1
|
Lee SJ, Kim E, Jeong Y, Youm JB, Kim HK, Han J, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim SJ, Lee HA. Evaluation of the cardiotoxicity of Echinochrome A using human induced pluripotent stem cell-derived cardiac organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117489. [PMID: 39644572 DOI: 10.1016/j.ecoenv.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Echinochrome A (EchA), a marine-derived natural product, has shown promise in treating cardiovascular and inflammatory diseases due to its antioxidant and anti-inflammatory properties. However, its cardiac safety remains underexplored. In this study, we utilized human induced pluripotent stem cell-derived cardiac organoids (hCOs) to validate their ability to model the cardiac safety profile of EchA in a human-relevant system. While EchA's therapeutic effects have been reported, prior studies have not evaluated its cardiotoxicity or arrhythmogenic potential in a high-fidelity 3D human cardiac model. The hCOs, characterized by expression of key cardiac markers (cTnT) and functional ion channels (Cav1.2, Nav1.5, hERG), exhibited structural and electrophysiological properties reflective of human cardiac physiology. Using multi-electrode array (MEA) analysis, we assessed the effects of EchA at concentrations ranging from 0.1 to 30 µM on electrophysiological parameters, including beat period, field potential amplitude, field potential duration, and spike slope. EchA treatment induced no significant changes in these parameters, confirming its non-toxic electrophysiological profile. Cellular viability and lactate dehydrogenase (LDH) assays revealed no cytotoxic effects of EchA across tested concentrations. Contractility assays further demonstrated that EchA did not affect contraction velocity, relaxation velocity, or time to 50 % maximal contraction and relaxation. This study fills a critical gap and highlights the translational relevance of hCOs for cardiotoxicity assessment, demonstrating EchA's cardiac safety and supporting its potential therapeutic and environmental applications.
Collapse
Affiliation(s)
- Su-Jin Lee
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eunji Kim
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Yeeun Jeong
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Elena A Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Natalia P Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sergey A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Hyang-Ae Lee
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
2
|
Liu CH, Ho YC, Lee WC, Huang CY, Lee YK, Hsieh CB, Huang NC, Wu CC, Nguyen NUN, Hsu CC, Chen CH, Chen YC, Huang WC, Lu YY, Fang CC, Chang YC, Chang CL, Tsai MK, Wen ZH, Li CZ, Li CC, Chuang PK, Yang SM, Chu TH, Huang SC. Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin Attenuates Sorafenib-Induced Myocardial Inflammation and Toxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4844-4858. [PMID: 38884142 DOI: 10.1002/tox.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1β/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.
Collapse
Affiliation(s)
- Ching-Han Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Yi Huang
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Division of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chiu-Hua Chen
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Kai Tsai
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiao-Zhu Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chiao-Ching Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Urology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Pingtung Branch of Kaohsiung Armed Forces General Hospital, Pingtung, Taiwan
| |
Collapse
|
3
|
Khan B, Lanzuolo C, Rosti V, Santarelli P, Pich A, Kraft T, Amrute-Nayak M, Nayak A. Sorafenib induces cachexia by impeding transcriptional signaling of the SET1/MLL complex on muscle-specific genes. iScience 2024; 27:110913. [PMID: 39386761 PMCID: PMC11462028 DOI: 10.1016/j.isci.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Chemotherapeutics used in cancer therapy are often linked to muscle wasting or cachexia. Insights into the molecular basis of chemotherapy-induced cachexia is essential to improve treatment strategies. Here, we demonstrated that Sorafenib-tyrosine kinase inhibitor (TKI) class of chemotherapeutic agents-induced cachexia. System-wide analyses revealed that Sorafenib alters the global transcriptional program and proteostasis in muscle cells. Mechanistically, Sorafenib treatment reduced active epigenetic mark H3K4 methylation on distinct muscle-specific genes by impeding chromatin association of SET1A-catalytic component of the SET1/MLL histone methyltransferase complex. This mechanism favored transcriptional disorientation that led to disrupted sarcomere assembly, calcium homeostasis and mitochondrial respiration. Consequently, the contractile ability of muscle cells was severely compromised. Interestingly, the other prominent TKIs Nilotinib and Imatinib did not exert similar effects on muscle cell physiology. Collectively, we identified an unanticipated transcriptional mechanism underlying Sorafenib-induced cachexia. Our findings hold the potential to strategize therapy regimens to minimize chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Bushra Khan
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Chiara Lanzuolo
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Rosti
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Philina Santarelli
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Andreas Pich
- Institute of Toxicology, Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Kim YJ, Lim B, Kim SY, Shin YZ, Yu N, Shin EK, Lee JE, Jeon YH, Kim DD, Lee J, Cha HJ. Remodeling of sorafenib as an orally bioavailable ferroptosis inducer for Lung Cancer by chemical modification of adenine-binding motif. Biomed Pharmacother 2024; 176:116758. [PMID: 38796972 DOI: 10.1016/j.biopha.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Sorafenib (BAY 43-9006) was developed as a multi-kinase inhibitor to treat advanced renal cell, hepatocellular, and thyroid cancers. The cytotoxic effect of sorafenib on cancer cells results from not only inhibiting the MEK/ERK signaling pathway (the on-target effect) but also inducing oxidative damage (the off-target effect). The inhibitory effect of sorafenib on system Xc- (xCT), a cystine/glutamate antiporter, promotes ferroptosis induction and accounts for oxidative damage. While emerging studies on ferroptosis in cancers have garnered increasing attention, the lack of consideration for ferroptosis inducers (FINs) with favorable pharmacokinetics could be problematic. Herein, we remodeled the chemical structure of sorafenib, of which pharmacokinetics and safety are already assured, to customize the off-target effect (i.e., ferroptosis induction) to on-target by disrupting the adenine-binding motif. JB3, a sorafenib derivative (i.e., JB compounds), with a tenfold higher IC50 toward RAF1 because of chemical remodeling, induced strong cytotoxicity in the elastin-sensitive lung cancer cells, while it was markedly reduced by ferrostatin-1. The 24% oral bioavailability of JB3 in rats accounted for a significant anti-tumor effect of orally administrated JB3 in xenograft models. These results indicate that JB3 could be further developed as an orally bioavailable FIN in novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; College of Pharmacy and Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bumhee Lim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Seo Young Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Ze Shin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Nayoung Yu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Kyung Shin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; College of Pharmacy and Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lee SW, Song M, Woo DH, Jeong GS. Proposal for considerations during human iPSC-derived cardiac organoid generation for cardiotoxicity drug testing. Biomed Pharmacother 2024; 174:116511. [PMID: 38574616 DOI: 10.1016/j.biopha.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Human iPSC-derived cardiac organoids (hiPSC-COs) for cardiotoxicity drug testing via the variety of cell lines and unestablished protocols may lead to differences in response results due to a lack of criteria for generation period and size. To ensure reliable drug testing, it is important for researchers to set optimal generation period and size of COs according to the cell line and protocol applied in their studies. Hence, we sought to propose a process to establish minimum criteria for the generation duration and size of hiPSC-COs for cardiotoxic drug testing. We generated hiPSC-COs of different sizes based on our protocol and continuously monitored organoids until they indicated a minimal beating rate change as a control that could lead to more accurate beating rate changes on drug testing. Calcium transients and physiological tests to assess the functionality of hiPSC-COs on selected generation period, which showed regular cardiac beating, and immunostaining assays to compare characteristics were performed. We explained the generation period and size that exhibited and maintained regular beating rate changes on hiPSC-COs, and lead to reliable response results to cardiotoxicity drugs. We anticipate that this study will offer valuable insights into considering the appropriate generation period and size of hiPSC-COs ensuring reliable outcomes in cardiotoxicity drug testing.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - MyeongJin Song
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul 07802, Republic of Korea
| | - Dong-Hun Woo
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul 07802, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
6
|
Li Y, Yan J, Sun H, Liang Y, Zhao Q, Yu S, Zhang Y. Ferroptosis inhibitor alleviates sorafenib-induced cardiotoxicity by attenuating KLF11-mediated FSP1-dependent ferroptosis. Int J Biol Sci 2024; 20:2622-2639. [PMID: 38725840 PMCID: PMC11077382 DOI: 10.7150/ijbs.86479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Sorafenib is a standard first-line drug for advanced hepatocellular carcinoma, but the serious cardiotoxic effects restrict its therapeutic applicability. Here, we show that iron-dependent ferroptosis plays a vital role in sorafenib-induced cardiotoxicity. Remarkably, our in vivo and in vitro experiments demonstrated that ferroptosis inhibitor application neutralized sorafenib-induced heart injury. By analyzing transcriptome profiles of adult human sorafenib-treated cardiomyocytes, we found that Krüppel-like transcription factor 11 (KLF11) expression significantly increased after sorafenib stimulation. Mechanistically, KLF11 promoted ferroptosis by suppressing transcription of ferroptosis suppressor protein 1 (FSP1), a seminal breakthrough due to its ferroptosis-repressing properties. Moreover, FSP1 knockdown showed equivalent results to glutathione peroxidase 4 (GPX4) knockdown, and FSP1 overexpression counteracted GPX4 inhibition-induced ferroptosis to a substantial extent. Cardiac-specific overexpression of FSP1 and silencing KLF11 by an adeno-associated virus serotype 9 markedly improved cardiac dysfunction in sorafenib-treated mice. In summary, FSP1-mediated ferroptosis is a crucial mechanism for sorafenib-provoked cardiotoxicity, and targeting ferroptosis may be a promising therapeutic strategy for alleviating sorafenib-induced cardiac damage.
Collapse
Affiliation(s)
- Yilan Li
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Jingru Yan
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yating Liang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Qianqian Zhao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
7
|
Monogiou Belik D, Bernasconi R, Xu L, Della Verde G, Lorenz V, Grüterich V, Balzarolo M, Mochizuki M, Pfister O, Kuster GM. The Flt3-inhibitor quizartinib augments apoptosis and promotes maladaptive remodeling after myocardial infarction in mice. Apoptosis 2024; 29:357-371. [PMID: 37945814 PMCID: PMC10873224 DOI: 10.1007/s10495-023-01911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) targeting fms-like tyrosine kinase 3 (Flt3) such as quizartinib were specifically designed for acute myeloid leukemia treatment, but also multi-targeting TKIs applied to solid tumor patients inhibit Flt3. Flt3 is expressed in the heart and its activation is cytoprotective in myocardial infarction (MI) in mice. OBJECTIVES We sought to test whether Flt3-targeting TKI treatment aggravates cardiac injury after MI. METHODS AND RESULTS Compared to vehicle, quizartinib (10 mg/kg/day, gavage) did not alter cardiac dimensions or function in healthy mice after four weeks of therapy. Pretreated mice were randomly assigned to MI or sham surgery while receiving quizartinib or vehicle for one more week. Quizartinib did not aggravate the decline in ejection fraction, but significantly enhanced ventricular dilatation one week after infarction. In addition, apoptotic cell death was significantly increased in the myocardium of quizartinib-treated compared to vehicle-treated mice. In vitro, quizartinib dose-dependently decreased cell viability in neonatal rat ventricular myocytes and in H9c2 cells, and increased apoptosis as assessed in the latter. Together with H2O2, quizartinib potentiated the phosphorylation of the pro-apoptotic mitogen activated protein kinase p38 and augmented H2O2-induced cell death and apoptosis beyond additive degree. Pretreatment with a p38 inhibitor abolished apoptosis under quizartinib and H2O2. CONCLUSION Quizartinib potentiates apoptosis and promotes maladaptive remodeling after MI in mice at least in part via a p38-dependent mechanism. These findings are consistent with the multi-hit hypothesis of cardiotoxicity and make cardiac monitoring in patients with ischemic heart disease under Flt3- or multi-targeting TKIs advisable.
Collapse
Affiliation(s)
- Daria Monogiou Belik
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Riccardo Bernasconi
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Lifen Xu
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Vera Lorenz
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Vivienne Grüterich
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Melania Balzarolo
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Michika Mochizuki
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Otmar Pfister
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Li J, Zhang L, Ge T, Liu J, Wang C, Yu Q. Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Des Devel Ther 2024; 18:829-843. [PMID: 38524877 PMCID: PMC10959117 DOI: 10.2147/dddt.s443107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been recognized as crucial agents for treating various tumors, and one of their key targets is the intracellular site of the vascular endothelial growth factor receptor (VEGFR). While TKIs have demonstrated their effectiveness in solid tumor patients and increased life expectancy, they can also lead to adverse cardiovascular effects including hypertension, thromboembolism, cardiac ischemia, and left ventricular dysfunction. Among the TKIs, sorafenib was the first approved agent and it exerts anti-tumor effects on hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) by inhibiting angiogenesis and tumor cell proliferation through targeting VEGFR and RAF. Unfortunately, the adverse cardiovascular effects caused by sorafenib not only affect solid tumor patients but also limit its application in curing other diseases. This review explores the mechanisms underlying sorafenib-induced cardiovascular adverse effects, including endothelial dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, dysregulated autophagy, and ferroptosis. It also discusses potential treatment strategies, such as antioxidants and renin-angiotensin system inhibitors, and highlights the association between sorafenib-induced hypertension and treatment efficacy in cancer patients. Furthermore, emerging research suggests a link between sorafenib-induced glycolysis, drug resistance, and cardiovascular toxicity, necessitating further investigation. Overall, understanding these mechanisms is crucial for optimizing sorafenib therapy and minimizing cardiovascular risks in cancer patients.
Collapse
Affiliation(s)
- Jue Li
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Teng Ge
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Jiping Liu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Chuan Wang
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Qi Yu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
9
|
Nagy A, Börzsei D, Hoffmann A, Török S, Veszelka M, Almási N, Varga C, Szabó R. A Comprehensive Overview on Chemotherapy-Induced Cardiotoxicity: Insights into the Underlying Inflammatory and Oxidative Mechanisms. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07574-0. [PMID: 38492161 DOI: 10.1007/s10557-024-07574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
While oncotherapy has made rapid progress in recent years, side effects of anti-cancer drugs and treatments have also come to the fore. These side effects include cardiotoxicity, which can cause irreversible cardiac damages with long-term morbidity and mortality. Despite the continuous in-depth research on anti-cancer drugs, an improved knowledge of the underlying mechanisms of cardiotoxicity are necessary for early detection and management of cardiac risk. Although most reviews focus on the cardiotoxic effect of a specific individual chemotherapeutic agent, the aim of our review is to provide comprehensive insight into various agents that induced cardiotoxicity and their underlying mechanisms. Characterization of these mechanisms are underpinned by research on animal models and clinical studies. In order to gain insight into these complex mechanisms, we emphasize the role of inflammatory processes and oxidative stress on chemotherapy-induced cardiac changes. A better understanding and identification of the interplay between chemotherapy and inflammatory/oxidative processes hold some promise to prevent or at least mitigate cardiotoxicity-associated morbidity and mortality among cancer survivors.
Collapse
Affiliation(s)
- András Nagy
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
10
|
Lai X, Wan Q, Jiao SF, Sun XC, Hu JF, Peng HW. Cardiovascular toxicities following the use of tyrosine kinase inhibitors in hepatocellular cancer patients: a retrospective, pharmacovigilance study. Expert Opin Drug Saf 2024; 23:287-296. [PMID: 37608525 DOI: 10.1080/14740338.2023.2251398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cardiac adverse events (AEs) are common in tyrosine kinase inhibitors(TKIs). This study explored the cardiac AEs of TKIs through the Food and Drug Administration's Adverse Event Reporting System (FAERS). METHODS Disproportionality analysis and Bayesian analysis were utilized for data mining of the suspected cardiac AEs of TKIs, based on FAERS data from January 2004 to December 2021. RESULTS A total of 4708 cardiac AEs reports of sorafenib, regorafenib, lenvatinib, and cabozantinib were identified. Hypertension accounts for the most reported cardiac AE. Lenvatinib appears to induce cardiac failure with the highest signals strength [ROR = 7.7 (3.46,17.17)]. Acute myocardial infarction was detected in lenvatinib [ROR = 7.91 (5.64,11.09)] and sorafenib [ROR = 2.22 (1.74, 2.84)]. Acute coronary syndrome was detected in lenvatinib [ROR = 11.57 (6.84, 19.58)] and sorafenib [ROR = 2.81 (1.87,4.24)]. Atrial fibrillation was detected in sorafenib [ROR = 1.82 (1.55,2.14)] and regorafenib [ROR = 1.36 (1.03,1.81)]. Meanwhile, aortic dissections were detected in sorafenib [ROR = 5.08 (3.31,7.8)] and regorafenib [ROR = 3.39 (1.52,7.56)]. Most patients developed hypertension and cardiac failure within 30 days of initiating TKI treatments. Patients taking lenvatinib had an increased incidence of developing acute coronary syndrome after 180 days of treatment. CONCLUSION Analysis of FAERS data provides a precise profile on the characteristics of cardiac AEs associated with different TKI regimens. Distinct monitoring and appropriate management are needed in the care of TKI recipients.
Collapse
Affiliation(s)
- Xin Lai
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Wan
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shou-Feng Jiao
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Chun Sun
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Fang Hu
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Wei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Liu S, Yue S, Guo Y, Han JY, Wang H. Sorafenib induces cardiotoxicity through RBM20-mediated alternative splicing of sarcomeric and mitochondrial genes. Pharmacol Res 2023; 198:107017. [PMID: 38006979 DOI: 10.1016/j.phrs.2023.107017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Sorafenib, a multi-targeted tyrosine kinase inhibitor, is a first-line treatment for advanced solid tumors, but it induces many adverse cardiovascular events, including myocardial infarction and heart failure. These cardiac defects can be mediated by alternative splicing of genes critical for heart function. Whether alternative splicing plays a role in sorafenib-induced cardiotoxicity remains unclear. Transcriptome of rat hearts or human cardiomyocytes treated with sorafenib was analyzed and validated to define alternatively spliced genes and their impact on cardiotoxicity. In rats, sorafenib caused severe cardiotoxicity with decreased left ventricular systolic pressure, elongated sarcomere, enlarged mitochondria and decreased ATP. This was associated with alternative splicing of hundreds of genes in the hearts, many of which were targets of a cardiac specific splicing factor, RBM20. Sorafenib inhibited RBM20 expression in both rat hearts and human cardiomyocytes. The splicing of RBM20's targets, SLC25A3 and FHOD3, was altered into fetal isoforms with decreased function. Upregulation of RBM20 during sorafenib treatment reversed the pathogenic splicing of SLC25A3 and FHOD3, and enhanced the phosphate transport into mitochondria by SLC25A3, ATP synthesis and cell survival.We envision this regulation may happen in many drug-induced cardiotoxicity, and represent a potential druggable pathway for mitigating sorafenib-induced cardiotoxicity.
Collapse
Affiliation(s)
- Songming Liu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shanshan Yue
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Yuxuan Guo
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, School of Basic Medical Sciences, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.
| | - Huan Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
12
|
Tsujinaka K, Izawa-Ishizawa Y, Miyata K, Yoshioka T, Oomine K, Nishi H, Kondo M, Itokazu S, Miyata T, Niimura T, Sato M, Aizawa F, Yagi K, Chuma M, Zamami Y, Goda M, Ishizawa K. Angiogenesis inhibitor-specific hypertension increases the risk of developing aortic dissection. Biomed Pharmacother 2023; 167:115504. [PMID: 37722188 DOI: 10.1016/j.biopha.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Aortic dissection is an adverse event of angiogenesis inhibitors; however, the association between the drugs and aortic dissection is unclear. Therefore, we investigated if and how angiogenesis inhibitors increase the onset of aortic dissection using pharmacologically-induced aortic dissection-prone model (LAB) mice, cultured endothelial cells, and real-world databases, which is a novel integrated research approach. Disproportionality analysis was performed and calculated using the reporting odds ratio as a risk signal using a worldwide database of spontaneous adverse events to estimate the risk of adverse events. Angiogenesis inhibitors, but not other hypertension-inducing drugs, showed significant risk signals for aortic aneurysms and dissection. A retrospective cohort analysis using JMDC, a medical receipt database in Japan, showed that the history of atherosclerosis and dyslipidemia, but not hypertension, were significantly associated with the onset of aortic dissection during angiogenesis inhibitor medication administration. For in vivo studies, sunitinib (100 mg/kg/day) was administered to LAB mice. Sunitinib increased systolic blood pressure (182 mmHg vs. 288 mmHg with sunitinib; p<0.01) and the incidence of aortic dissection (40% vs. 59% with sunitinib; p = 0.34) in mice. In vivo and in vitro studies revealed that sunitinib increased endothelin-1 expression and induced endothelial cell damage evaluated by intracellular- and vascular cell adhesion molecule-1 expressions. The increased risk of developing aortic dissection with angiogenesis inhibitors is associated with the development of drug-specific hypertension via endothelial cell damage and endothelin-1 expression. Our findings are invaluable in establishing safer anticancer therapies and strategies to prevent the development of vascular toxicity in high-risk patients.
Collapse
Affiliation(s)
- Kaito Tsujinaka
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of General Medicine, Taoka Hospital, Tokushima, Japan.
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Toshihiko Yoshioka
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kohei Oomine
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Honoka Nishi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masateru Kondo
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Syuto Itokazu
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tatsumi Miyata
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Maki Sato
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Department of Hospital Pharmacy & Pharmacology, Asahikawa Medical University & University Hospital, Asahikawa, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
13
|
Mihalcea D, Memis H, Mihaila S, Vinereanu D. Cardiovascular Toxicity Induced by Vascular Endothelial Growth Factor Inhibitors. Life (Basel) 2023; 13:life13020366. [PMID: 36836722 PMCID: PMC9965690 DOI: 10.3390/life13020366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cardiotoxicity is an important side effect of vascular endothelial growth factor (VEGF) inhibitors therapy used in the treatment of various malignancies, leading to increased morbidity and mortality. Arterial hypertension, cardiac ischemia with the acceleration of atherosclerosis, arrhythmias, myocardial dysfunction and thromboembolic disease are the most feared cardiovascular adverse reactions due to VEGF inhibitors. Susceptibility for the occurrence of VEGF inhibitors-induced cardiotoxicity has multifactorial determinants, with a significant inter-individual variation. Baseline cardiovascular risk assessment of the patient, type and stage of cancer, dose and duration of VEGF inhibitors treatment and adjuvant chemotherapy or radiotherapy are the main predictors for cardiotoxicity. The role of the cardio-oncology team becomes essential for achieving maximum therapeutic anti-angiogenic effects with minimum cardiovascular side effects. This review will summarize the incidence, risk factors, mechanisms, management and treatment of VEGF inhibitors-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Diana Mihalcea
- Cardiology and Cardiovascular Surgery Department, University of Medicine and Pharmacy Carol Davila, Splaiul Independentei 169, 050098 Bucharest, Romania
- Cardiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Hayat Memis
- Cardiology and Cardiovascular Surgery Department, University of Medicine and Pharmacy Carol Davila, Splaiul Independentei 169, 050098 Bucharest, Romania
| | - Sorina Mihaila
- Cardiology and Cardiovascular Surgery Department, University of Medicine and Pharmacy Carol Davila, Splaiul Independentei 169, 050098 Bucharest, Romania
- Cardiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology and Cardiovascular Surgery Department, University of Medicine and Pharmacy Carol Davila, Splaiul Independentei 169, 050098 Bucharest, Romania
- Cardiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
- Correspondence: ; Tel./Fax: +40-21-3180576
| |
Collapse
|
14
|
Kwon H, Odackal J, Husain M, Liebner DA. Sorafenib-Induced Capillary Leak Syndrome. Case Rep Oncol 2023; 16:1087-1094. [PMID: 37900814 PMCID: PMC10601792 DOI: 10.1159/000533957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Capillary leak syndrome is a rare life-threatening disorder of acute endothelial hyperpermeability. It consists of initial fluid extravasation resulting in hypotension, hypoalbuminemia, and hemoconcentration, followed by noncardiogenic pulmonary edema from rapid fluid remobilization into intravascular compartment. Drug-induced etiology is an important diagnostic consideration in cancer patients, particularly with use of antimetabolites, immunostimulants, and monoclonal antibodies. Sorafenib-mediated capillary leak syndrome has never been reported. Here, we present the case of a 29-year-old female patient with a desmoid tumor of the thigh, who was admitted for acute hypoxic respiratory failure after recent initiation of sorafenib. She was found to have extensive pulmonary edema, bilateral pleural effusions, and hemoconcentration, all of which stabilized on supportive care with noninvasive mechanical ventilation and intravenous diuresis. Her infectious and cardiac work-up were negative. Given the temporal relationship between sorafenib use and symptom onset as well as a lack of an alternative etiology of her findings, patient was deemed to have sorafenib-induced acute capillary leak syndrome. Importantly, she did not become hypotensive prior to or during this hospitalization. To our knowledge, we reported for the first time an atypical presentation of acute capillary leak syndrome due to sorafenib use without hemodynamic instability.
Collapse
Affiliation(s)
- Hyunwoo Kwon
- Physician Scientist Training Program, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John Odackal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David A. Liebner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
15
|
Zhou CC, He YQ, Qiu YS, Ni CX, Shen FM, Li DJ. Zinc supplementation ameliorates sorafenib-induced cognitive impairment through ROS/JNK signaling pathway. Biol Trace Elem Res 2023; 201:324-337. [PMID: 35129807 DOI: 10.1007/s12011-022-03142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023]
Abstract
Sorafenib, a multiple kinase inhibitor, is widely used in cancer patients. Recently, clinical studies highlighted the relationship between cognitive deficits and sorafenib exposure. Zinc abundant in the body has been reported to exert neuroprotective activities. However, the effects of zinc supplementation on sorafenib-induced cognitive impairment are still unknown. In the current study, we verified that mice challenged with sorafenib displayed characteristic features of cognitive impairment. However, zinc treatment effectively improved these changes. Histopathological staining also showed that zinc significantly alleviated hippocampal microstructural and ultrastructural damages induced by sorafenib. Meanwhile, zinc significantly reduced sorafenib-induced ROS production and neuronal cells apoptosis in vivo and vitro. Additionally, we also investigated whether zinc protected against sorafenib-induced neuronal cells apoptosis via ROS/JNK pathway through treating SH-SY5Y cells with the NAC or the specific JNK activator anisomycin. The results indicated that NAC performed the same protective effects as zinc in sorafenib-challenged SH-SY5Y cells and activation of JNK by anisomycin partly abolished the protective effects of zinc. Collectively, the present study suggested that inhibition of oxidative stress and the JNK pathway might contribute to the protective effects of zinc against sorafenib-caused cognitive impairment in vivo and vitro.
Collapse
Affiliation(s)
- Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Shuang Qiu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chen-Xu Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
16
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
17
|
Pollard JA, Alonzo TA, Gerbing R, Brown P, Fox E, Choi J, Fisher B, Hirsch B, Kahwash S, Getz K, Levine J, Brodersen LE, Loken MR, Raimondi S, Tarlock K, Wood A, Sung L, Kolb EA, Gamis A, Meshinchi S, Aplenc R. Sorafenib in Combination With Standard Chemotherapy for Children With High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: A Report From the Children's Oncology Group Protocol AAML1031. J Clin Oncol 2022; 40:2023-2035. [PMID: 35349331 PMCID: PMC9197362 DOI: 10.1200/jco.21.01612] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE High allelic ratio (HAR) FLT3/ITD (AR > 0.4) mutations confer poor prognosis in pediatric acute myeloid leukemia (AML). COG AAML1031 studied the feasibility and efficacy of adding sorafenib, a multikinase tyrosine kinase inhibitor to standard chemotherapy and as single-agent maintenance therapy in this population. MATERIALS AND METHODS Patients were treated in three cohorts. The initial safety phase defined the maximum tolerated dose of sorafenib starting in induction 2. Cohorts 2 and 3 added sorafenib in induction and as single-agent maintenance. Clinical outcome analysis was limited to n = 72 patients in cohorts 2/3 and compared with n = 76 HAR FLT3/ITD+ AML patients who received identical chemotherapy without sorafenib. Sorafenib pharmacokinetics and plasma inhibitory activity were measured in a subset of patients. RESULTS The maximum tolerated dose of sorafenib was 200 mg/m2 once daily; dose-limiting toxicities included rash (n = 2; 1 grade 3 and 1 grade 2), grade 2 hand-foot syndrome, and grade 3 fever. Pharmacokinetics/plasma inhibitory activity data demonstrated that measured plasma concentrations were sufficient to inhibit phosphorylated FLT3. Although outcomes were superior with sorafenib in cohorts 2 and 3, patients treated with sorafenib also underwent hematopoietic stem-cell transplant more frequently than the comparator population. Multivariable analysis that accounted for both hematopoietic stem-cell transplant and favorable co-occurring mutations confirmed sorafenib's benefit. Specifically, risk of an event was approximately two-fold higher in HAR FLT3/ITD+ patients who did not receive sorafenib (event-free survival from study entry: hazard ratio [HR] 2.37, 95% CI, 1.45 to 3.88, P < .001, disease-free survival from complete remission: HR 2.28, 95% CI, 1.08 to 4.82, P = .032, relapse risk from complete remission: HR 3.03, 95% CI 1.31 to 7.04, P = .010). CONCLUSION Sorafenib can be safely added to conventional AML chemotherapy and may improve outcomes in pediatric HAR FLT3/ITD+ AML.
Collapse
Affiliation(s)
- Jessica A Pollard
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Todd A Alonzo
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | | | - Patrick Brown
- Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | - John Choi
- University of Alabama, Birmingham AL
| | - Brian Fisher
- Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Kelly Getz
- University of Pennsylvania, Department of Epidemiology, Biostatistics and Informatics, Philadelphia, PA
| | | | | | | | | | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Andrew Wood
- University of Auckland, Auckland, New Zealand
| | | | - E Anders Kolb
- Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Alan Gamis
- Children's Mercy Hospital and Clinics, Kansas City, MO
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Seattle Children's Hospital, University of Washington, Seattle, WA
| | | |
Collapse
|
18
|
Jiang H, Wang C, Zhang A, Li Y, Li J, Li Z, Yang X, Hou Y. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomed Pharmacother 2022; 153:113280. [PMID: 35724508 DOI: 10.1016/j.biopha.2022.113280] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Sorafenib (SOR) is an effective chemotherapy drug for hepatocellular carcinoma, renal cell carcinoma, and differentiated thyroid carcinoma. However, a long-standing clinical issue associated with SOR use is an increased risk of cardiotoxicity, but the underlying mechanisms remain obscure. Here we report that ferroptosis of cardiomyocytes is responsible for SOR-induced cardiotoxicity. The specific ferroptosis inhibitor ferrostatin-1 and deferoxamine mesylate, an iron chelator, significantly alleviate SOR-induced cardiac damage. RNA-sequencing revealed that endoplasmic reticulum (ER) stress and the unfolded protein response were predominately activated, which might be attributed to the lipid reactive oxygen species-mediated perturbation of the ER. Activating transcription factor 4 (ATF4) is one of the most significantly up-regulated genes, knockdown of ATF4 exacerbates cardiomyocyte ferroptosis induced by SOR, while overexpression of ATF4 promotes cell survival. Mice with AAV-mediated ATF4 knockdown exhibit lipid peroxidation and more severe cardiomyopathy. Further experiments demonstrated that ATF4 exerts its protective role by elevating SLC7A11 expression, a transport subunit of system Xc-, which promotes cystine uptake and glutathione biosynthesis. The cardioprotective effect of ATF4 was diminished by SLC7A11 knockdown in cardiomyocytes subjected to SOR treatment. Taken together, these findings show that ferroptosis of cardiomyocytes is an important cause of SOR-related cardiotoxicity. ATF4 acts as a key regulator to promote cardiomyocytes survival by up-regulation of SLC7A11 and suppression of ferroptosis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Cong Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong 250014, China
| | - An Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Yufeng Li
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Jianping Li
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong 250014, China
| | - Xin Yang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong 250014, China.
| |
Collapse
|
19
|
Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Sci Rep 2022; 12:10132. [PMID: 35710779 PMCID: PMC9203790 DOI: 10.1038/s41598-022-13203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase inhibitors improve cancer survival but their cardiotoxicity requires investigation. We investigated these inhibitors’ effects on human cardiac progenitor cells in vitro and rat heart in vivo. We applied imatinib, sunitinib or sorafenib to human cardiac progenitor cells, assessing cell viability, proliferation, stemness, differentiation, growth factor production and second messengers. Alongside, sunitinib effects were assessed in vivo. Inhibitors decreased (p < 0.05) cell viability, at levels equivalent to ‘peak’ (24 h; imatinib: 91.5 ± 0.9%; sunitinib: 83.9 ± 1.8%; sorafenib: 75.0 ± 1.6%) and ‘trough’ (7 days; imatinib: 62.3 ± 6.2%; sunitinib: 86.2 ± 3.5%) clinical plasma levels, compared to control (100% viability). Reduced (p < 0.05) cell cycle activity was seen with imatinib (29.3 ± 4.3% cells in S/G2/M-phases; 50.3 ± 5.1% in control). Expression of PECAM-1, Nkx2.5, Wnt2, linked with cell differentiation, were decreased (p < 0.05) 2, 2 and 6-fold, respectively. Expression of HGF, p38 and Akt1 in cells was reduced (p < 0.05) by sunitinib. Second messenger (p38 and Akt1) blockade affected progenitor cell phenotype, reducing c-kit and growth factor (HGF, EGF) expression. Sunitinib for 9 days (40 mg/kg, i.p.) in adult rats reduced (p < 0.05) cardiac ejection fraction (68 ± 2% vs. baseline (83 ± 1%) and control (84 ± 4%)) and reduced progenitor cell numbers. Receptor tyrosine kinase inhibitors reduce cardiac progenitor cell survival, proliferation, differentiation and reparative growth factor expression.
Collapse
|
20
|
Abstract
Purpose of Review The advent of induced pluripotent stem cells (iPSC) has paved the way for new in vitro models of human cardiomyopathy. Herein, we will review existing models of disease as well as strengths and limitations of the system. Recent Findings Preclinical studies have now demonstrated that iPSCs generated from patients with both acquired or heritable genetic diseases retain properties of the disease in vitro and can be used as a model to study novel therapeutics. iPSCs can be differentiated in vitro into the cardiomyocyte lineage into cells resembling adult ventricular myocytes that retain properties of cardiovascular disease from their respective donor. iPSC pluripotency allows for them to be frozen, stored, and continually used to generate iPSC-derived myocytes for future experiments without need for invasive procedures or repeat myocyte isolations to obtain animal or human cardiac tissues. Summary While not without their limitations, iPSC models offer new ways for studying patient-specific cardiomyopathies. iPSCs offer a high-throughput avenue for drug development, modeling of disease pathophysiology in vitro, and enabling experimental repair strategies without need for invasive procedures to obtain cardiac tissues.
Collapse
|
21
|
Bergler-Klein J, Rainer PP, Wallner M, Zaruba MM, Dörler J, Böhmer A, Buchacher T, Frey M, Adlbrecht C, Bartsch R, Gyöngyösi M, Fürst UM. Cardio-oncology in Austria: cardiotoxicity and surveillance of anti-cancer therapies : Position paper of the Heart Failure Working Group of the Austrian Society of Cardiology. Wien Klin Wochenschr 2022; 134:654-674. [PMID: 35507087 PMCID: PMC9065248 DOI: 10.1007/s00508-022-02031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Survival in cancer is continuously improving due to evolving oncological treatment. Therefore, cardiovascular short-term and long-term side effects gain crucial importance for overall outcome. Cardiotoxicity not only presents as heart failure, but also as treatment-resistant hypertension, acute coronary ischemia with plaque rupture or vasospasm, thromboembolism, arrhythmia, pulmonary hypertension, diastolic dysfunction, acute myocarditis and others. Recent recommendations have proposed baseline cardiac risk assessment and surveillance strategies. Major challenges are the availability of monitoring and imaging resources, including echocardiography with speckle tracking longitudinal strain (GLS), serum biomarkers such as natriuretic peptides (NT-proBNP) and highly sensitive cardiac troponins. This Austrian consensus encompasses cardiotoxicity occurrence in frequent antiproliferative cancer drugs, radiotherapy, immune checkpoint inhibitors and cardiac follow-up considerations in cancer survivors in the context of the Austrian healthcare setting. It is important to optimize cardiovascular risk factors and pre-existing cardiac diseases without delaying oncological treatment. If left ventricular ejection fraction (LVEF) deteriorates during cancer treatment (from >10% to <50%), or myocardial strain decreases (>15% change in GLS), early initiation of cardioprotective therapies (angiotensin-converting enzyme inhibitors, angiotensin or beta receptor blockers) is recommended, and LVEF should be reassessed before discontinuation. Lower LVEF cut-offs were recently shown to be feasible in breast cancer patients to enable optimal anticancer treatment. Interdisciplinary cardio-oncology cooperation is pivotal for optimal management of cancer patients.
Collapse
Affiliation(s)
- Jutta Bergler-Klein
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Markus Wallner
- Division of Cardiology, Medical University of Graz, Graz, Austria.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Dörler
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Internal Medicine and Cardiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Armin Böhmer
- Department of Internal Medicine 1, Krems University Clinic, Krems, Austria
| | - Tamara Buchacher
- Department of Internal Medicine and Cardiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Maria Frey
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Rupert Bartsch
- Department of Medicine 1, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ursula-Maria Fürst
- Department of Internal Medicine, Hospital of the Brothers of St. John of God (Krankenhaus Barmherzige Brüder) Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Lucà F, Parrini I, Abrignani MG, Rao CM, Piccioni L, Di Fusco SA, Ceravolo R, Bisceglia I, Riccio C, Gelsomino S, Colivicchi F, Gulizia MM. Management of Acute Coronary Syndrome in Cancer Patients: It's High Time We Dealt with It. J Clin Med 2022; 11:1792. [PMID: 35407399 PMCID: PMC8999526 DOI: 10.3390/jcm11071792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer patients have an increased risk of cardiovascular disease and, notably, a significant prevalence of acute coronary syndrome (ACS). It has been shown that an elevated presence of cardiovascular risk factors in this setting leads to an interaction between these two conditions, influencing their therapeutic strategies and contributing to higher mortality. Nonetheless, cancer patients have generally not been evaluated in ACS trials, so that the treatment in these cases is still not fully known. We reviewed the current literature and discussed the best management for these very high-risk patients. The treatment strategy must be tailored based on the cancer type and stage, balancing thrombotic and bleeding risks. When the prognosis is longer than six months, especially if a clinical instability coexists, patients with ACS and cancer should be referred for percutaneous coronary intervention (PCI) as soon as possible. Moreover, an invasive strategy should be preferred in STEMI patients as well as in NSTEMI patients who are considered as high risk. On the contrary, in clinically stable NSTEMI patients, a conservative non-invasive strategy could be adopted, especially in cases of a poor life expectancy and/or of high risk of bleeding. Drug-Eluting-Stents (DES) should be the first choice if an invasive strategy is adopted. Conservative therapy could instead be considered in cancer patients with more stable CAD at an increased risk of major bleeding complications. However, the duration of dual antiplatelet therapy (DAPT) with aspirin and clopidogrel is recommended, but it should be as short as possible, whereas triple antithrombotic therapy is non-advised because it significantly increases the risk of bleeding. ACS management among cancer patients should be based on an accurate evaluation of the risk of thrombosis and bleeding. Future studies focused on choosing optimal strategies in tumor patients with ACS should be performed to treat this subset of patients better.
Collapse
Affiliation(s)
- Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | - Iris Parrini
- Cardiology Department, Ospedale Mauriziano Umberto I, 10128 Torino, Italy;
| | | | - Carmelo Massimiliano Rao
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | - Laura Piccioni
- Cardiology Department, Ospedale “G. Mazzini”, 64100 Teramo, Italy;
| | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, 10128 Roma, Italy; (S.A.D.F.); (F.C.)
| | - Roberto Ceravolo
- Cardiology Department, Ospedale Lamezia Terme, 88046 Catanzaro, Italy;
| | - Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carmine Riccio
- Cardiovascular Department, A.O.R.N. Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Sandro Gelsomino
- Cardiothoracic Department, Maastricht University, 6221 Maastricht, The Netherlands;
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, 10128 Roma, Italy; (S.A.D.F.); (F.C.)
| | - Michele Massimo Gulizia
- Cardiology Department, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, 95126 Catania, Italy;
- Fondazione per il Tuo Cuore-Heart Care Foundation, 50121 Firenze, Italy
| | | |
Collapse
|
23
|
Shaghaghi Z, Motieian S, Alvandi M, Yazdi A, Asadzadeh B, Farzipour S, Abbasi S. Ferroptosis Inhibitors as Potential New Therapeutic Targets for Cardiovascular Disease. Mini Rev Med Chem 2022; 22:2271-2286. [DOI: 10.2174/1389557522666220218123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Ferroptosis is a novel form of programmed cell death that arises as a result of an increase in iron levels. Ferroptosis is implicated in a number of cardiovascular diseases, including myocardial infarction (MI), reperfusion damage, and heart failure(HF). Because cardiomyocyte depletion is the leading cause of patient morbidity and mortality, it is critical to thoroughly comprehend the regulatory mechanisms of ferroptosis activation. In fact, inhibiting cardiac ferroptosis has the potential to be a useful therapeutic method for cardiovascular disorders. The iron, lipid, amino acid, and glutathione metabolism strictly governs the beginning and execution of ferroptosis. Therefore, ferroptosis can be inhibited by iron chelators, free radical-trapping antioxidants, GPX4 (Glutathione Peroxidase 4) activators, and lipid peroxidation (LPO) inhibitors. However, the search for new molecular targets for ferroptosis is becoming increasingly important in cardiovascular disease research. In this review, we address the importance of ferroptosis in various cardiovascular illnesses, provide an update on current information about the molecular mechanisms that drive ferroptosis, and discuss the role of ferroptosis inhibitors in cardiovascular disease.
Collapse
Affiliation(s)
- Zahra Shaghaghi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokouh Motieian
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirhossein Yazdi
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahareh Asadzadeh
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soghra Farzipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences,Rasht, Iran
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahar Abbasi
- Department of Radiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Peng X, Wang Z, Cao M, Zheng Y, Tian Y, Yu L, Ni W, Wang S, Qin Z, Zhao S, Tian J, Yu B. A Concomitant Cancer Diagnosis Is Associated With Poor Cardiovascular Outcomes Among Acute Myocardial Infarction Patients. Front Cardiovasc Med 2022; 9:758324. [PMID: 35252376 PMCID: PMC8891500 DOI: 10.3389/fcvm.2022.758324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Background and Aims With the increasing coexistence of cardiovascular disease and cancer in contemporary clinical practice, studies on the outcomes in acute myocardial infarction (AMI) patients with cancer has not been systematically investigated. This study sought to investigated the effect of coexisting cancer on the treatment and clinical outcomes among AMI patients. Methods We retrospectively integrated and analyzed cardiovascular data of 6,607 AMI patients between June 2016 and December 2019. Patients with cancer were compared with pair-matched cancer-naive patients. Cox proportional hazards models were constructed to compare the differences in outcomes. Results Of 6,607 patients, 2.3% (n = 150) had been diagnosed with cancer. Patients with cancer were older (70.3 ± 10.0 vs. 63.9 ± 11.5 years, P < 0.001) and had a higher burden of comorbidities. Moreover, patients with cancer tended to receive clopidogrel (52.0 vs. 40.0%, P = 0.004) rather than ticagrelor (45.6 vs. 58.2%, P = 0.003) than those without cancer. After pairwise matching, patients with cancer were less likely to undergo in-hospital percutaneous coronary intervention (61.3 vs. 70.0%, P = 0.055). And after 3-year follow-up, the cumulative incidence of cardiovascular death (14.0 vs. 8.3%; adjusted HR, 1.93; 95% CI, 1.11–3.39; P = 0.021) among patients with cancer was significantly higher than that among the matched controls, a similar pattern was observed for the composite outcome of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke (16.0 vs. 10.3%; adjusted HR, 1.98; 95% CI, 1.21–3.26; P = 0.007). Moreover, patients with a historical cancer diagnosis within 5 years had a higher risk of cardiovascular ischemic events. Conclusions AMI patients with a concomitant diagnosis of cancer tended to be treated with conservative therapies and were at substantially higher risk for adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhuozhong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Muhua Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yuqi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ya'nan Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Li Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Wenjun Ni
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shanjie Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhifeng Qin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Suhong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
- Jinwei Tian
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
- *Correspondence: Bo Yu
| |
Collapse
|
25
|
Harnessing RKIP to Combat Heart Disease and Cancer. Cancers (Basel) 2022; 14:cancers14040867. [PMID: 35205615 PMCID: PMC8870036 DOI: 10.3390/cancers14040867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.
Collapse
|
26
|
Patterson JR, Graves AP, Stoy P, Cheung M, Desai TA, Fries H, Gatto GJ, Holt DA, Shewchuk L, Totoritis R, Wang L, Kallander LS. Identification of Diarylurea Inhibitors of the Cardiac-Specific Kinase TNNI3K by Designing Selectivity Against VEGFR2, p38α, and B-Raf. J Med Chem 2021; 64:15651-15670. [PMID: 34699203 DOI: 10.1021/acs.jmedchem.1c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of diarylurea inhibitors of the cardiac-specific kinase TNNI3K were developed to elucidate the biological function of TNNI3K and evaluate TNNI3K as a therapeutic target for the treatment of cardiovascular diseases. Utilizing a structure-based design, enhancements in kinase selectivity were engineered into the series, capitalizing on the established X-ray crystal structures of TNNI3K, VEGFR2, p38α, and B-Raf. Our efforts culminated in the discovery of an in vivo tool compound 47 (GSK329), which exhibited desirable TNNI3K potency and rat pharmacokinetic properties as well as promising kinase selectivity against VEGFR2 (40-fold), p38α (80-fold), and B-Raf (>200-fold). Compound 47 demonstrated positive cardioprotective outcomes in a mouse model of ischemia/reperfusion cardiac injury, indicating that optimized exemplars from this series, such as 47, are favorable leads for discovering novel medicines for cardiac diseases.
Collapse
Affiliation(s)
- Jaclyn R Patterson
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Alan P Graves
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Patrick Stoy
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mui Cheung
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Tina A Desai
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Harvey Fries
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Gregory J Gatto
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dennis A Holt
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lisa Shewchuk
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rachel Totoritis
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Liping Wang
- Platform Technology and Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lara S Kallander
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
27
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P, Xiong Y. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7:193. [PMID: 34312370 PMCID: PMC8313570 DOI: 10.1038/s41420-021-00579-w] [Citation(s) in RCA: 379] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/06/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yajun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xueyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guodong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuru Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiling Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lu Qian
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Ping Liu
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
28
|
Ramai D, Heaton J, Ghidini M, Chandan S, Barakat M, Dhindsa B, Dhaliwal A, Facciorusso A. Population-Based Long-term Cardiac-Specific Mortality Among Patients With Major Gastrointestinal Cancers. JAMA Netw Open 2021; 4:e2112049. [PMID: 34137831 DOI: 10.1001/jamanetworkopen.2021.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE Patients with major gastrointestinal (GI) cancers are at long-term risk for cardiac disease and mortality. OBJECTIVE To investigate the cardiac-specific mortality rate among individuals with major GI cancers and the association of radiation and chemotherapy with survival outcomes in the United States. DESIGN, SETTING, AND PARTICIPANTS This US cohort study included individual patient-level data of men and women older than 18 years with 5 major gastrointestinal cancers, including colorectal, esophageal, gastric, pancreatic, and hepatocellular cancer from 1990 to 2016. Data was extracted from the Surveillance, Epidemiology, and End Results (SEER) national cancer database. Data cleaning and analyses were conducted between November 2020 and March 2021. EXPOSURES Patients received chemotherapy, radiotherapy, or a combination of adjuvant therapy for major GI cancers. MAIN OUTCOMES AND MEASURES The primary outcome was cardiac-specific mortality. Examined factors associated with cardiac mortality included age, sex, race, tumor location, tumor grade, SEER stage, TNM (seventh edition) staging criteria, cancer treatment (ie, the use of radiation, chemotherapy, or surgery), survival months, and cause of death. RESULTS A total of 359 032 patients (mean [SD] age at baseline, 65.1 [12.9] years; 186 921 [52.1%] men) with GI cancers were analyzed, including 313 940 patients (87.4%) with colorectal cancer, 7613 patients (2.1%) with esophageal cancer, 21 048 patients (5.9%) with gastric cancer, 7227 patients (2.0%) with pancreatic cancer, and 9204 patients (2.6%) with hepatocellular cancer. Most cancers were localized except pancreatic cancer, which presented with regional and distant involvement (3680 cancers [50.9%]). Overall, all major gastrointestinal tumors were associated with increased risk of cardiac mortality compared with noncardiac mortality (median survival time: 121 [95% CI, 120-122] months vs 287 [95% CI, 284.44-290] months). Patients with hepatocellular cancer had the lowest cardiac-specific median survival time (98 [95% CI, 90-106] months), followed by pancreatic cancer (105 [95% CI, 98-112] months), esophageal cancer (113 [95% CI, 107-119] months), gastric cancer (113 [95% CI, 110-116] months), and colorectal cancer (122 [95% CI, 121-123] months). At 15 years of follow up, the use of only chemotherapy, only radiation, or radiation and chemotherapy combined was associated with poor survival rates from cardiac causes of death (eg, colorectal: chemotherapy, 0 patients; radiation, 1 patient [1.9%]; radiation and chemotherapy, 3 patients [2.7%]). CONCLUSIONS AND RELEVANCE These findings suggest that among patients with major gastrointestinal cancers, cardiac disease is a significant cause of mortality. The use of only chemotherapy, only radiation, or both was associated with higher cardiac mortality.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York
| | - Joseph Heaton
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Saurabh Chandan
- Division of Gastroenterology & Hepatology, CHI Health Creighton University Medical Center, Omaha, Nebraska
| | - Mohamed Barakat
- Division of Gastroenterology, The Brooklyn Hospital Center, Brooklyn, New York
| | - Banreet Dhindsa
- Gastroenterology & Hepatology, University of Nebraska Medical Center, Omaha
| | - Amaninder Dhaliwal
- Division of Gastroenterology, Moffitt Cancer Center, University of South Florida, Tampa
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Repurposing Nintedanib for pathological cardiac remodeling and dysfunction. Pharmacol Res 2021; 169:105605. [PMID: 33965510 DOI: 10.1016/j.phrs.2021.105605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Heart Failure (HF) is the leading cause of death worldwide. Myocardial fibrosis, one of the clinical manifestations implicated in almost every form of heart disease, contributes significantly to HF development. However, there is no approved drug specifically designed to target cardiac fibrosis. Nintedanib (NTB) is an FDA approved tyrosine kinase inhibitor for idiopathic pulmonary fibrosis (IPF) and chronic fibrosing interstitial lung diseases (ILD). The favorable clinical outcome of NTB in IPF patients is well established. Furthermore, NTB is well tolerated in IPF patients irrespective of cardiovascular comorbidities. However, there is a lack of direct evidence to support the therapeutic efficacy and safety of NTB in cardiac diseases. In this study we examined the effects of NTB treatment on cardiac fibrosis and dysfunction using a murine model of HF. Specifically, 10 weeks old C57BL/6J male mice were subjected to Transverse Aortic Constriction (TAC) surgery. NTB was administered once daily by oral gavage (50 mg/kg) till 16 weeks post-TAC. Cardiac function was monitored by serial echocardiography. Histological analysis and morphometric studies were performed at 16 weeks post-TAC. In the control group, systolic dysfunction started developing from 4 weeks post-surgery and progressed till 16 weeks. However, NTB treatment prevented TAC-induced cardiac functional decline. In another experiment, NTB treatment was stopped at 8 weeks, and animals were followed till 16 weeks post-TAC. Surprisingly, NTB's beneficial effect on cardiac function was maintained even after treatment interruption. NTB treatment remarkably reduced cardiac fibrosis as confirmed by Masson's trichrome staining and decreased expression of collagen genes (COL1A1, COL3A1). Compared to the TAC group, NTB treated mice showed a lower HW/TL ratio and cardiomyocyte cross-sectional area. NTB treatment reduced myocardial and systemic inflammation by inhibiting pro-inflammatory subsets and promoting regulatory T cells (Tregs). Our in vitro studies demonstrated that NTB prevents myofibroblast transformation, TGFβ1-induced SMAD3 phosphorylation, and the production of fibrogenic proteins (Fibronectin-1, α-SMA). However, NTB promoted immunosuppressive phenotype in Tregs, and altered vital signaling pathways in isolated cardiac fibroblast and cardiomyocytes, suggesting that its biological effect and underlying cardiac protection mechanisms are not limited to fibroblast and fibrosis alone. Our findings provide a proof of concept for repurposing NTB to combat adverse myocardial fibrosis and encourage the need for further validation in large animal models and subsequent clinical development for HF patients.
Collapse
|
30
|
Imano H, Kato R, Nomura A, Tamura M, Yamaguchi Y, Ijiri Y, Wu H, Nakano T, Okada Y, Yamaguchi T, Izumi Y, Yoshiyama M, Asahi M, Hayashi T. Rivaroxaban Attenuates Right Ventricular Remodeling in Rats with Pulmonary Arterial Hypertension. Biol Pharm Bull 2021; 44:669-677. [PMID: 33612567 DOI: 10.1248/bpb.b20-01011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition that frequently results in right ventricular (RV) remodeling. The objectives of this study are to investigate effects of rivaroxaban on RV remodeling in a rat model of PAH, created with Sugen5416 and chronic hypoxia, and the in vitro effects of rivaroxaban on human cardiac microvascular endothelial cells (HCMECs). To create the PAH model, male Sprague-Dawley rats were subcutaneously injected with Sugen5416 (20 mg/kg) and exposed to 2 weeks of hypoxia (10% O2), followed by 2 weeks of exposure to normoxia. The animals were then divided into 2 groups with or without administration of rivaroxaban (12 mg/kg/d) for a further 4 weeks. HCMECs were cultured under hypoxic conditions (37 °C, 1% O2, 5% CO2) with Sugen5416 and with or without rivaroxaban. In the model rats, RV systolic pressure and Fulton index increased by hypoxia with Sugen5416 were significantly decreased when treated with rivaroxaban. In HCMECs, hypoxia with Sugen5416 increased the expression of protease-activated receptor-2 (PAR-2) and the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF-κB), while treatment with rivaroxaban significantly suppressed the expression of these proteins. Rivaroxaban attenuated RV remodeling in a rat model of PAH by reducing ERK, JNK and NF-κB activation. Rivaroxaban has the possibility of providing additive effects on RV remodeling in patients with PAH.
Collapse
Affiliation(s)
- Hideki Imano
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Atsuo Nomura
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College
| | - Maki Tamura
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yudai Yamaguchi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yoshio Ijiri
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical College
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical College
| | - Yoshikatsu Okada
- Department of Pathology, Faculty of Medicine, Osaka Medical College
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka City University Graduate School of Medicine
| | - Yasukatsu Izumi
- Department of Pharmacology, Osaka City University Graduate School of Medicine
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College
| | - Tetsuya Hayashi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
31
|
Mudd TW, Khalid M, Guddati AK. Cardiotoxicity of chemotherapy and targeted agents. Am J Cancer Res 2021; 11:1132-1147. [PMID: 33948350 PMCID: PMC8085845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023] Open
Abstract
The evolution of cancer treatment and development of new classes of anticancer therapies have continued to revolutionize the field of oncology. New therapies including targeted agents, immunotherapies, and adoptive cell transfer have allowed for exciting survival benefit progress for patients. However, the novel nature of these therapies as well as the longer survival periods of patients receiving them has highlighted the various side effects of anticancer therapies. Cardiotoxicity has emerged as a major side effect of anticancer treatment and can present both acutely during treatment and chronically even years after treatment has been completed. This work compiles the cardiotoxic side effects of various chemotherapeutic and targeted anticancer therapies and their management.
Collapse
Affiliation(s)
- Todd William Mudd
- Division of Hematology/Oncology Georgia Cancer Center, Augusta UniversityAugusta 30909, GA, USA
| | | | - Achuta Kumar Guddati
- Division of Hematology/Oncology Georgia Cancer Center, Augusta UniversityAugusta 30909, GA, USA
| |
Collapse
|
32
|
Jutant EM, Jaïs X, Girerd B, Savale L, Ghigna MR, Perros F, Mignard X, Jevnikar M, Bourlier D, Prevot G, Tromeur C, Bauer F, Bergot E, Dauphin C, Favrolt N, Traclet J, Soumagne T, De Groote P, Chabanne C, Magro P, Bertoletti L, Gueffet JP, Chaouat A, Goupil F, Moceri P, Borie R, Fadel E, Wolkenstein P, Brillet PY, Simonneau G, Sitbon O, Humbert M, Montani D. Phenotype and Outcomes of Pulmonary Hypertension Associated with Neurofibromatosis Type 1. Am J Respir Crit Care Med 2020; 202:843-852. [PMID: 32437637 DOI: 10.1164/rccm.202001-0105oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pulmonary hypertension (PH) associated with neurofibromatosis type 1 (NF1) is a rare and largely unknown complication of NF1.Objectives: To describe characteristics and outcomes of PH-NF1.Methods: We reported the clinical, functional, radiologic, histologic, and hemodynamic characteristics, response to pulmonary arterial hypertension (PAH)-approved drugs, and transplant-free survival of patients with PH-NF1 from the French PH registry.Measurements and Main Results: We identified 49 PH-NF1 cases, characterized by a female/male ratio of 3.9 and a median (minimum-maximum) age at diagnosis of 62 (18-82) years. At diagnosis, 92% were in New York Heart Association functional class III or IV. The 6-minute-walk distance was 211 (0-460) m. Pulmonary function tests showed low DlCO (30% [12-79%]) and severe hypoxemia (PaO2 56 [38-99] mm Hg). Right heart catheterization showed severe precapillary PH with a mean pulmonary artery pressure of 45 (10) mm Hg and a pulmonary vascular resistance of 10.7 (4.2) Wood units. High-resolution computed tomography images revealed cysts (76%), ground-glass opacities (73%), emphysema (49%), and reticulations (39%). Forty patients received PAH-approved drugs with a significant improvement in functional class and hemodynamic parameters. Transplant-free survival at 1, 3, and 5 years was 87%, 54%, and 42%, respectively, and four patients were transplanted. Pathologic assessment showed nonspecific interstitial pneumonia and major pulmonary vascular remodeling.Conclusions: PH-NF1 is characterized by a female predominance, a low DlCO, and severe functional and hemodynamic impairment. Despite a potential benefit of PAH treatment, prognosis remains poor, and double-lung transplantation is an option for eligible patients.
Collapse
Affiliation(s)
- Etienne-Marie Jutant
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Laurent Savale
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Service d'Anatomopathologie, and
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Xavier Mignard
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Mitja Jevnikar
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Delphine Bourlier
- Service des Maladies Respiratoires, Hôpital Haut-Lévêque CHU Bordeaux Pessac, France
| | - Grégoire Prevot
- Pneumologie et Maladies Rares, Pôle Voies Respiratoires, Hôpital Larrey, Toulouse, France
| | - Cécile Tromeur
- Service de Pneumologie, Hôpital de la Cavale Blanche, Brest, France
| | - Fabrice Bauer
- INSERM U1096, Heart Failure Clinic and Pulmonary Hypertension Center, Rouen, France.,Service de Chirurgie Cardiaque, Hôpital Charles Nicole, Rouen, France
| | - Emmanuel Bergot
- Service de Pneumologie et Oncologie Thoracique, CHU Côte de Nacre, Caen, France
| | - Claire Dauphin
- Service de Cardiologie et Maladies Vasculaires, Hôpital Gabriel Montpied, Clermont Ferrand, France
| | - Nicolas Favrolt
- Service de Pneumologie et Soins Intensifs Respiratoires, CHU François Mitterrand, Dijon, France
| | - Julie Traclet
- Service de Pneumologie, Hôpital Louis Pradel, Lyon, France
| | | | - Pascal De Groote
- Service de Cardiologie, CHU Lille, Lille, France.,INSERM U1167, Institut Pasteur de Lille, Lille, France
| | - Céline Chabanne
- Service de Chirurgie Thoracique, Cardiaque et Vasculaire, Hôpital Pontchaillou, Rennes, France
| | - Pascal Magro
- Service de Pneumologie, CHU de Tours, Tours, France
| | - Laurent Bertoletti
- Service de Médecine Vasculaire et Thérapeutique, CHU de St-Etienne, St-Etienne, France.,INSERM, UMR1059, Université Jean-Monnet, St-Etienne, France.,INSERM, CIC-1408, CHU Saint-Etienne, Saint-Etienne, France
| | - Jean-Pierre Gueffet
- Unité de Soins et de Cardiologie Interventionnelle, Hôpital Privé du Confluent, Nantes, France
| | - Ari Chaouat
- Centre Hospitalier Régional Universitaire de Nancy, Département de Pneumologie, Hôpital de Brabois, Vandoeuvre-lès-Nancy, France.,INSERM UMR_S 1116, Défaillance Cardiovasculaire Aigüe et Chronique, Faculté de Médecine de Nancy, Université de Lorraine, Nancy, France
| | | | | | - Raphael Borie
- Service de Pneumologie, Hôpital Bichat, AP-HP, Paris, France
| | - Elie Fadel
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Pôle de Chirurgie Cardiaque Congénitale et Pédiatrique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Pierre Wolkenstein
- Service de Dermatologie, CHU Mondor, AP-HP, Créteil, France.,Université Paris-Est Créteil, Créteil, France
| | - Pierre-Yves Brillet
- Service de Radiologie, Hôpital Avicenne, AP-HP, Bobigny, France; and.,Unité INSERM 1272, Université Paris 13, Villetaneuse, France
| | - Gérald Simonneau
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies.,Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| |
Collapse
|
33
|
|
34
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
35
|
Zhao J, Lei Y, Yang Y, Gao H, Gai Z, Li X. Metoprolol alleviates arginine vasopressin-induced cardiomyocyte hypertrophy by upregulating the AKT1-SERCA2 cascade in H9C2 cells. Cell Biosci 2020; 10:72. [PMID: 32489586 PMCID: PMC7247229 DOI: 10.1186/s13578-020-00434-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arginine vasopressin (AVP) is elevated in patients with heart failure, and the increase in the AVP concentration in plasma is positively correlated with disease severity and mortality. Metoprolol (Met) is a beta blocker that is widely used in the clinic to treat pathological cardiac hypertrophy and to improve heart function. However, the specific mechanism by which Met alleviates AVP-induced pathological cardiac hypertrophy is still unknown. Our current study aimed to evaluate the inhibitory effects of Met on AVP-induced cardiomyocyte hypertrophy and the underlying mechanisms. METHODS AVP alone or AVP plus Met was added to the wild type or AKT1-overexpressing rat cardiac H9C2 cell line. The cell surface areas and ANP/BNP/β-MHC expressions were used to evaluate the levels of hypertrophy. Western bolting was used to analyze AKT1/P-AKT1, AKT2/P-AKT2, total AKT, SERCA2, and Phospholamban (PLN) expression. Fluo3-AM was used to measure the intracellular Ca2+ stores. RESULTS In the current study, we found that AKT1 but not AKT2 mediated the pathogenesis of AVP-induced cardiomyocyte hypertrophy. Sustained stimulation (48 h) with AVP led to hypertrophy in the H9C2 rat cardiomyocytes, resulting in the downregulation of AKT1 (0.48 fold compared to control) and SERCA2 (0.62 fold), the upregulation of PLN (1.32 fold), and the increase in the cytoplasmic calcium concentration (1.52 fold). In addition, AKT1 overexpression increased the expression of SERCA2 (1.34 fold) and decreased the expression of PLN (0.48 fold) in the H9C2 cells. Moreover, we found that Met could attenuate the AVP-induced changes in AKT1, SERCA2 and PLN expression and decreased the cytoplasmic calcium concentration in the H9C2 cells. CONCLUSIONS Our results demonstrated that the AKT1-SERCA2 cascade served as an important regulatory pathway in AVP-induced pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jieqiong Zhao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| | - Yonghong Lei
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing, 100853 People’s Republic of China
| | - Yanping Yang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| | - Haibo Gao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| | - Zhongchao Gai
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 Shaanxi People’s Republic of China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| |
Collapse
|
36
|
Sudasena D, Balanescu DV, Donisan T, Hassan S, Palaskas N, Kim P, Karimzad K, Lopez-Mattei J, Arain S, Gould KL, Iliescu C. Fulminant Vascular and Cardiac Toxicity Associated with Tyrosine Kinase Inhibitor Sorafenib. Cardiovasc Toxicol 2020; 19:382-387. [PMID: 30543051 DOI: 10.1007/s12012-018-9499-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of vascular endothelial growth factor inhibitors such as sorafenib is limited by a risk of severe cardiovascular toxicity. A 28-year-old man with acute myeloid leukemia treated with prednisone, tacrolimus, and sorafenib following stem cell transplantation presented with severe bilateral lower extremity claudication. The patient was discharged against medical advice prior to finalizing a cardiovascular evaluation, but returned 1 week later with signs suggestive of septic shock. Laboratory tests revealed troponin I of 12.63 ng/mL, BNP of 1690 pg/mL, and negative infectious workup. Electrocardiogram showed sinus tachycardia and new pathologic Q waves in the anterior leads. Coronary angiography revealed severe multivessel coronary artery disease. Peripheral angiography revealed severely diseased left anterior and posterior tibial arteries, tibioperoneal trunk, and peroneal artery, and subtotal occlusion of the right posterior tibial artery. Multiple coronary and peripheral drug-eluting stents were implanted. An intra-aortic balloon pump was placed. Cardiac magnetic resonance imaging revealed chronic left ventricular infarction with some viability, 17% ejection fraction, and left ventricular mural thrombi. The patient opted for medical management. Persistent symptoms 9 months later led to repeat angiography, showing total occlusion of the second obtuse marginal artery due to in-stent restenosis with proximal stent fracture, and chronic total occlusion of the right internal iliac artery extending to the pudendal branch. Cardiac positron emission tomography/computed tomography viability study demonstrated viable myocardium, deeming revascularization appropriate. Symptom resolution was obtained with no recurrences. Sorafenib-associated vasculopathy may follow a fulminant course. Multimodality cardiovascular imaging is essential for optimal management.
Collapse
Affiliation(s)
- Daryl Sudasena
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dinu Valentin Balanescu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Teodora Donisan
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Saamir Hassan
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Nicolas Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Peter Kim
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Kaveh Karimzad
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Juan Lopez-Mattei
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA
| | - Salman Arain
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K Lance Gould
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cezar Iliescu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, 1451, 77030, Houston, TX, USA.
| |
Collapse
|
37
|
Ma W, Liu M, Liang F, Zhao L, Gao C, Jiang X, Zhang X, Zhan H, Hu H, Zhao Z. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol 2019; 126:166-180. [DOI: 10.1111/bcpt.13318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Wenzhuo Ma
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Mei Liu
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Fanfan Liang
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Lili Zhao
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Chenying Gao
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Xixi Jiang
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Xin Zhang
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Heqin Zhan
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
- Department of Pharmacology College of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 China
| | - Hao Hu
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Zhenghang Zhao
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| |
Collapse
|
38
|
Herman E, Eldridge S. Spontaneously occurring cardiovascular lesions in commonly used laboratory animals. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2019; 5:6. [PMID: 32154013 PMCID: PMC7048038 DOI: 10.1186/s40959-019-0040-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023]
Abstract
The search for new chemical entities which are clinically effective and do not adversely affect the cardiovascular system is an ongoing objective. In vivo studies designed to detect potential drug-induced cardiovascular toxicity typically utilize both rodent and non-rodent species. An important component of such studies includes the microscopic evaluation of tissues for histopathologic changes. A factor which could potentially complicate this type of evaluation relates to the potential for laboratory animals to develop natural or spontaneous pathological cardiovascular lesions. Some types of these naturally occurring alterations are similar to those induced by chemical compounds and thus could confound accurate interpretation. Accurate morphologic analysis becomes contingent upon the ability to distinguish spontaneous cardiovascular changes from actual drug-induced lesions. A summary of some of the more frequently reported spontaneous cardiovascular alterations in commonly-used laboratory animals is presented below. Special emphasis is given to the spectrum of spontaneous background myocardial pathology that might be encountered during preclinical studies conducted to identify potential cardiotoxic actions of anticancer agents.
Collapse
Affiliation(s)
- Eugene Herman
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892 USA
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892 USA
| |
Collapse
|
39
|
Asawaeer M, Barton D, Radio S, Chatzizisis YS. Tyrosine Kinase Inhibitor-Induced Acute Myocarditis, Myositis, and Cardiogenic Shock. Methodist Debakey Cardiovasc J 2019; 14:e5-e6. [PMID: 30410662 DOI: 10.14797/mdcj-14-3-e5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
| | - David Barton
- UNIVERSITY OF NEBRASKA MEDICAL CENTER, OMAHA, NEBRASKA
| | - Stanley Radio
- UNIVERSITY OF NEBRASKA MEDICAL CENTER, OMAHA, NEBRASKA
| | | |
Collapse
|
40
|
Huot JR, Essex AL, Gutierrez M, Barreto R, Wang M, Waning DL, Plotkin LI, Bonetto A. Chronic Treatment with Multi-Kinase Inhibitors Causes Differential Toxicities on Skeletal and Cardiac Muscles. Cancers (Basel) 2019; 11:cancers11040571. [PMID: 31018508 PMCID: PMC6520777 DOI: 10.3390/cancers11040571] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent progress, chemotherapy remains the preferred treatment for cancer. We have shown a link between anticancer drugs and the development of cachexia, i.e., body wasting accompanied by muscle loss. The multi-kinase inhibitors (MKIs) regorafenib and sorafenib, used as second-line treatment for solid tumors, are frequently accompanied by several side effects, including loss of muscle mass and strength. In the present study we aimed to investigate the molecular mechanisms associated with the occurrence of muscle toxicities in in vivo conditions. Hence, we treated 8-week old healthy CD2F1 male mice with MKIs for up to six weeks and observed decreased skeletal and cardiac muscle mass, consistent with muscle weakness. Modulation of ERK1/2 and GSK3β, as well as increased expression of markers of autophagy, previously associated with muscle atrophy conditions, were shown in skeletal muscle upon treatment with either drug. MKIs also promoted cardiac abnormalities consistent with reduced left ventricular mass, internal diameter, posterior wall thickness and stroke volume, despite unchanged overall function. Notably, different signaling pathways were affected in the heart, including reduced expression of mitochondrial proteins, and elevated AKT, GSK3β, mTOR, MEK1/2 and ERK1/2 phosphorylation. Combined, our data demonstrate detrimental effects on skeletal and cardiac muscle in association with chronic administration of MKIs, although different mechanisms would seem to contribute to the cachectic phenotype in the two tissues.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Alyson L Essex
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Maya Gutierrez
- Greenfield Central High School, Greenfield, IN 46140, USA.
| | - Rafael Barreto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - David L Waning
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA.
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Otolaryngology-Head & Neck Surgery, Indiana Center for Musculoskeletal Health, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
41
|
Oren O, Herrmann J. Arterial events in cancer patients-the case of acute coronary thrombosis. J Thorac Dis 2018; 10:S4367-S4385. [PMID: 30701104 PMCID: PMC6328398 DOI: 10.21037/jtd.2018.12.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
Patients with cancer are at high risk for both venous and arterial thrombotic complications. A variety of factors account for the greater thrombotic risk, including the underlying malignancy and numerous cancer-directed therapies. The occurrence of an acute thrombotic event in patients with cancer is associated with substantial morbidity and mortality. Acute coronary syndrome (ACS) represents a particularly important cardiovascular complication in cancer patients. With cardio-vascular risk factors becoming more prevalent in an aging cancer population that is surviving longer, questions pertaining to the appropriate management of vascular toxicity are likely to assume even greater value in the coming years. In this article, we review the current understanding of ACS in patients with cancer. The predisposition to thrombosis in a malignant host and the cancer treatments most commonly associated with vascular toxicity are reviewed. Risk prediction and management strategies are discussed, and discrepancies in the clinical evidence are highlighted.
Collapse
Affiliation(s)
- Ohad Oren
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Yang X, Li X, Yuan M, Tian C, Yang Y, Wang X, Zhang X, Sun Y, He T, Han S, Chen G, Liu N, Gao Y, Hu D, Xing Y, Shang H. Anticancer Therapy-Induced Atrial Fibrillation: Electrophysiology and Related Mechanisms. Front Pharmacol 2018; 9:1058. [PMID: 30386232 PMCID: PMC6198283 DOI: 10.3389/fphar.2018.01058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Some well-established immunotherapy, radiotherapy, postoperation, anticancer drugs such as anthracyclines, antimetabolites, human epidermal growth factor receptor 2 blockers, tyrosine kinase inhibitors, alkylating agents, checkpoint inhibitors, and angiogenesis inhibitors, are significantly linked to cardiotoxicity. Cardiotoxicity is a common complication of several cancer treatments. Some studies observed complications of cardiac arrhythmia associated with the treatment of cancer, including atrial fibrillation (AF), supraventricular arrhythmias, and cardiac repolarization abnormalities. AF increases the risk of cardiovascular morbidity and mortality; it is associated with an almost doubled risk of mortality and a nearly 5-fold increase in the risk of stroke. The occurrence of AF is also usually researched in patients with advanced cancer and those undergoing active cancer treatments. During cancer treatments, the incidence rate of AF affects the prognosis of tumor treatment and challenges the treatment strategy. The present article is mainly focused on the cardiotoxicity of cancer treatments. In our review, we discuss these anticancer therapies and how they induce AF and consequently provide information on the precaution of AF during cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianmai He
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanwei Xing
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Factor Xa inhibition by rivaroxaban attenuates cardiac remodeling due to intermittent hypoxia. J Pharmacol Sci 2018; 137:274-282. [PMID: 30055890 DOI: 10.1016/j.jphs.2018.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
Patients with obstructive sleep apnea (OSA) have a high prevalence of atrial fibrillation (AF). Rivaroxaban, a coagulation factor Xa inhibitor, has recently been reported to show pleiotropic effects. This study investigated the influence of rivaroxaban on cardiac remodeling caused by intermittent hypoxia (IH). Male C57BL/6J mice were exposed to IH (repeated cycles of 5% oxygen for 1.5 min followed by 21% oxygen for 5 min) for 28 days with/without rivaroxaban (12 mg/kg/day) or FSLLRY, a protease-activated receptor (PAR)-2 antagonist (10 μg/kg/day). IH caused endothelial cell degeneration in the small arteries of the right atrial myocardium and increased the level of %fibrosis and 4-hydroxy-2-nonenal protein adducts in the left ventricular myocardium. IH also increased the expression of PAR-2 as well as the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and nuclear factor-kappa B (NF-κB) were increased in human cardiac microvascular endothelial cells. However, rivaroxaban and FSLLRY significantly suppressed these changes. These findings demonstrate that rivaroxaban attenuates both atrial and ventricular remodeling induced by IH through the prevention of oxidative stress and fibrosis by suppressing the activation of ERK and NF-κB pathways via PAR-2. Treatment with rivaroxaban could potentially become a novel therapeutic strategy for cardiac remodeling in patients with OSA and AF.
Collapse
|
44
|
Cardiovascular Effects of the MEK Inhibitor, Trametinib: A Case Report, Literature Review, and Consideration of Mechanism. Cardiovasc Toxicol 2018; 17:487-493. [PMID: 28861837 DOI: 10.1007/s12012-017-9425-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The MEK inhibitor trametinib was approved in 2013 for the treatment of unresectable or metastatic melanoma with a BRAF V600E mutation, the most common pathogenic mutation in melanoma. Trametinib blocks activation of ERK1/2, inhibiting cell proliferation in melanoma. ERK1/2 also protects against multiple types of cardiac insult in mouse models. Trametinib improves survival in melanoma patients, but evidence of unanticipated cardiotoxicity is emerging. Here we describe the case of a patient with metastatic melanoma who developed acute systolic heart failure after trametinib treatment and present the results of the literature review prompted by this case. A patient with no cardiac history presented with a 6.5-mm skin lesion and was found to have metastatic BRAF V600E melanoma. Combination treatment with trametinib and the BRAF inhibitor, dabrafenib, was initiated. The patient's pre-treatment ejection fraction was 55-60%. His EF declined after 13 days and that was 40% 1 month after treatment. Two months after initiating trametinib, he developed dyspnea and fatigue. We conducted a chart review in the electronic medical record. We conducted a PubMed search using trametinib/adverse effects AND ("heart failure" OR "left ventricular dysfunction" OR hypertension OR cardiotoxicity OR mortality). We also queried the FDA Adverse Events Reporting System for reports of cardiomyopathy, ejection fraction decrease, and left ventricular dysfunction associated with trametinib between January 1, 2013, and July 20, 2017. The literature search retrieved 19 articles, including clinical trials and case reports. Early clinical experience with the MEK inhibitor trametinib suggests that its clinical efficacy may be compromised by cardiotoxicity. Further studies in humans and animals are required to determine the extent of this adverse effect, as well as its underlying mechanisms.
Collapse
|
45
|
Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol 2018; 2:13. [PMID: 30202791 PMCID: PMC5988734 DOI: 10.1038/s41698-018-0056-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway (VSP) have been important additions in the therapy of various cancers, especially renal cell carcinoma and colorectal cancer. Bevazicumab, the first VSP to receive FDA approval in 2004 targeting all circulating isoforms of VEGF-A, has become one of the best-selling drugs of all times. The second wave of tyrosine kinase inhibitors (TKIs), which target the intracellular site of VEGF receptor kinases, began with the approval of sorafenib in 2005 and sunitinib in 2006. Heart failure was subsequently noted, in 2-4% of patients on bevacizumab and in 3-8% of patients on VSP-TKIs. The very fact that the single-targeted monoclonal antibody bevacizumab can induce cardiotoxicity supports a pathomechanistic role for the VSP and the postulate of the "vascular" nature of VSP inhibitor cardiotoxicity. In this review we will outline this scenario in greater detail, reflecting on hypertension and coronary artery disease as risk factors for VSP inhibitor cardiotoxicity, but also similarities with peripartum and diabetic cardiomyopathy. This leads to the concept that any preexisting or coexisting condition that reduces the vascular reserve or utilizes the vascular reserve for compensatory purposes may pose a risk factor for cardiotoxicity with VSP inhibitors. These conditions need to be carefully considered in cancer patients who are to undergo VSP inhibitor therapy. Such vigilance is not to exclude patients from such prognostically extremely important therapy but to understand the continuum and to recognize and react to any cardiotoxicity dynamics early on for superior overall outcomes.
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
46
|
The Anti-Cancer Multikinase Inhibitor Sorafenib Impairs Cardiac Contractility by Reducing Phospholamban Phosphorylation and Sarcoplasmic Calcium Transients. Sci Rep 2018; 8:5295. [PMID: 29593308 PMCID: PMC5871797 DOI: 10.1038/s41598-018-23630-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Tyrosine-kinase inhibitors (TKIs) have revolutionized cancer therapy in recent years. Although more targeted than conventional chemotherapy, TKIs exhibit substantial cardiotoxicity, often manifesting as hypertension or heart failure. Here, we assessed myocyte intrinsic cardiotoxic effects of the TKI sorafenib and investigated underlying alterations of myocyte calcium homeostasis. We found that sorafenib reversibly decreased developed force in auxotonically contracting human myocardia (3 µM: -25 ± 4%, 10 µM: -29 ± 7%, 30 µM: -43 ± 12%, p < 0.01), reduced peak cytosolic calcium concentrations in isolated cardiomyocytes (10 µM: 52 ± 8.1% of baseline, p < 0.001), and slowed cytosolic calcium removal kinetics (RT50, RT10, Tau, p < 0.05). Beta-adrenergic stimulation induced augmentation of calcium transient (CaT) amplitude was attenuated in sorafenib-treated cells (2.7 ± 0.3-fold vs. 3.6 ± 0.2-fold in controls, p < 0.001). Sarcoplasmic reticulum (SR) calcium content was reduced to 67 ± 4% (p < 0.01), and SR calcium re-uptake slowed (p < 0.05). Sorafenib significantly reduced serine 16 phosphorylation of phospholamban (PLN, p < 0.05), while PLN threonine 17 and CaMKII (T286) phosphorylation were not altered. Our data demonstrate that sorafenib acutely impairs cardiac contractility by reducing S16 PLN phosphorylation, leading to reduced SR calcium content, CaT amplitude, and slowed cytosolic calcium removal. These results indicate myocyte intrinsic cardiotoxicity irrespective of effects on the vasculature and chronic cardiac remodeling.
Collapse
|
47
|
Jensen BC, Parry TL, Huang W, Beak JY, Ilaiwy A, Bain JR, Newgard CB, Muehlbauer MJ, Patterson C, Johnson GL, Willis MS. Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis. Br J Pharmacol 2017; 174:4797-4811. [PMID: 28977680 PMCID: PMC5727336 DOI: 10.1111/bph.14062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The human kinome consists of roughly 500 kinases, including 150 that have been proposed as therapeutic targets. Protein kinases regulate an array of signalling pathways that control metabolism, cell cycle progression, cell death, differentiation and survival. It is not surprising, then, that new kinase inhibitors developed to treat cancer, including sorafenib, also exhibit cardiotoxicity. We hypothesized that sorafenib cardiotoxicity is related to its deleterious effects on specific cardiac metabolic pathways given the critical roles of protein kinases in cardiac metabolism. EXPERIMENTAL APPROACH FVB/N mice (10 per group) were challenged with sorafenib or vehicle control daily for 2 weeks. Echocardiographic assessment of the heart identified systolic dysfunction consistent with cardiotoxicity in sorafenib-treated mice compared to vehicle-treated controls. Heart, skeletal muscle, liver and plasma were flash frozen and prepped for non-targeted GC-MS metabolomics analysis. KEY RESULTS Compared to vehicle-treated controls, sorafenib-treated hearts exhibited significant alterations in 11 metabolites, including markedly altered taurine/hypotaurine metabolism (25-fold enrichment), identified by pathway enrichment analysis. CONCLUSIONS AND IMPLICATIONS These studies identified alterations in taurine/hypotaurine metabolism in the hearts and skeletal muscles of mice treated with sorafenib. Interventions that rescue or prevent these sorafenib-induced changes, such as taurine supplementation, may be helpful in attenuating sorafenib-induced cardiac injury.
Collapse
Affiliation(s)
- Brian C Jensen
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
- Department of Internal MedicineDivision of Cardiology University of North CarolinaChapel HillNCUSA
- Department of PharmacologyUniversity of North CarolinaChapel HillNCUSA
| | - Traci L Parry
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
| | - Wei Huang
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Ju Youn Beak
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
- Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamNCUSA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
- Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamNCUSA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
- Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamNCUSA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
| | - Cam Patterson
- Presbyterian Hospital/Weill‐Cornell Medical CenterNew YorkNYUSA
| | - Gary L Johnson
- Department of PharmacologyUniversity of North CarolinaChapel HillNCUSA
| | - Monte S Willis
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- Department of PharmacologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
48
|
Klee NS, McCarthy CG, Martinez-Quinones P, Webb RC. Out of the frying pan and into the fire: damage-associated molecular patterns and cardiovascular toxicity following cancer therapy. Ther Adv Cardiovasc Dis 2017; 11:297-317. [PMID: 28911261 PMCID: PMC5933669 DOI: 10.1177/1753944717729141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Cardio-oncology is a new and rapidly expanding field that merges cancer and cardiovascular disease. Cardiovascular disease is an omnipresent side effect of cancer therapy; in fact, it is the second leading cause of death in cancer survivors after recurrent cancer. It has been well documented that many cancer chemotherapeutic agents cause cardiovascular toxicity. Nonetheless, the underlying cause of cancer therapy-induced cardiovascular toxicity is largely unknown. In this review, we discuss the potential role of damage-associated molecular patterns (DAMPs) as an underlying contributor to cancer therapy-induced cardiovascular toxicity. With an increasing number of cancer patients, as well as extended life expectancy, understanding the mechanisms underlying cancer therapy-induced cardiovascular disease is of the utmost importance to ensure that cancer is the only disease burden that cancer survivors have to endure.
Collapse
Affiliation(s)
- Nicole S. Klee
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15 Street, Augusta, GA 30912, USA
| | - Cameron G. McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Patricia Martinez-Quinones
- Departments of Physiology and Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
49
|
Beji S, Milano G, Scopece A, Cicchillitti L, Cencioni C, Picozza M, D'Alessandra Y, Pizzolato S, Bertolotti M, Spaltro G, Raucci A, Piaggio G, Pompilio G, Capogrossi MC, Avitabile D, Magenta A, Gambini E. Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death Dis 2017; 8:e3020. [PMID: 28837147 PMCID: PMC5596590 DOI: 10.1038/cddis.2017.409] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/06/2023]
Abstract
Doxorubicin (DOXO) treatment is limited by its cardiotoxicity, since it causes cardiac-progenitor-cell depletion. Although the cardioprotective role of the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF1/CXCR4) axis is well established, its involvement during DOXO-induced cardiotoxicity has never been investigated. We showed that in a mouse model of DOXO-induced cardiomyopathy, CXCR4+ cells were increased in response to DOXO, mainly in human cardiac mesenchymal progenitor cells (CmPC), a subpopulation with regenerative potential. Our in vitro results showed a CXCR4 induction after 24 h of DOXO exposure in CmPC. SDF1 administration protected from DOXO-induced cell death and promoted CmPC migration. CXCR4 promoter analysis revealed zinc finger E-box binding homeobox 1 (ZEB1) binding sites. Upon DOXO treatment, ZEB1 binding decreased and RNA-polymerase-II increased, suggesting a DOXO-mediated transcriptional increase in CXCR4. Indeed, DOXO induced the upregulation of miR-200c, that directly targets ZEB1. SDF1 administration in DOXO-treated mice partially reverted the adverse remodeling, decreasing left ventricular (LV) end diastolic volume, LV ejection fraction and LV anterior wall thickness in diastole, recovering LV end systolic pressure and reducing±dP/dt. Moreover, in vivo administration of SDF1 partially reverted DOXO-induced miR-200c and p53 protein upregulation in mouse hearts. In addition, downmodulation of ZEB1 mRNA and protein by DOXO was significantly increased by SDF1. In keeping, p21 mRNA, that is induced by p53 and inhibited by ZEB1, is induced by DOXO treatment and is decreased by SDF1 administration. This study showed new players of the DOXO-induced cardiotoxicity, that can be exploited to ameliorate DOXO-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sara Beji
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Giuseppina Milano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
- Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital Lausanne; Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Lucia Cicchillitti
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano, 64, Rome 00143, Italy
| | - Mario Picozza
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Yuri D'Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino (CCM), IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Sarah Pizzolato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Matteo Bertolotti
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino (CCM), IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Gabriella Spaltro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino (CCM), IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, Milan 20122, Italy
| | - Maurizio C Capogrossi
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Daniele Avitabile
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Alessandra Magenta
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Elisa Gambini
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| |
Collapse
|
50
|
Park JG, Tak WY, Park SY, Kweon YO, Jang SY, Lee SH, Lee YR, Jang SK, Hur K, Lee HJ. Long-term follow-up of complete remission of advanced hepatocellular carcinoma following sorafenib therapy: A case report. Oncol Lett 2017; 14:4853-4856. [PMID: 29085491 DOI: 10.3892/ol.2017.6788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Sorafenib is a tyrosine kinase inhibitor that has been demonstrated to improve the overall survival time of patients with advanced hepatocellular carcinoma (HCC). Although there have been a number of reports of patients achieving complete remission (CR) following sorafenib therapy, the long-term clinical outcomes of these patients have yet to be ascertained. A 72-year-old male patient with chronic hepatitis C, diabetes, hypertension and an old cerebral infarction was referred for the evaluation of a liver mass identified on an abdominal ultrasound. Abdominal computed tomography (CT) demonstrated a 13-cm mass replacing the right lobe of the liver, with portal vein thrombosis. HCC was confirmed by a percutaneous needle biopsy and treated with sorafenib. At 4 months, a follow-up CT demonstrated no enhancing viable lesions in the tumor and recanalization of the portal vein. Sorafenib therapy was continued for 48 months until the patient experienced dyspnea due to congestive heart failure, with pleural effusion. Following the discontinuation of sorafenib, the patient's symptoms improved. The patient followed up without recurrence for 52 months. Subsequent to achieving CR through treatment with sorafenib, long-term sorafenib therapy may be an option and efforts should be made to monitor cardiac toxicity during sorafenib therapy, particularly in high-risk patients.
Collapse
Affiliation(s)
- Jung Gil Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 41940, Republic of Korea
| | - Won Young Tak
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Soo Young Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Young Oh Kweon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Se Young Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Soo Hyun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Rim Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Sun Kyung Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Heon Ju Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 41940, Republic of Korea
| |
Collapse
|