1
|
Buja LM, Mitchell RN. Basic pathobiology of cell-based therapies and cardiac regenerative medicine. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
2
|
Walravens AS, Smolgovsky S, Li L, Kelly L, Antes T, Peck K, Quon T, Ibrahim A, Marbán E, Berman B, Marbán L, R-Borlado L, de Couto G. Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA. Sci Rep 2021; 11:8666. [PMID: 33883598 PMCID: PMC8060398 DOI: 10.1038/s41598-021-87939-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cell therapy limits ischemic injury following myocardial infarction (MI) by preventing cell death, modulating the immune response, and promoting tissue regeneration. The therapeutic efficacy of cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs) is associated with extracellular vesicle (EV) release. Prior head-to-head comparisons have shown CDCs to be more effective than MSCs in MI models. Despite differences in cell origin, it is unclear why EVs from different adult stem cell populations elicit differences in therapeutic efficacy. Here, we compare EVs derived from multiple human MSC and CDC donors using diverse in vitro and in vivo assays. EV membrane protein and non-coding RNA composition are highly specific to the parent cell type; for example, miR-10b is enriched in MSC-EVs relative to CDC-EVs, while Y RNA fragments follow the opposite pattern. CDC-EVs enhance the Arg1/Nos2 ratio in macrophages in vitro and reduce MI size more than MSC-EVs and suppress inflammation during acute peritonitis in vivo. Thus, CDC-EVs are distinct from MSC-EVs, confer immunomodulation, and protect the host against ischemic myocardial injury and acute inflammation.
Collapse
Affiliation(s)
| | - Sasha Smolgovsky
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Liang Li
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Lauren Kelly
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Travis Antes
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Kiel Peck
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Tanner Quon
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Benjamin Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Linda Marbán
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA.
| | - Luis R-Borlado
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Geoffrey de Couto
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
3
|
Haller C, Friedberg MK, Laflamme MA. The role of regenerative therapy in the treatment of right ventricular failure: a literature review. Stem Cell Res Ther 2020; 11:502. [PMID: 33239066 PMCID: PMC7687832 DOI: 10.1186/s13287-020-02022-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
Right ventricular (RV) failure is a commonly encountered problem in patients with congenital heart disease but can also be a consequence of left ventricular disease, primary pulmonary hypertension, or RV-specific cardiomyopathies. Improved survival of the aforementioned pathologies has led to increasing numbers of patients suffering from RV dysfunction, making it a key contributor to morbidity and mortality in this population. Currently available therapies for heart failure were developed for the left ventricle (LV), and there is clear evidence that LV-specific strategies are insufficient or inadequate for the RV. New therapeutic strategies are needed to address this growing clinical problem, and stem cells show significant promise. However, to properly evaluate the prospects of a potential stem cell-based therapy for RV failure, one needs to understand the unique pathophysiology of RV dysfunction and carefully consider available data from animal models and human clinical trials. In this review, we provide a comprehensive overview of the molecular mechanisms involved in RV failure such as hypertrophy, fibrosis, inflammation, changes in energy metabolism, calcium handling, decreasing RV contractility, and apoptosis. We also summarize the available preclinical and clinical experience with RV-specific stem cell therapies, covering the broad spectrum of stem cell sources used to date. We describe two different scientific rationales for stem cell transplantation, one of which seeks to add contractile units to the failing myocardium, while the other aims to augment endogenous repair mechanisms and/or attenuate harmful remodeling. We emphasize the limitations and challenges of regenerative strategies, but also highlight the characteristics of the failing RV myocardium that make it a promising target for stem cell therapy.
Collapse
Affiliation(s)
- Christoph Haller
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Mark K Friedberg
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,McEwen Stem Cell Institute, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
4
|
Abstract
Stem cell therapy offers a breakthrough opportunity for the improvement of ischemic heart diseases. Numerous clinical trials and meta-analyses appear to confirm its positive but variable effects on heart function. Whereas these trials widely differed in design, cell type, source, and doses reinjected, cell injection route and timing, and type of cardiac disease, crucial key factors that may favour the success of cell therapy emerge from the review of their data. Various types of cell have been delivered. Injection of myoblasts does not improve heart function and is often responsible for severe ventricular arrythmia occurrence. Using bone marrow mononuclear cells is a misconception, as they are not stem cells but mainly a mix of various cells of hematopoietic lineages and stromal cells, only containing very low numbers of cells that have stem cell-like features; this likely explain the neutral results or at best the modest improvement in heart function reported after their injection. The true existence of cardiac stem cells now appears to be highly discredited, at least in adults. Mesenchymal stem cells do not repair the damaged myocardial tissue but attenuate post-infarction remodelling and contribute to revascularization of the hibernated zone surrounding the scar. CD34+ stem cells - likely issued from pluripotent very small embryonic-like (VSEL) stem cells - emerge as the most convincing cell type, inducing structural and functional repair of the ischemic myocardial area, providing they can be delivered in large amounts via intra-myocardial rather than intra-coronary injection, and preferentially after myocardial infarct rather than chronic heart failure.
Collapse
Affiliation(s)
- Philippe Hénon
- CellProthera SAS and Institut de Recherche en Hématologie et Transplantation, CellProthera SAS 12 rue du Parc, 68100, Mulhouse, France.
| |
Collapse
|
5
|
Gyöngyösi M, Haller PM, Blake DJ, Martin Rendon E. Meta-Analysis of Cell Therapy Studies in Heart Failure and Acute Myocardial Infarction. Circ Res 2019; 123:301-308. [PMID: 29976694 DOI: 10.1161/circresaha.117.311302] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure (HF) is one of the leading causes of death worldwide and has reached epidemic proportions in most industrialized nations. Despite major improvements in the treatment and management of the disease, the prognosis for patients with HF remains poor with approximately only half of patients surviving for 5 years or longer after diagnosis. The poor prognosis of HF patients is in part because of irreparable damage to cardiac tissue and concomitant maladaptive changes associated with the disease. Cell-based therapies may have the potential to transform the treatment and prognosis of HF through regeneration or repair of damaged cardiac tissue. Accordingly, numerous phase I and II randomized clinical trials have tested the clinical benefits of cell transplant, mostly autologous bone marrow-derived mononuclear cells, in patients with HF, ischemic heart disease, and acute myocardial infarction. Although many of these trials were relatively small, meta-analyses of cell-based therapies have attempted to apply rigorous statistical methodology to assess the potential clinical benefits of the intervention. As a prelude to larger phase III trials, meta-analyses, therefore, remain the obvious means of evaluating the available clinical evidence. Here, we review the different meta-analyses of randomized clinical trials that evaluate the safety and potential beneficial effect of cell therapies in HF and acute myocardial infarction spanning nearly 2 decades since the first pioneering trials were conducted.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- From the Department of Cardiology, Medical University of Vienna, Austria (M.G., P.M.H.)
| | - Paul M Haller
- From the Department of Cardiology, Medical University of Vienna, Austria (M.G., P.M.H.).,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria (P.M.H.).,3 Department of Medicine, Cardiology and Intensive Care Medicine, Chest Pain Unit, Wilhelminenhospital, Vienna, Austria (P.M.H.)
| | - Derek J Blake
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, United Kingdom (D.J.B.)
| | - Enca Martin Rendon
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, United Kingdom (E.M.R.)
| |
Collapse
|
6
|
Beliy SA, Lukashenko VI, Komok VV, Khubulava GG. [Cell therapy in the multimodality treatment of a patient with dilated cardiomyopathy. A case report]. ACTA ACUST UNITED AC 2019; 59:59-64. [PMID: 31131761 DOI: 10.18087/cardio.2555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/18/2022]
Abstract
We present a 13-years follow-up results in patient with dilated cardiomyopathy. We performed intracoronary infusion of bone marrow mononuclear fraction in patient with 4th heart failure functional class in 2005. We observed an improvement in symptoms (patient had 1st functional class of heart failure) during 10-years follow-up. In 2015 due to clinical worsening we performed 2nd and 3rd bone marrow mononuclear cells infusion with 9-month interval. We observed a signifcant improvement in symptoms, EF and LV sizes. We continue the follow-up.
Collapse
Affiliation(s)
- S A Beliy
- Academician Pavlov First St. Petersburg State Medical University
| | - V I Lukashenko
- Academician Pavlov First St. Petersburg State Medical University
| | - V V Komok
- Academician Pavlov First St. Petersburg State Medical University
| | - G G Khubulava
- Academician Pavlov First St. Petersburg State Medical University
| |
Collapse
|
7
|
Buja LM. Cardiac repair and the putative role of stem cells. J Mol Cell Cardiol 2019; 128:96-104. [DOI: 10.1016/j.yjmcc.2019.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/30/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2023]
|
8
|
Zhao J, Ghafghazi S, Khan AR, Farid TA, Moore JB. Recent Developments in Stem and Progenitor Cell Therapy for Cardiac Repair. Circ Res 2018; 119:e152-e159. [PMID: 27932474 DOI: 10.1161/circresaha.116.310257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- John Zhao
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY
| | - Shahab Ghafghazi
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY
| | - Abdur Rahman Khan
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY
| | - Talha Ahmad Farid
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY
| | - Joseph B Moore
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY.
| |
Collapse
|
9
|
Cheng K, de Silva R. New Advances in the Management of Refractory Angina Pectoris. Eur Cardiol 2018; 13:70-79. [PMID: 30310476 PMCID: PMC6159415 DOI: 10.15420/ecr.2018:1:2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Refractory angina is a significant clinical problem and its successful management is often extremely challenging. Defined as chronic angina-type chest pain in the presence of myocardial ischaemia that persists despite optimal medical, interventional and surgical treatment, current therapies are limited and new approaches to treatment are needed. With an ageing population and increased survival from coronary artery disease, clinicians will increasingly encounter this complex condition in routine clinical practice. Novel therapies to target myocardial ischaemia in patients with refractory angina are at the forefront of research and in this review we discuss those in clinical translation and assess the evidence behind their efficacy.
Collapse
Affiliation(s)
- Kevin Cheng
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation TrustLondon, UK
- Imperial College Healthcare NHS TrustLondon, UK
| | - Ranil de Silva
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation TrustLondon, UK
- Vascular Science Department, National Heart and Lung InstituteLondon, UK
| |
Collapse
|
10
|
Alvino VV, Fernández-Jiménez R, Rodriguez-Arabaolaza I, Slater S, Mangialardi G, Avolio E, Spencer H, Culliford L, Hassan S, Sueiro Ballesteros L, Herman A, Ayaon-Albarrán A, Galán-Arriola C, Sánchez-González J, Hennessey H, Delmege C, Ascione R, Emanueli C, Angelini GD, Ibanez B, Madeddu P. Transplantation of Allogeneic Pericytes Improves Myocardial Vascularization and Reduces Interstitial Fibrosis in a Swine Model of Reperfused Acute Myocardial Infarction. J Am Heart Assoc 2018; 7:JAHA.117.006727. [PMID: 29358198 PMCID: PMC5850145 DOI: 10.1161/jaha.117.006727] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transplantation of adventitial pericytes (APCs) promotes cardiac repair in murine models of myocardial infarction. The aim of present study was to confirm the benefit of APC therapy in a large animal model. METHODS AND RESULTS We performed a blind, randomized, placebo-controlled APC therapy trial in a swine model of reperfused myocardial infarction. A first study used human APCs (hAPCs) from patients undergoing coronary artery bypass graft surgery. A second study used allogeneic swine APCs (sAPCs). Primary end points were (1) ejection fraction as assessed by cardiac magnetic resonance imaging and (2) myocardial vascularization and fibrosis as determined by immunohistochemistry. Transplantation of hAPCs reduced fibrosis but failed to improve the other efficacy end points. Incompatibility of the xenogeneic model was suggested by the occurrence of a cytotoxic response following in vitro challenge of hAPCs with swine spleen lymphocytes and the failure to retrieve hAPCs in transplanted hearts. We next considered sAPCs as an alternative. Flow cytometry, immunocytochemistry, and functional/cytotoxic assays indicate that sAPCs are a surrogate of hAPCs. Transplantation of allogeneic sAPCs benefited capillary density and fibrosis but did not improve cardiac magnetic resonance imaging indices of contractility. Transplanted cells were detected in the border zone. CONCLUSIONS Immunologic barriers limit the applicability of a xenogeneic swine model to assess hAPC efficacy. On the other hand, we newly show that transplantation of allogeneic sAPCs is feasible, safe, and immunologically acceptable. The approach induces proangiogenic and antifibrotic benefits, though these effects were not enough to result in functional improvements.
Collapse
Affiliation(s)
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Sadie Slater
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Helen Spencer
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Lucy Culliford
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Sakinah Hassan
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | | | - Andrew Herman
- School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
| | - Ali Ayaon-Albarrán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Adult Cardiac Surgery Department, La Paz University Hospital, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Helena Hennessey
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Catherine Delmege
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Gianni Davide Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
11
|
Dorobantu M, Popa-Fotea NM, Popa M, Rusu I, Micheu MM. Pursuing meaningful end-points for stem cell therapy assessment in ischemic cardiac disease. World J Stem Cells 2017; 9:203-218. [PMID: 29321822 PMCID: PMC5746641 DOI: 10.4252/wjsc.v9.i12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Despite optimal interventional and medical therapy, ischemic heart disease is still an important cause of morbidity and mortality worldwide. Although not included in standard of care rehabilitation, stem cell therapy (SCT) could be a solution for prompting cardiac regeneration. Multiple studies have been published from the beginning of SCT until now, but overall no unanimous conclusion could be drawn in part due to the lack of appropriate end-points. In order to appreciate the impact of SCT, multiple markers from different categories should be considered: Structural, biological, functional, physiological, but also major adverse cardiac events or quality of life. Imaging end-points are among the most used - especially left ventricle ejection fraction (LVEF) measured through different methods. Other imaging parameters are infarct size, myocardial viability and perfusion. The impact of SCT on all of the aforementioned end-points is controversial and debatable. 2D-echocardiography is widely exploited, but new approaches such as tissue Doppler, strain/strain rate or 3D-echocardiography are more accurate, especially since the latter one is comparable with the MRI gold standard estimation of LVEF. Apart from the objective parameters, there are also patient-centered evaluations to reveal the benefits of SCT, such as quality of life and performance status, the most valuable from the patient point of view. Emerging parameters investigating molecular pathways such as non-coding RNAs or inflammation cytokines have a high potential as prognostic factors. Due to the disadvantages of current techniques, new imaging methods with labelled cells tracked along their lifetime seem promising, but until now only pre-clinical trials have been conducted in humans. Overall, SCT is characterized by high heterogeneity not only in preparation, administration and type of cells, but also in quantification of therapy effects.
Collapse
Affiliation(s)
- Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014461, Romania
| | | | - Mihaela Popa
- Carol Davila, University of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, Bucharest 020022, Romania
| | - Iulia Rusu
- Carol Davila, University of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, Bucharest 020022, Romania
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014461, Romania.
| |
Collapse
|
12
|
Jeyaraman MM, Rabbani R, Copstein L, Sulaiman W, Farshidfar F, Kashani HH, Qadar SMZ, Guan Q, Skidmore B, Kardami E, Ducas J, Mansour S, Zarychanski R, Abou-Setta AM. Autologous Bone Marrow Stem Cell Therapy in Patients With ST-Elevation Myocardial Infarction: A Systematic Review and Meta-analysis. Can J Cardiol 2017; 33:1611-1623. [PMID: 29173601 DOI: 10.1016/j.cjca.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Randomized controlled trials (RCTs) on bone marrow stem cell (BMSC) therapy in ST-elevation myocardial infarction (STEMI) patients have reported conflicting results. Our main objective was to critically appraise and meta-analyze best-available evidence on efficacy and safety of intracoronary administration of autologous BMSC therapy in STEMI patients after primary percutaneous coronary intervention. METHODS We conducted a search of MEDLINE, PubMed, EMBASE, CENTRAL, Global Health, CINAHL, and conference proceedings in February 2017. Our primary outcome was all-cause mortality. Secondary and safety outcomes included cardiac death, heart failure, arrhythmias, repeat myocardial infarction, or target vessel revascularizations; or improved health-related quality of life, left ventricular ejection fraction, or infarct size. Summary relative and absolute risks were obtained using random effects models. We also evaluated the strength of evidence. RESULTS A comprehensive database search identified 42 RCTs (3365 STEMI patients). BMSC therapy did not significantly decrease mortality (risk ratio, 0.71; 95% confidence interval, 0.45-1.11; I2, 0%; absolute risk reduction, 0.1%; 95% confidence interval, -0.71 to 0.91; 40 trials; 3289 participants; I2, 0%; low strength of evidence). BMSC therapy had no effect on secondary or adverse outcomes. Trial sequential analysis for all-cause mortality showed no evidence of a clinically important difference, with a very low probability that future studies can change the current conclusion. CONCLUSIONS On the basis of evidence from 42 RCTs published in the past 15 years, we provide conclusive evidence for a lack of beneficial effect for autologous BMSC therapy in patients with STEMI.
Collapse
Affiliation(s)
- Maya M Jeyaraman
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Rasheda Rabbani
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leslie Copstein
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wasan Sulaiman
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Farnaz Farshidfar
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hessam H Kashani
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sheikh M Z Qadar
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingdong Guan
- Cellular Therapy Laboratory, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Manitoba Center for Advanced Cell and Tissue Therapy, Winnipeg, Manitoba, Canada
| | - Becky Skidmore
- Information Specialist Consultant, Ottawa, Ontario, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John Ducas
- Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samer Mansour
- Centre Hospitalier de l'Université de Montreal, Montreal, Quebec, Canada; Faculty of Medicine, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Ryan Zarychanski
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Haematology and Medical Oncology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Ahmed M Abou-Setta
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Steinhoff G, Nesteruk J, Wolfien M, Große J, Ruch U, Vasudevan P, Müller P. Stem cells and heart disease - Brake or accelerator? Adv Drug Deliv Rev 2017; 120:2-24. [PMID: 29054357 DOI: 10.1016/j.addr.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
After two decades of intensive research and attempts of clinical translation, stem cell based therapies for cardiac diseases are not getting closer to clinical success. This review tries to unravel the obstacles and focuses on underlying mechanisms as the target for regenerative therapies. At present, the principal outcome in clinical therapy does not reflect experimental evidence. It seems that the scientific obstacle is a lack of integration of knowledge from tissue repair and disease mechanisms. Recent insights from clinical trials delineate mechanisms of stem cell dysfunction and gene defects in repair mechanisms as cause of atherosclerosis and heart disease. These findings require a redirection of current practice of stem cell therapy and a reset using more detailed analysis of stem cell function interfering with disease mechanisms. To accelerate scientific development the authors suggest intensifying unified computational data analysis and shared data knowledge by using open-access data platforms.
Collapse
Affiliation(s)
- Gustav Steinhoff
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Julia Nesteruk
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Markus Wolfien
- University Rostock, Institute of Computer Science, Department of Systems Biology and Bioinformatics, Ulmenstraße 69, 18057 Rostock, Germany.
| | - Jana Große
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Ulrike Ruch
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Praveen Vasudevan
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Paula Müller
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| |
Collapse
|
14
|
Beltrami AP, Madeddu P. Pericytes and cardiac stem cells: Common features and peculiarities. Pharmacol Res 2017; 127:101-109. [PMID: 28578204 DOI: 10.1016/j.phrs.2017.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/14/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Clinical data and basic research indicate that the structural and functional alterations that characterize the evolution of cardiac disease towards heart failure may be, at least in part, reversed. This paradigm shift is due to the accumulation of evidence indicating that, in peculiar settings, cardiomyocytes may be replenished. Moving from the consideration that cardiomyocytes are rapidly withdrawn from the cell cycle after birth, independent laboratories have tested the hypothesis that cardiac resident stem/progenitor cells resided in mammalian hearts and were important for myocardial repair. After almost two decades of intensive investigation, several (but partially overlapping) cardiac resident stem/progenitor cell populations have been identified. These primitive cells are characterized by mesenchymal features, unique properties that distinguish them from mesodermal progenitors residing in other tissues, and heterogeneous embryological origins (that include the neural crest and the epicardium). A further layer of complexity is related to the nature, in vivo localization and properties of mesodermal progenitors residing in adult tissues. Intriguingly, these latter, whose possible perivascular pericyte/mural cell origin has been shown, have been identified in human hearts too. However, their exact anatomical localization, pathophysiological role, and their relationship with cardiac stem/progenitor cells are emerging only recently. Therefore, aim of this review is to discuss the different origin, the distinct nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative strategies based on the combined use of both myogenic and angiogenic factors.
Collapse
Affiliation(s)
- Antonio Paolo Beltrami
- Istituto di Anatomia Patologica, Università degli Studi di Udine, P.zzle S. Maria della Misericordia, 33100 Udine, Italy.
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
15
|
Micheu MM, Dorobantu M. Fifteen years of bone marrow mononuclear cell therapy in acute myocardial infarction. World J Stem Cells 2017; 9:68-76. [PMID: 28491241 PMCID: PMC5405402 DOI: 10.4252/wjsc.v9.i4.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/16/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
In spite of modern treatment, acute myocardial infarction (AMI) still carries significant morbidity and mortality worldwide. Even though standard of care therapy improves symptoms and also long-term prognosis of patients with AMI, it does not solve the critical issue, specifically the permanent damage of cardiomyocytes. As a result, a complex process occurs, namely cardiac remodeling, which leads to alterations in cardiac size, shape and function. This is what has driven the quest for unconventional therapeutic strategies aiming to regenerate the injured cardiac and vascular tissue. One of the latest breakthroughs in this regard is stem cell (SC) therapy. Based on favorable data obtained in experimental studies, therapeutic effectiveness of this innovative therapy has been investigated in clinical settings. Of various cell types used in the clinic, autologous bone marrow derived SCs were the first used to treat an AMI patient, 15 years ago. Since then, we have witnessed an increasing body of data as regards this cutting-edge therapy. Although feasibility and safety of SC transplant have been clearly proved, it's efficacy is still under dispute. Conducted studies and meta-analysis reported conflicting results, but there is hope for conclusive answer to be provided by the largest ongoing trial designed to demonstrate whether this treatment saves lives. In the meantime, strategies to enhance the SCs regenerative potential have been applied and/or suggested, position papers and recommendations have been published. But what have we learned so far and how can we properly use the knowledge gained? This review will analytically discuss each of the above topics, summarizing the current state of knowledge in the field.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Miruna Mihaela Micheu, Maria Dorobantu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Maria Dorobantu
- Miruna Mihaela Micheu, Maria Dorobantu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
16
|
Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease. Circ Res 2017; 120:1326-1340. [DOI: 10.1161/circresaha.116.309045] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Rationale:
Critical limb ischemia is a life-threatening complication of peripheral arterial disease. In patients who are ineligible for revascularization procedures, there are few therapeutic alternatives, leading to amputations and death.
Objective:
To provide a systematic review of the literature and a meta-analysis of studies evaluating safety and efficacy of autologous cell therapy for intractable peripheral arterial disease/critical limb ischemia.
Methods and Results:
We retrieved 19 randomized controlled trials (837 patients), 7 nonrandomized trials (338 patients), and 41 noncontrolled studies (1177 patients). The primary outcome was major amputation. Heterogeneity was high, and publication bias could not be excluded. Despite these limitations, the primary analysis (all randomized controlled trials) showed that cell therapy reduced the risk of amputation by 37%, improved amputation-free survival by 18%, and improved wound healing by 59%, without affecting mortality. Cell therapy significantly increased ankle brachial index, increased transcutaneous oxygen tension, and reduced rest pain. The secondary analysis (all controlled trials; n=1175 patients) shows that there may be potential to avoid ≈1 amputation/year for every 2 patients successfully treated. The tertiary analysis (all studies; n=2332 patients) precisely estimated the changes in ankle brachial index, transcutaneous oxygen tension, rest pain, and walking capacity after cell therapy. Intramuscular implantation appeared more effective than intra-arterial infusion, and mobilized peripheral blood mononuclear cells may outperform bone marrow–mononuclear cells and mesenchymal stem cells. Amputation rate was improved more in trials wherein the prevalence of diabetes mellitus was high. Cell therapy was not associated with severe adverse events. Remarkably, efficacy of cell therapy on all end points was no longer significant in placebo-controlled randomized controlled trials and disappeared in randomized controlled trials with a low risk of bias.
Conclusions:
Although this meta-analysis highlights the need for more high-quality placebo-controlled trials, equipoise may no longer be guaranteed because autologous cell therapy has the potential to modify the natural history of intractable critical limb ischemia.
Collapse
Affiliation(s)
- Mauro Rigato
- From the Department of Medicine, University of Padova, Italy (M.R., G.P.F.); and Diabetology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (M.M.)
| | - Matteo Monami
- From the Department of Medicine, University of Padova, Italy (M.R., G.P.F.); and Diabetology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (M.M.)
| | - Gian Paolo Fadini
- From the Department of Medicine, University of Padova, Italy (M.R., G.P.F.); and Diabetology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (M.M.)
| |
Collapse
|
17
|
Abstract
Dramatic evolution in medical and catheter interventions and complex surgeries to treat children with congenital heart disease (CHD) has led to a growing number of patients with a multitude of long-term complications associated with morbidity and mortality. Heart failure in patients with hypoplastic left heart syndrome predicated by functional single ventricle lesions is associated with an increase in CHD prevalence and remains a significant challenge. Pathophysiological mechanisms contributing to the progression of CHD, including single ventricle lesions and dilated cardiomyopathy, and adult heart disease may inevitably differ. Although therapeutic options for advanced cardiac failure are restricted to heart transplantation or mechanical circulatory support, there is a strong impetus to develop novel therapeutic strategies. As lower vertebrates, such as the newt and zebrafish, have a remarkable ability to replace lost cardiac tissue, this intrinsic self-repair machinery at the early postnatal stage in mice was confirmed by partial ventricular resection. Although the underlying mechanistic insights might differ among the species, mammalian heart regeneration occurs even in humans, with the highest degree occurring in early childhood and gradually declining with age in adulthood, suggesting the advantage of stem cell therapy to ameliorate ventricular dysfunction in patients with CHD. Although effective clinical translation by a variety of stem cells in adult heart disease remains inconclusive with respect to the improvement of cardiac function, case reports and clinical trials based on stem cell therapies in patients with CHD may be invaluable for the next stage of therapeutic development. Dissecting the differential mechanisms underlying progressive ventricular dysfunction in children and adults may lead us to identify a novel regenerative therapy. Future regenerative technologies to treat patients with CHD are exciting prospects for heart regeneration in general practice.
Collapse
Affiliation(s)
- Hidemasa Oh
- From the Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan
| |
Collapse
|
18
|
Ellison-Hughes GM, Madeddu P. Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther 2017; 171:1-12. [PMID: 27916652 PMCID: PMC5636619 DOI: 10.1016/j.pharmthera.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischaemic diseases remain a major cause of morbidity and mortality despite continuous advancements in medical and interventional treatments. Moreover, available drugs reduce symptoms associated with tissue ischaemia, without providing a definitive repair. Cardiovascular regenerative medicine is an expanding field of research that aims to improve the treatment of ischaemic disorders through restorative methods, such as gene therapy, stem cell therapy, and tissue engineering. Stem cell transplantation has salutary effects through direct and indirect actions, the latter being attributable to growth factors and cytokines released by stem cells and influencing the endogenous mechanisms of repair. Autologous stem cell therapies offer less scope for intellectual property coverage and have limited scalability. On the other hand, off-the-shelf cell products and derivatives from the stem cell secretome have a greater potential for large-scale distribution, thus enticing commercial investors and reciprocally producing more significant medical and social benefits. This review focuses on the paracrine properties of cardiac stem cells and pericytes, two stem cell populations that are increasingly attracting the attention of regenerative medicine operators. It is likely that new cardiovascular drugs are introduced in the next future by applying different approaches based on the refinement of the stem cell secretome.
Collapse
Affiliation(s)
- Georgina M Ellison-Hughes
- Centre of Human & Aerospace Physiological Sciences, Centre for Stem Cells and Regenerative Medicine, Faculty of Medicine & Life Sciences, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Paolo Madeddu
- Chair Experimental Cardiovascular Medicine, Bristol Heart Institute, School of Clinical Sciences University of Bristol Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|