points. There was a trend for decreased spontaneous premature ventricular complexes and pacing-induced ventricular arrhythmias at ZT14, and the hearts at ZT14 had diminished responses to isoproterenol compared with ZT4 (ZT4: 49.5.0±5.6% versus ZT14: 22.7±9.5% decrease in APD, P<0.01). In contrast, aged hearts exhibited no difference between ZT14 and ZT4 in nearly every parameter assessed (except APD80: ZT4: 39.7±1.9 ms versus ZT14: 33.8±3.1 ms, P<0.01). Gene expression of KCNA5 (potassium voltage-gated channel subfamily A member 5; encoding Kv1.5) was increased, whereas gene expression of ADRB1 (encoding β1-adrenergic receptors) was decreased at ZT14 versus ZT4 in adult hearts. No time-of-day changes in expression or phosphorylation of Ca2+ handling proteins (SERCA2 [sarco/endoplasmic reticulum Ca2+-ATPase], RyR2 [ryanodine receptor 2], and PLB [phospholamban]) was found in ex vivo perfused adult isolated hearts. CONCLUSIONS Isolated adult hearts have strong time-of-day variation in cardiac electrophysiology, Ca2+ handling, and adrenergic responsiveness, which is disrupted with age.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Srinivas Tapa
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Samantha D Francis Stuart
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Julie Bossuyt
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Brian P Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington (B.P.D.)
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| |
Collapse
|
49
|
Liu T, Xiong F, Qi XY, Xiao J, Villeneuve L, Abu-Taha I, Dobrev D, Huang C, Nattel S. Altered calcium handling produces reentry-promoting action potential alternans in atrial fibrillation-remodeled hearts. JCI Insight 2020; 5:133754. [PMID: 32255765 DOI: 10.1172/jci.insight.133754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) alters atrial cardiomyocyte (ACM) Ca2+ handling, promoting ectopic beat formation. We examined the effects of AF-associated remodeling on Ca2+-related action potential dynamics and consequences for AF susceptibility. AF was maintained electrically in dogs by right atrial (RA) tachypacing. ACMs isolated from AF dogs showed increased Ca2+ release refractoriness, spontaneous Ca2+ spark frequency, and cycle length (CL) threshold for Ca2+ and action potential duration (APD) alternans versus controls. AF increased the in situ CL threshold for Ca2+/APD alternans and spatial dispersion in Ca2+ release recovery kinetics, leading to spatially discordant alternans associated with reentrant rotor formation and susceptibility to AF induction/maintenance. The clinically available agent dantrolene reduced Ca2+ leak and CL threshold for Ca2+/APD alternans in ACMs and AF dog right atrium, while suppressing AF susceptibility; caffeine increased Ca2+ leak and CL threshold for Ca2+/APD alternans in control dog ACMs and RA tissues. In vivo, the atrial repolarization alternans CL threshold was increased in AF versus control, as was AF vulnerability. Intravenous dantrolene restored repolarization alternans threshold and reduced AF vulnerability. Immunoblots showed reduced expression of total and phosphorylated ryanodine receptors and calsequestrin in AF and unchanged phospholamban/SERCA expression. Thus, along with promoting spontaneous ectopy, AF-induced Ca2+ handling abnormalities favor AF by enhancing vulnerability to repolarization alternans, promoting initiation and maintenance of reentrant activity; dantrolene provides a lead molecule to target this mechanism.
Collapse
Affiliation(s)
- Tao Liu
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Cardiology, Renmin Hospital of Wuhan University, China.,Cardiovascular Research Institute, Wuhan University, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feng Xiong
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Xiao-Yan Qi
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jiening Xiao
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, China.,Cardiovascular Research Institute, Wuhan University, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Stanley Nattel
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany.,IHU LIRYC Institute, Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
50
|
Wang L, Olivas A, Francis Stuart SD, Tapa S, Blake MR, Woodward WR, Habecker BA, Ripplinger CM. Cardiac sympathetic nerve transdifferentiation reduces action potential heterogeneity after myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 318:H558-H565. [PMID: 31975627 DOI: 10.1152/ajpheart.00412.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac sympathetic nerves undergo cholinergic transdifferentiation following reperfused myocardial infarction (MI), whereby the sympathetic nerves release both norepinephrine (NE) and acetylcholine (ACh). The functional electrophysiological consequences of post-MI transdifferentiation have never been explored. We performed MI or sham surgery in wild-type (WT) mice and mice in which choline acetyltransferase was deleted from adult noradrenergic neurons [knockout (KO)]. Electrophysiological activity was assessed with optical mapping of action potentials (AP) and intracellular Ca2+ transients (CaT) in innervated Langendorff-perfused hearts. KO MI hearts had similar NE content but reduced ACh content compared with WT MI hearts (0.360 ± 0.074 vs. 0.493 ± 0.087 pmol/mg; KO, n = 6; WT, n = 4; P < 0.05). KO MI hearts also had higher basal ex vivo heart rates versus WT MI hearts (328.5 ± 35.3 vs. 247.4 ± 62.4 beats/min; KO, n = 8; WT, n = 6; P < 0.05). AP duration at 80% repolarization was significantly shorter in the remote and border zones of KO MI versus WT MI hearts, whereas AP durations (APDs) were similar in infarct regions. This APD heterogeneity resulted in increased APD dispersion in the KO MI versus WT MI hearts (11.9 ± 2.7 vs. 8.2 ± 2.3 ms; KO, n = 8; WT, n = 6; P < 0.05), which was eliminated with atropine. CaT duration at 80% and CaT alternans magnitude were similar between groups both with and without sympathetic nerve stimulation. These results indicate that cholinergic transdifferentiation following MI prolongs APD in the remote and border zone and reduces APD heterogeneity.NEW & NOTEWORTHY Cardiac sympathetic neurons undergo cholinergic transdifferentiation following myocardial infarction; however, the electrophysiological effects of corelease of norepinephrine and acetylcholine (ACh) have never been assessed. Using a mouse model in which choline acetyltransferase was deleted from adult noradrenergic neurons and optical mapping of innervated hearts, we found that corelease of ACh reduces dispersion of action potential duration, which may be antiarrhythmic.
Collapse
Affiliation(s)
- Lianguo Wang
- Department of Pharmacology, University of California, Davis, California
| | - Antoinette Olivas
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | | | - Srinivas Tapa
- Department of Pharmacology, University of California, Davis, California
| | - Matthew R Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.,Department of Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|