1
|
Zhao X, Qin R, Li G, Lv G, Zhao D, Kong L, Qi M, Li P. GDF11 Regulates M1 and M2 Polarization of BV2 Microglial Cells via p38 MAPK Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04837-1. [PMID: 40100492 DOI: 10.1007/s12035-025-04837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) superfamily, exhibits great neurological and mental diseases modulating potential. However, its specific effects on microglia, which are the primary immune cells of the nervous system, remain unclear. To investigate the mechanism by which GDF11 affects BV2 microglial cells in vitro and to elucidate its regulatory mechanisms, we carried out a systematic examination of how GDF11 affects the various functions of lipopolysaccharide (LPS)-induced BV2 microglial cells and found that endogenous GDF11 could significantly inhibit cell proliferation, apoptosis, and migration. Specifically, GDF11 inhibited the polarization of BV2 cells to the proinflammatory M1 phenotype and promoted their polarization to the anti-inflammatory M2 phenotype, precipitating a reduction in the expression of CD86 and nitric oxide synthase 2 (NOS2), and an increase in the expression of CD206 and arginase-1. Additionally, RNA-seq and Western blotting experiments revealed that GDF11 activated the p38 MAPK (mitogen-activated protein kinase) pathway, mediating its effects on BV2 cells. Taken together, GDF11 could crucially regulate microglial responses and promote an anti-inflammatory microglial phenotype through the p38 MAPK signaling axis, which may have potential therapeutic implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Rui Qin
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Guopeng Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Gaorong Lv
- School of Software, Shandong University, Jinan, Shandong, 250012, China
| | - Di Zhao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Linghua Kong
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Meiling Qi
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Ping Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Quiroga B, Díez J. The kidney-skeletal muscle-heart axis in chronic kidney disease: implications for myokines. Nephrol Dial Transplant 2025; 40:255-263. [PMID: 39215443 DOI: 10.1093/ndt/gfae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 09/04/2024] Open
Abstract
Myokines are signalling moieties released by the skeletal muscle in response to acute and/or chronic exercise, which exert their beneficial or detrimental effects through paracrine and/or autocrine pathways on the skeletal muscle and through endocrine pathways in many other organs (e.g. the heart). Interestingly, alterations in myokines have been described in patients with heart failure (HF) that are associated with adverse structural and functional left ventricular remodelling and poor cardiac outcomes. Recent experimental and clinical studies have shown that the muscle regulation of a number of myokines is altered in chronic kidney disease (CKD) thus representing a new molecular aspect of the pathophysiology of skeletal myopathy present in patients with CKD. Muscle dysregulation of myokines may contribute to a number of disorders in non-dialysis and dialysis patients with CKD, including the high risk of developing HF. This possibility would translate into a range of new diagnostic and therapeutic options. In fact, the measurement of circulating myokines opens their possible usefulness as biomarkers to personalize exercise training and pharmacological therapies for the prevention and treatment of HF in patients with CKD and skeletal myopathy. This review will analyse information on some myokines that target the heart and are altered at the level of skeletal muscle and circulation in patients with CKD.
Collapse
Affiliation(s)
- Borja Quiroga
- Nephrology Department, IIS-La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
- RICORS2040 Kidney Disease, Madrid, Spain
| | - Javier Díez
- Center for Applied Medical Research (CIMA), and School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Matic Jelic I, Stokovic N, Ivanjko N, Pecina M, Kufner V, Bordukalo Niksic T, Vukicevic S. Systemic inhibition of bone morphogenetic protein 1.3 as a possible treatment for laminin-related congenital muscular dystrophy. INTERNATIONAL ORTHOPAEDICS 2025; 49:45-52. [PMID: 39621123 DOI: 10.1007/s00264-024-06389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Congenital muscular dystrophy (CMD) is a group of rare neuromuscular disorders typically characterized by the onset of symptoms at birth or within the first two years of life. CMDs are relatively rare, but extremely severe pathological conditions currently without a safe and effective therapeutic solution. Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is among the most frequent CMDs and it is caused by mutations in the LAMA2 gene that encodes for the α2 chain of laminin-211 (merosin). Laminin-211 is a crucial constituent of the basement membrane that provides muscle fibre stability and signal transduction. Bone morphogenetic protein 1.3 (BMP1.3) is evolutionarily conserved and structurally related to mammalian Tolloid-like metalloproteinase (mTld) that is involved in the processing of procollagens, non-collagenous extracellular matrix proteins, and growth factor-related proteins. Recently, it has been shown that BMP1.3 is present in circulation and its levels are elevated in patients with chronic kidney failure, hepatic fibrosis, and acute myocardial infarction. It has been demonstrated that administering the BMP1.3 antibody ameliorated kidney, liver, and heart function in animal disease models. Furthermore, we observed highly enhanced BMP1.3 gene expression in the skeletal muscles of mice with congenital muscular dystrophy. Therefore, we hypothesize that BMP1.3 inhibition represents a novel therapeutic strategy for reversing the progression of CMD. The development of an anti-BMP1.3 therapy might lead to groundbreaking changes in CMD treatment and provide relief to numerous patients suffering from this disabling disease.
Collapse
Affiliation(s)
- Ivona Matic Jelic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
6
|
Zhou Y, Nan F, Zhang Q, Xu W, Fang S, Liu K, Zhao B, Han H, Xie X, Qin C, Pang X. Natural products that alleviate depression: The putative role of autophagy. Pharmacol Ther 2024; 264:108731. [PMID: 39426604 DOI: 10.1016/j.pharmthera.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a common mental disorder that severely disrupts psychosocial function and decreases the quality of life. Although the pathophysiological mechanism underlying MDD is complex and remains unclear, emerging evidence suggests that autophagy dysfunction plays a role in MDD occurrence and progression. Natural products serve as a major source of drug discovery and exert tremendous potential in developing antidepressants. Recently published reports are paying more attention on the autophagy regulatory effect of antidepressant natural products. In this review, we comprehensively discuss the abnormal changes occurred in multiple autophagy stages in MDD patients, and animal and cell models of depression. Importantly, we emphasize the regulatory mechanism of antidepressant natural products on disturbed autophagy, including monomeric compounds, bioactive components, crude extracts, and traditional Chinese medicine formulae. Our comprehensive review suggests that enhancing autophagy might be a novel approach for MDD treatment, and natural products restore autophagy homeostasis to facilitate the renovation of mitochondria, impede neuroinflammation, and enhance neuroplasticity, thereby alleviating depression.
Collapse
Affiliation(s)
- Yunfeng Zhou
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Fengwei Nan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qianwen Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wangjun Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shaojie Fang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ke Liu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bingxin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Xiaobin Pang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Gohlke J, Lindqvist J, Hourani Z, Rich K, Arnold WD, Heintzman S, Tonino P, Elsheikh B, Morales A, Vatta M, Burghes A, Granzier H, Roggenbuck J. Pathomechanisms of Monoallelic variants in TTN causing skeletal muscle disease. Hum Mol Genet 2024; 33:2003-2023. [PMID: 39277846 PMCID: PMC11578113 DOI: 10.1093/hmg/ddae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Pathogenic variants in the titin gene (TTN) are known to cause a wide range of cardiac and musculoskeletal disorders, with skeletal myopathy mostly attributed to biallelic variants. We identified monoallelic truncating variants (TTNtv), splice site or internal deletions in TTN in probands with mild, progressive axial and proximal weakness, with dilated cardiomyopathy frequently developing with age. These variants segregated in an autosomal dominant pattern in 7 out of 8 studied families. We investigated the impact of these variants on mRNA, protein levels, and skeletal muscle structure and function. Results reveal that nonsense-mediated decay likely prevents accumulation of harmful truncated protein in skeletal muscle in patients with TTNtvs. Splice variants and an out-of-frame deletion induce aberrant exon skipping, while an in-frame deletion produces shortened titin with intact N- and C-termini, resulting in disrupted sarcomeric structure. All variant types were associated with genome-wide changes in splicing patterns, which represent a hallmark of disease progression. Lastly, RNA-seq studies revealed that GDF11, a member of the TGF-β superfamily, is upregulated in diseased tissue, indicating that it might be a useful therapeutic target in skeletal muscle titinopathies.
Collapse
Affiliation(s)
- Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Kelly Rich
- Harvard Medical School Department of Genetics - Blavatnik Institute 77 Avenue Louis Pasteur, Boston MA, 02115 USA
| | - W David Arnold
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA; NextGen Precision Health, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Sarah Heintzman
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States
| | - Paola Tonino
- Research, Innovation and Impact Core Facilities Department, University of Arizona, 1333 N. Martin Ave, Tucson, AZ 85719, United States
| | - Bakri Elsheikh
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States
| | - Ana Morales
- Invitae Corporation, 1400 16th St., San Francisco, CA 94103, United States
| | - Matteo Vatta
- Invitae Corporation, 1400 16th St., San Francisco, CA 94103, United States
| | - Arthur Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 370 W 9th Ave, Columbus, OH 43210, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States
| |
Collapse
|
8
|
Wang C, Liu X, Hu X, Wu T, Duan R. Therapeutic targeting of GDF11 in muscle atrophy: Insights and strategies. Int J Biol Macromol 2024; 279:135321. [PMID: 39236952 DOI: 10.1016/j.ijbiomac.2024.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The exploration of novel therapeutic avenues for skeletal muscle atrophy is imperative due to its significant health impact. Recent studies have spotlighted growth differentiation factor 11 (GDF11), a TGFβ superfamily member, for its rejuvenating role in reversing age-related tissue dysfunction. This review synthesizes current findings on GDF11, elucidating its distinct biological functions and the ongoing debates regarding its efficacy in muscle homeostasis. By addressing discrepancies in current research outcomes and its ambiguous role due to its homological identity to myostatin, a negative regulator of muscle mass, this review aims to clarify the role of GDF11 in muscle homeostasis and its potential as a therapeutic target for muscle atrophy. Through a thorough examination of GDF11's mechanisms and effects, this review provides insights that could pave the way for innovative treatments for muscle atrophy, emphasizing the need and strategies to boost endogenous GDF11 levels for therapeutic potential.
Collapse
Affiliation(s)
- Chuanzhi Wang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xilong Hu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Tao Wu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Zhang P, Zhai H, Zhang S, Ma X, Gong A, Xu Z, Zhao W, Song H, Li S, Zheng T, Ying Z, Cheng L, Zhao Y, Zhang L. GDF11 protects against mitochondrial-dysfunction-dependent NLRP3 inflammasome activation to attenuate osteoarthritis. J Adv Res 2024:S2090-1232(24)00323-0. [PMID: 39103049 DOI: 10.1016/j.jare.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Haoxin Zhai
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojie Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Department of Rheumatology and Immunology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Ao Gong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Zhaoning Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China
| | - Tengfei Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China
| | - Zhendong Ying
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China; Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, PR China.
| |
Collapse
|
10
|
Wu Z, Xi Q, Zhao Q, Zhu S. GDF11 OVEREXPRESSION ALLEVIATES SEPSIS-INDUCED LUNG MICROVASCULAR ENDOTHELIAL BARRIER DAMAGE BY ACTIVATING SIRT1/NOX4 SIGNALING TO INHIBIT FERROPTOSIS. Shock 2024; 62:245-254. [PMID: 38920138 DOI: 10.1097/shk.0000000000002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
ABSTRACT Sepsis is a lethal clinical syndrome, and acute lung injury (ALI) is the earliest and most serious complication. We aimed to explore the role of growth differentiation factor 11 (GDF11) in sepsis-induced dysfunction of lung microvascular endothelial barrier in vivo and in vitro to elucidate its potential mechanism related to sirtuin 1 (SIRT1)/NADPH oxidase 4 (NOX4) signaling. Cecal ligation and puncture (CLP)-induced sepsis mice and lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (PMECs) were used in this study. Histopathological changes in lung tissues were tested by hematoxylin-eosin staining. Lung wet-to-dry weight ratio and inflammatory factors contents in bronchoalveolar lavage fluid were assessed. Evens blue index, trans-epithelial electrical resistance, and expression of zona occludens 1 (ZO-1), occludin-1, and claudin-1 were used to evaluate alveolar barrier integrity. Reactive oxygen species, lipid peroxidation, and ferroptosis markers were analyzed. Iron deposition in the lung tissues was assessed using Prussian blue staining. Intracellular Fe 2+ level was detected using FerroOrange staining. Additionally, expression of GDF11, SIRT1, and NOX4 was estimated with western blot. Then, EX527, a SIRT1 inhibitor, was employed to treat GDF11-overexpressed PMECs with LPS stimulation to clarify the regulatory mechanism. Results showed that GDF11 overexpression attenuated sepsis-induced pathological changes and inflammation and maintained alveolar barrier integrity. Moreover, GDF11 overexpression inhibited ferroptosis, upregulated SIRT1 expression and downregulated NOX4 expression. Additionally, EX527 treatment relieved the impacts of GDF11 overexpression on ferroptosis and destruction of integrity of human pulmonary microvascular endothelial cells exposed to LPS. Taken together, GDF11 overexpression could alleviate sepsis-induced lung microvascular endothelial barrier damage by activating SIRT1/NOX4 signaling to inhibit ferroptosis. Our findings potentially provide new molecular target for clinical therapy of ALI.
Collapse
Affiliation(s)
- Zhixiang Wu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
11
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
12
|
Braun P, Alawi M, Saygi C, Pantel K, Wagers AJ. Expression profiling by high-throughput sequencing reveals GADD45, SMAD7, EGR-1 and HOXA3 activation in Myostatin (MSTN) and GDF11 treated myoblasts. Genet Mol Biol 2024; 47:e20230304. [PMID: 39012095 PMCID: PMC11256782 DOI: 10.1590/1678-4685-gmb-2023-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 07/17/2024] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN/GDF8) are closely related members of the transforming growth factor β (TGFβ) superfamily, sharing structural homology. Despite these structural similarities, recent research has shed light on the distinct roles these ligands play within muscle tissue. This study aims to uncover both the differences and similarities in gene expression at the transcriptome level by utilizing RNA sequencing. We conducted experiments involving five distinct groups, each with three biological replicates, using C2C12 cell cultures. The cells were subjected to high-throughput profiling to investigate disparities in gene expression patterns following preconditioning with either GDF11 or MSTN at concentrations of 1 nM and 10 nM, respectively. In addition, control groups were established. Our research revealed concentration-dependent gene expression patterns, with 38 genes showing significant differences when compared to the control groups. Notably, GADD45, SMAD7, EGR-1, and HOXA3 exhibited significant differential expression. We also conducted an over-representation analysis, highlighting the activation of MAPK and JNK signaling pathways, along with GO-terms related to genes that negatively regulate metabolic processes, biosynthesis, and protein phosphorylation. This study unveiled the activation of several genes not previously discussed in existing literature whose full biological implications are yet to be determined in future research.
Collapse
Affiliation(s)
- Platon Braun
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, MA, United States
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hamburg, Germany
| | - Malik Alawi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Ceren Saygi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, Hamburg, Germany
| | - Amy J. Wagers
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, MA, United States
- Joslin Diabetes Center, Inc., Boston, MA, United States
| |
Collapse
|
13
|
Yang SH, Yang H, Ahn BM, Lee SY, Lee SJ, Kim JS, Koo YT, Lee CH, Kim JH, Yoon Park JH, Jang YJ, Lee KW. Fermented Yak-Kong using Bifidobacterium animalis derived from Korean infant intestine effectively relieves muscle atrophy in an aging mouse model. Food Funct 2024; 15:7224-7237. [PMID: 38812412 DOI: 10.1039/d3fo04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Yak-Kong (YK) is a small black soybean widely cultivated in Korea. It is considered to have excellent health functionality, as it has been reported to have better antioxidant efficacy than conventional black or yellow soybeans. Since YK has been described as good for the muscle health of the elderly in old oriental medicine books, this study sought to investigate the effect of fermented YK with Bifidobacterium animalis subsp. lactis LDTM 8102 (FYK) on muscle atrophy. In C2C12 mouse myoblasts, FYK elevated the expression of MyoD, total MHC, phosphorylated AKT, and PGC1α. In addition, two kinds of in vivo studies were conducted using both an induced and normal aging mouse model. The behavioral test results showed that in the induced aging mouse model, FYK intake alleviated age-related muscle weakness and loss of exercise performance. In addition, FYK alleviated muscle mass decrease and improved the expression of biomarkers including total MHC, myf6, phosphorylated AKT, PGC1α, and Tfam, which are related to myoblast differentiation, muscle protein synthesis, and mitochondrial generation in the muscle. In the normal aging model, FYK consumption did not increase muscle mass, but did upregulate the expression levels of biomarkers related to myoblast differentiation, muscle hypertrophy, and muscle function. Furthermore, it mitigated age-related declines in skeletal muscle force production and functional limitation by enhancing exercise performance and grip strength. Taken together, the results suggest that FYK has the potential to be a new functional food material that can alleviate the loss of muscle mass and strength caused by aging and prevent sarcopenia.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Byeong Min Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Young Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon Joo Lee
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Jin Soo Kim
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Young Tae Koo
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Jin Jang
- Major of Food Science & Biotechnology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National. University, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
15
|
Wu Q, Fan C, Liu K, Tang J. GDF11 inhibits the malignant progression of hepatocellular carcinoma via regulation of the mTORC1‑autophagy axis. Exp Ther Med 2024; 27:252. [PMID: 38682112 PMCID: PMC11046183 DOI: 10.3892/etm.2024.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor, which is associated with a poor prognosis and high mortality rate. It is well known that growth differentiation factor 11 (GDF11) acts as a tumor suppressor in various types of cancer, including HCC. The present study aimed to determine the tumor-suppressive properties of GDF11 in HCC and to assess the intrinsic mechanisms. In the present study, the human hepatoma cell line Huh-7 was transfected with the GDF11 overexpression plasmid (Oe-GDF11) for gain-of-function experiments to investigate the effects of GDF11 on the biological behaviors of HCC cells, including proliferation, colony formation, apoptosis, cell cycle arrest, migration, invasion, epithelial-mesenchymal transition (EMT) and angiogenesis. The proliferation, colony formation, apoptosis, cell cycle, migration, invasion and angiogenesis of HCC cells were assessed by CCK-8, EdU staining, colony formation, flow cytometry, wound healing, Transwell and tube formation assays, respectively. Apoptosis-, cell cycle-, EMT-related key factors were also determined by western blot assay. Furthermore, Oe-GDF11-transfected Huh-7 cells were treated with the mammalian target of rapamycin (mTOR) activator MHY1485 for rescue experiments to explore whether GDF11 could exert antitumor effects against HCC via mediating the mTOR complex 1 (mTORC1)-autophagy axis. In the present study, GDF11 was verified to be lowly expressed in HCC cells. Overexpression of GDF11 inhibited the proliferation, colony formation, migration, invasion, EMT and angiogenesis of HCC cells, and facilitated the apoptosis and cell cycle arrest of HCC cells. Additionally, it was verified that overexpression of GDF11 inactivated the mTORC1 signaling pathway to enhance autophagy in HCC cells. Treatment with the mTOR activator MHY1485 partially reversed the tumor-suppressive effects of GDF11 overexpression on HCC. In conclusion, GDF11 may exert tumor-suppressive properties in HCC cells through inactivating the mTORC1 signaling pathway to strengthen autophagy.
Collapse
Affiliation(s)
- Qingyi Wu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Chan Fan
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Kebo Liu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, Huaihua, Hunan 418000, P.R. China
| | - Jiefu Tang
- Spine and Spinal Cord Center, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| |
Collapse
|
16
|
Zhang J, Wang G, Shi Y, Liu X, Liu S, Chen W, Ning Y, Cao Y, Zhao Y, Li M. Growth differentiation factor 11 regulates high glucose-induced cardiomyocyte pyroptosis and diabetic cardiomyopathy by inhibiting inflammasome activation. Cardiovasc Diabetol 2024; 23:160. [PMID: 38715043 PMCID: PMC11077721 DOI: 10.1186/s12933-024-02258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Guolong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yuxuan Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Wendi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yunna Ning
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yongzhi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China.
| | - Ming Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China.
| |
Collapse
|
17
|
Wu Z, Zhang Q, Wang H, Zhou S, Fu B, Fang L, Cheng JC, Sun YP. Growth differentiation factor-11 upregulates matrix metalloproteinase 2 expression by inducing Snail in human extravillous trophoblast cells. Mol Cell Endocrinol 2024; 585:112190. [PMID: 38369181 DOI: 10.1016/j.mce.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The human extravillous trophoblast (EVT) cell invasion is an important process during placentation. Although the placenta is normal tissue, the EVT cells exhibit some features common to cancer cells, including high migratory and invasive properties. Snail and Slug are transcription factors that mediate the epithelial-mesenchymal transition (EMT), a crucial event for cancer cell migration and invasion. It has been shown that GDF-11-induced matrix metalloproteinase 2 (MMP2) expression is required for EVT cell invasion. Whether GDF-11 can regulate Snail and Slug expression in human EVT cells remains unknown. If it does, the involvement of Snail and Slug in GDF-11-induced MMP2 expression and EVT cell invasion must also be defined. In the present study, using the immortalized human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells as experimental models, our results show that GDF-11 upregulates Snail and Slug expression. ALK4 and ALK5 mediate the stimulatory effects of GDF-11 on Snail and Slug expression. In addition, we demonstrate that SMAD2 and SMAD3 are required for the GDF-11-upregulated Snail expression, while only SMAD3 is involved in GDF-11-induced Slug expression. Moreover, our results reveal that Snail mediates GDF-11-induced MMP2 expression and cell invasion but not Slug. This study increases our understanding of the biological function of GDF-11 in human EVT cells and provides a novel mechanism for regulating MMP2 and EVT cell invasion.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Williams MJ, Halabi CM, Patel HM, Joseph Z, McCommis K, Weinheimer C, Kovacs A, Lima F, Finck B, Malluche H, Hruska KA. In chronic kidney disease altered cardiac metabolism precedes cardiac hypertrophy. Am J Physiol Renal Physiol 2024; 326:F751-F767. [PMID: 38385175 PMCID: PMC11386984 DOI: 10.1152/ajprenal.00416.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.
Collapse
Affiliation(s)
- Matthew J Williams
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hiral M Patel
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Zachary Joseph
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Kyle McCommis
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carla Weinheimer
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Attila Kovacs
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Florence Lima
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Brian Finck
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hartmut Malluche
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Keith A Hruska
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Cell Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
19
|
Jin X, Guan W. Progress in the relationship between GDF11 and depression. Life Sci 2024; 341:122507. [PMID: 38378101 DOI: 10.1016/j.lfs.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Annually, the frequency of morbidity in depression has increased progressively in response to life stressors, and there is an increasing trend toward younger morbidity. The pathogenesis of depression is complicated and includes factors such as genetic inheritance and variations in physiological functions induced by various environmental factors. Currently, drug therapy has wide adaptability in clinical practice and plays an important role in the treatment of patients with mild depression. However, the therapeutic effects of most antidepressants are typically not significant and are associated with considerable adverse effects and addiction. Therefore, it is imperative to identify the deeper mechanisms of depression and search for alternative drug targets. Growth differentiation factor 11 (GDF11) is described as an anti-ageing molecule that belongs to a member of the transforming growth factor β family. Additionally, the latest research findings suggested that GDF11 positively regulates neurogenesis and enhances neuronal activity, thereby attenuating depression-like behaviours. Although an increasing number of studies have focused on the multiple functions of GDF11 in skeletal dysplasia and carcinogenesis, its precise mechanism of action in depression remains unknown. Thus, in this review, we discuss the role of GDF11 and its mechanistic pathways in the pathogenesis of depression to develop novel therapies for depression.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
20
|
Maroun G, Fissoun C, Villaverde M, Brondello JM, Pers YM. Senescence-regulatory factors as novel circulating biomarkers and therapeutic targets in regenerative medicine for osteoarthritis. Joint Bone Spine 2024; 91:105640. [PMID: 37739212 DOI: 10.1016/j.jbspin.2023.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Recent discoveries reveal that the chronic presence of senescent cells in osteoarticular tissues provides a focal point of disease development for osteoarthritis (OA). Nevertheless, senescence-regulatory factors associated with OA still need to be identified. Furthermore, few diagnostic- and prognostic-validated biochemical markers (biomarkers) are currently used in clinics to evaluate OA patients. In the future, alongside imaging and clinical examination, detecting senescence-regulatory biomarkers in patient fluids could become a prospective method for disease: diagnosis, monitoring, progression and prognosis following treatment. This review summarizes a group of circulating OA biomarkers recently linked to senescence onset. Remarkably, these factors identified in proteomics, metabolomic and microRNA studies could also have deleterious or protective roles in osteoarticular tissue homeostasis. In addition, we discuss their potentially innovative modulation in combination with senotherapeutic approaches, for long-lasting OA treatment.
Collapse
Affiliation(s)
- Georges Maroun
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM UMR 1183, 34298 Montpellier, France
| | - Christina Fissoun
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM UMR 1183, 34298 Montpellier, France
| | - Marina Villaverde
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM UMR 1183, 34298 Montpellier, France; HCS Pharma, Biocentre Fleming, 250, rue Salvador-Allende, Bat A, 59120 Loos, France
| | - Jean-Marc Brondello
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM UMR 1183, 34298 Montpellier, France
| | - Yves-Marie Pers
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM UMR 1183, 34298 Montpellier, France; Clinical immunology and osteoarticular diseases Therapeutic Unit, Lapeyronie University Hospital, CHU Montpellier, IRMB, University of Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
21
|
Kizer JR, Patel S, Ganz P, Newman AB, Bhasin S, Lee SJ, Cawthon PM, LeBrasseur NK, Shah SJ, Psaty BM, Tracy RP, Cummings SR. Circulating Growth Differentiation Factors 11 and 8, Their Antagonists Follistatin and Follistatin-Like-3, and Risk of Heart Failure in Elders. J Gerontol A Biol Sci Med Sci 2024; 79:glad206. [PMID: 37624693 PMCID: PMC10733168 DOI: 10.1093/gerona/glad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Heterochronic parabiosis has identified growth differentiation factor (GDF)-11 as a potential means of cardiac rejuvenation, but findings have been inconsistent. A major barrier has been lack of assay specificity for GDF-11 and its homolog GDF-8. METHODS We tested the hypothesis that GDF-11 and GDF-8, and their major antagonists follistatin and follistatin-like (FSTL)-3, are associated with incident heart failure (HF) and its subtypes in elders. Based on validation experiments, we used liquid chromatography-tandem mass spectrometry to measure total serum GDF-11 and GDF-8, along with follistatin and FSTL-3 by immunoassay, in 2 longitudinal cohorts of older adults. RESULTS In 2 599 participants (age 75.2 ± 4.3) followed for 10.8 ± 5.6 years, 721 HF events occurred. After adjustment, neither GDF-11 (HR per doubling: 0.93 [0.67, 1.30]) nor GDF-8 (HR: 1.02 per doubling [0.83, 1.27]) was associated with incident HF or its subtypes. Positive associations with HF were detected for follistatin (HR: 1.15 [1.00, 1.32]) and FLST-3 (HR: 1.38 [1.03, 1.85]), and with HF with preserved ejection fraction for FSTL-3 (HR: 1.77 [1.03, 3.02]). (All HRs per doubling of biomarker.) FSTL-3 associations with HF appeared stronger at higher follistatin levels and vice versa, and also for men, Blacks, and lower kidney function. CONCLUSIONS Among older adults, serum follistatin and FSTL-3, but not GDF-11 or GDF-8, were associated with incident HF. These findings do not support the concept that low serum levels of total GDF-11 or GDF-8 contribute to HF late in life, but do implicate transforming growth factor-β superfamily pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Peter Ganz
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Cardiology Division, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peggy M Cawthon
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, and Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Steven R Cummings
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| |
Collapse
|
22
|
Liu Q, Zhao RM, Wang DY, Li P, Qu YF, Ji X. Genome-wide characterization of the TGF-β gene family and their expression in different tissues during tail regeneration in the Schlegel's Japanese gecko Gekko japonicus. Int J Biol Macromol 2024; 255:128127. [PMID: 37984573 DOI: 10.1016/j.ijbiomac.2023.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The transforming growth factor-β (TGF-β) gene family is unique to animals and is involved in various important processes including tissue regeneration. Here, we identified 52 TGF-β family genes based on genome sequences of the gecko (Gekko japonicus), compared TGF-β genes between G. japonicus and other four reptilian species, and evaluated the expression of 14 randomly selected genes in muscle, kidney, liver, heart, and brain during tail regeneration to investigate whether their expression was tissue-dependent. We detected 23 conserved domains, 13 in the TGF-β ligand subfamily, and 10 in the receptor subfamily. The pattern of higher genetic variation in the ligand subfamily than in the receptor subfamily in vertebrates might result from the precise localization of agonists and antagonists in the cell surface and intracellular compartment. TGF-β genes were unevenly distributed across 15 chromosomes in G. japonicus, presumably resulting from gene losses and gains during evolution. Genes in the TGF-β receptor subfamily (ACVR2A, ACVR2B, ACVR1, BMPR1A, ACVRL1, BMPR2 and TGFBR1) played a vital role in the TGF-β signal pathway. The expression of all 14 randomly selected TGF-β genes was tissue-specific. Our study supports the speculation that some TGF-β family genes are involved in the early stages of tail regeneration.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ru-Meng Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan-Yan Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Kraler S, Balbi C, Vdovenko D, Lapikova-Bryhinska T, Camici GG, Liberale L, Bonetti N, Canestro CD, Burger F, Roth A, Carbone F, Vassalli G, Mach F, Bhasin S, Wenzl FA, Muller O, Räber L, Matter CM, Montecucco F, Lüscher TF, Akhmedov A. Circulating GDF11 exacerbates myocardial injury in mice and associates with increased infarct size in humans. Cardiovasc Res 2023; 119:2729-2742. [PMID: 37742057 PMCID: PMC10757585 DOI: 10.1093/cvr/cvad153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023] Open
Abstract
AIMS The heart rejuvenating effects of circulating growth differentiation factor 11 (GDF11), a transforming growth factor-β superfamily member that shares 90% homology with myostatin (MSTN), remains controversial. Here, we aimed to probe the role of GDF11 in acute myocardial infarction (MI), a frequent cause of heart failure and premature death during ageing. METHODS AND RESULTS In contrast to endogenous Mstn, myocardial Gdf11 declined during the course of ageing and was particularly reduced following ischaemia/reperfusion (I/R) injury, suggesting a therapeutic potential of GDF11 signalling in MI. Unexpectedly, boosting systemic Gdf11 by recombinant GDF11 delivery (0.1 mg/kg body weight over 30 days) prior to myocardial I/R augmented myocardial infarct size in C57BL/6 mice irrespective of their age, predominantly by accelerating pro-apoptotic signalling. While intrinsic cardioprotective signalling pathways remained unaffected by high circulating GDF11, targeted transcriptomics and immunomapping studies focusing on GDF11-associated downstream targets revealed attenuated Nkx2-5 expression confined to CD105-expressing cells, with pro-apoptotic activity, as assessed by caspase-3 levels, being particularly pronounced in adjacent cells, suggesting an indirect effect. By harnessing a highly specific and validated liquid chromatography-tandem mass spectrometry-based assay, we show that in prospectively recruited patients with MI circulating GDF11 but not MSTN levels incline with age. Moreover, GDF11 levels were particularly elevated in those at high risk for adverse outcomes following the acute event, with circulating GDF11 emerging as an independent predictor of myocardial infarct size, as estimated by standardized peak creatine kinase-MB levels. CONCLUSION Our data challenge the initially reported heart rejuvenating effects of circulating GDF11 and suggest that high levels of systemic GDF11 exacerbate myocardial injury in mice and humans alike. Persistently high GDF11 levels during ageing may contribute to the age-dependent loss of cardioprotective mechanisms and thus poor outcomes of elderly patients following acute MI.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
- Laboratories for Translational Research, EOC, Bellinzona, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | | | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Nicole Bonetti
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Candela Diaz Canestro
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Vassalli
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
- Laboratories for Translational Research, EOC, Bellinzona, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Olivier Muller
- Department of Cardiology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College and Kings College, London, UK
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| |
Collapse
|
24
|
Newman AB, Patel S, Kizer JR, Lee SJ, Bhasin S, Cawthon P, LeBrasseur N, Tracy RP, Ganz P, Cummings SR. Evaluation of Associations of Growth Differentiation Factor-11, Growth Differentiation Factor-8, and Their Binding Proteins Follistatin and Follistatin-Like Protein-3 With Dementia and Cognition. J Gerontol A Biol Sci Med Sci 2023; 78:2039-2047. [PMID: 36660892 PMCID: PMC10613013 DOI: 10.1093/gerona/glad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Studies using heterochronic parabiosis discovered that circulating factors mediate brain aging in animal models. METHODS We assessed growth differentiation factors (GDF)-11 and GDF-8 using mass spectrometry and inhibitors follistatin and follistatin-like protein-3 (FSTL-3) with ELISA in the Cardiovascular Health Study (CHS; N = 1 506) and the Health, Aging and Body Composition (Health ABC) Study (N = 1 237). CLL-11 and beta-2 microglobulin (β2M) were measured with ELISA in a subset of 400 individuals in Health ABC. Associations were assessed with cognitive function, brain magnetic resonance imaging (MRI) findings (CHS only), and incident dementia using correlations, linear regression, and Cox proportional hazards models. RESULTS In CHS, levels of GDF-11, GDF-8, and follistatin were not correlated cross-sectionally with the 3MSE or DSST, brain MRI findings of white matter hyperintensity, atrophy, or small infarcts, nor were they associated with incident dementia. FSTL-3 was modestly correlated with poorer cognitive function, greater white matter hyperintensities, and atrophy on MRI, as well as with incident dementia with an adjusted hazard ratio (HR) of 1.72 (95% CI = 1.13, 2.61) per doubling of FSTL-3. FSTL-3 was not associated with cognition or dementia in Health ABC, but GDF-8 was associated with both. The adjusted HR for incident dementia was 1.50 (95% CI = 1.07, 2.10) per doubling of GDF-8. CONCLUSIONS Total GDF-11 level was not related to cognition or dementia in older adults. Associations of GDF-8 with cognitive outcomes in Health ABC were not expected, but consistent with animal models. Associations of FSTL-3 with cognition, brain abnormalities, and incident dementia in CHS implicate TGFβ superfamily inhibition in the pathogenesis of dementia.
Collapse
Affiliation(s)
- Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania,USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Se-Jin Lee
- Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Shalinder Bhasin
- Research Program in Men’s Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peggy Cawthon
- Research Institute, California Pacific Medical Center, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Nathan LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Russel P Tracy
- Department of Biochemistry, University of Vermont, Burlington, Vermont,USA
| | - Peter Ganz
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Steven R Cummings
- Research Institute, California Pacific Medical Center, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Dubin RF, Deo R, Ren Y, Wang J, Zheng Z, Shou H, Go AS, Parsa A, Lash JP, Rahman M, Hsu CY, Weir MR, Chen J, Anderson A, Grams ME, Surapaneni A, Coresh J, Li H, Kimmel PL, Vasan RS, Feldman H, Segal MR, Ganz P. Proteomics of CKD progression in the chronic renal insufficiency cohort. Nat Commun 2023; 14:6340. [PMID: 37816758 PMCID: PMC10564759 DOI: 10.1038/s41467-023-41642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Progression of chronic kidney disease (CKD) portends myriad complications, including kidney failure. In this study, we analyze associations of 4638 plasma proteins among 3235 participants of the Chronic Renal Insufficiency Cohort Study with the primary outcome of 50% decline in estimated glomerular filtration rate or kidney failure over 10 years. We validate key findings in the Atherosclerosis Risk in the Communities study. We identify 100 circulating proteins that are associated with the primary outcome after multivariable adjustment, using a Bonferroni statistical threshold of significance. Individual protein associations and biological pathway analyses highlight the roles of bone morphogenetic proteins, ephrin signaling, and prothrombin activation. A 65-protein risk model for the primary outcome has excellent discrimination (C-statistic[95%CI] 0.862 [0.835, 0.889]), and 14/65 proteins are druggable targets. Potentially causal associations for five proteins, to our knowledge not previously reported, are supported by Mendelian randomization: EGFL9, LRP-11, MXRA7, IL-1 sRII and ILT-2. Modifiable protein risk markers can guide therapeutic drug development aimed at slowing CKD progression.
Collapse
Affiliation(s)
- Ruth F Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianqiao Wang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, the Department of Health Systems Science, Oakland, CA, USA
| | - Afshin Parsa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James P Lash
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Mahboob Rahman
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chi-Yuan Hsu
- Division of Research, Kaiser Permanente Northern California, Oakland, the Department of Health Systems Science, Oakland, CA, USA
- Division of Nephrology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jing Chen
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Amanda Anderson
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Aditya Surapaneni
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S Vasan
- University of Texas School of Public Health San Antonio and the University of Texas Health Sciences Center in San Antonio. Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Harold Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Ganz
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
27
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
28
|
Wang W, Zhong Y, Zhou Y, Yu Y, Li J, Kang S, Ma Z, Fan X, Sun L, Tang L. Low-intensity pulsed ultrasound mitigates cognitive impairment by inhibiting muscle atrophy in hindlimb unloaded mice. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1427-1438. [PMID: 37672304 DOI: 10.1121/10.0020835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Microgravity leads to muscle loss, usually accompanied by cognitive impairment. Muscle reduction was associated with the decline of cognitive ability. Our previous studies showed that low-intensity pulsed ultrasound (LIPUS) promoted muscle hypertrophy and prevented muscle atrophy. This study aims to verify whether LIPUS can improve cognitive impairment by preventing muscle atrophy in hindlimb unloaded mice. In this study, mice were randomly divided into normal control (NC), hindlimb unloading (HU), hindlimb unloading + LIPUS (HU+LIPUS) groups. The mice in the HU+LIPUS group received a 30 mW/cm2 LIPUS irradiation on gastrocnemius for 20 min/d. After 21 days, LIPUS significantly prevented the decrease in muscle mass and strength caused by tail suspension. The HU+LIPUS mice showed an enhanced desire to explore unfamiliar environments and their spatial learning and memory abilities, enabling them to quickly identify differences between different objects, as well as their social discrimination abilities. MSTN is a negative regulator of muscle growth and also plays a role in regulating cognition. LIPUS significantly inhibited MSTN expression in skeletal muscle and serum and its receptor ActRIIB expression in brain, upregulated AKT and BDNF expression in brain. Taken together, LIPUS may improve the cognitive dysfunction in hindlimb unloaded rats by inhibiting muscle atrophy through MSTN/AKT/BDNF pathway.
Collapse
Affiliation(s)
- Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Zhong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaling Zhou
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Sufang Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
29
|
Xu B, Chen K, Su W, Liu Y, Sheng Y, Ye T, Wu G, Zong G. Correlation Between GDF11 Serum Levels, Severity of Coronary Artery Lesions, and the Prognosis of Patients with ST-segment Elevation Myocardial Infarction. J Cardiovasc Transl Res 2023; 16:938-947. [PMID: 36749564 DOI: 10.1007/s12265-023-10358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
We aimed to explore the correlation among serum GDF11, the severity of coronary artery lesions, and the prognosis of patients with ST-segment elevation myocardial infarction (STEMI). A total of 367 patients were enrolled and divided into control (n = 172) and STEMI (n = 195) groups. Serum GDF11 (P < 0.001) was an independent predictor of STEMI and was negatively correlated with SYNTAX score (P < 0.05). ROC curve analysis showed that serum GDF11 could screen patients for major adverse cardiovascular events (MACEs). KM curve analysis showed that patients with lower concentration of GDF11 had a higher incidence of MACEs, and Cox proportional hazards regression analysis showed that the serum GDF11 (P < 0.001) was an independent predictor of MACEs. Serum GDF11 was negatively correlated with the severity of coronary lesions and was also an independent prognostic indicator of MACEs in patients with STEMI.
Collapse
Affiliation(s)
- Baida Xu
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Ke Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Wentao Su
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yehong Liu
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Ying Sheng
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Ting Ye
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Gangyong Wu
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China.
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
| | - Gangjun Zong
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China.
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
| |
Collapse
|
30
|
Hye T, Hossain MR, Saha D, Foyez T, Ahsan F. Emerging biologics for the treatment of pulmonary arterial hypertension. J Drug Target 2023; 31:1-15. [PMID: 37026714 PMCID: PMC10228297 DOI: 10.1080/1061186x.2023.2199351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 04/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disorder, wherein mean systemic arterial pressure (mPAP) becomes abnormally high because of aberrant changes in various proliferative and inflammatory signalling pathways of pulmonary arterial cells. Currently used anti-PAH drugs chiefly target the vasodilatory and vasoconstrictive pathways. However, an imbalance between bone morphogenetic protein receptor type II (BMPRII) and transforming growth factor beta (TGF-β) pathways is also implicated in PAH predisposition and pathogenesis. Compared to currently used PAH drugs, various biologics have shown promise as PAH therapeutics that elicit their therapeutic actions akin to endogenous proteins. Biologics that have thus far been explored as PAH therapeutics include monoclonal antibodies, recombinant proteins, engineered cells, and nucleic acids. Because of their similarity with naturally occurring proteins and high binding affinity, biologics are more potent and effective and produce fewer side effects when compared with small molecule drugs. However, biologics also suffer from the limitations of producing immunogenic adverse effects. This review describes various emerging and promising biologics targeting the proliferative/apoptotic and vasodilatory pathways involved in PAH pathogenesis. Here, we have discussed sotatercept, a TGF-β ligand trap, which is reported to reverse vascular remodelling and reduce PVR with an improved 6-minute walk distance (6-MWDT). We also elaborated on other biologics including BMP9 ligand and anti-gremlin1 antibody, anti-OPG antibody, and getagozumab monoclonal antibody and cell-based therapies. Overall, recent literature suggests that biologics hold excellent promise as a safe and effective alternative to currently used PAH therapeutics.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Md Riajul Hossain
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
| | - Tahmina Foyez
- Department of Hematology Blood Research Center School of Medicine, The University of North Carolina at Chapel Hill, North Carolina
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
- MedLuidics LLC, Elk Grove, California, USA
| |
Collapse
|
31
|
Kato T, Lee RT. GDF-11 as a Potential Cardiac Pro-Angiogenic Factor. JACC Basic Transl Sci 2023; 8:636-637. [PMID: 37426538 PMCID: PMC10322875 DOI: 10.1016/j.jacbts.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Affiliation(s)
- Tomohiro Kato
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Jakubina P, Meloux A, Duloquin G, Aho S, Vergely C, Béjot Y. Plasma growth differentiation factor - 8 / Myostatin level as prognostic biomarker of patients with ischemic stroke and acute revascularization therapy. PARADISE study. J Neurol Sci 2023; 448:120611. [PMID: 36958132 DOI: 10.1016/j.jns.2023.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Identifying biological markers of ischemic stroke (IS) is an important research approach to develop innovative therapeutic strategies. This study aimed to assess the association between plasma Growth Differentiation Factor-8 (GDF-8)/Myostatin levels and outcome of IS patients. METHODS Consecutive patients with acute IS treated with either intravenous thrombolysis and/or mechanical thrombectomy at Dijon University Hospital, France were prospectively included. Clinical variables were recorded, and plasma GDF-8 was collected just after the revascularization procedure. Primary endpoint was functional outcome at 3 months assessed by the modified Rankin Scale (mRS) score. Secondary endpoints included mRS scores at 6 and 12 months, and overall mortality over 1-year of follow-up. RESULTS Among the 173 included patients (median age: 76 years, Interquartile range (IQR): 66-85; 49% women), median plasma GDF-8 levels at admission were significantly lower in those with a poor outcome at 3 months defined as a mRS score > 2 (2073 (IQR: 1564-2757) pg/mL versus 1471 (1192-2241) pg/mL, p < 0.001). Lower GDF-8 levels at admission were associated with higher 3-months mRS score in multivariable ordinal logistic regression analysis (OR = 0.9995; 95% CI: 0.9991-0.9999, p = 0.011). The association was also observed with 6- and 12-month mRS scores. Although mortality was higher in patients with lower GDF-8 levels, the association was not significant in multivariable Cox analysis. CONCLUSION Lower plasma GDF-8 levels were associated with a poorer functional outcome in IS patients treated with acute revascularization therapy. Underlying pathophysiological mechanisms involving GDF-8 in post-stroke outcome remain to be elucidated.
Collapse
Affiliation(s)
- Pauline Jakubina
- Dijon Stroke Registry, Department of Neurology, University Hospital of Dijon, France.; EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy, France
| | - Alexandre Meloux
- EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy, France
| | - Gauthier Duloquin
- Dijon Stroke Registry, Department of Neurology, University Hospital of Dijon, France.; EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy, France
| | - Serge Aho
- Department of Epidemiology and Biostatistics, University Hospital of Dijon, France
| | - Catherine Vergely
- EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy, France
| | - Yannick Béjot
- Dijon Stroke Registry, Department of Neurology, University Hospital of Dijon, France.; EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy, France.
| |
Collapse
|
33
|
Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Life Sci Alliance 2023; 6:e202201662. [PMID: 36631218 PMCID: PMC9834663 DOI: 10.26508/lsa.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-β family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.
Collapse
Affiliation(s)
- John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrea D'Amico
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kourtney R Mendello
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Soraya Epp
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emma V Stimpfl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
34
|
Liu WH, Feng L, Wang X, Wei L, Zou HQ. GDF11 Improves Ischemia-Reperfusion-Induced Acute Kidney Injury via Regulating Macrophage M1/M2 Polarization. Kidney Blood Press Res 2023; 48:209-219. [PMID: 36780878 PMCID: PMC10124752 DOI: 10.1159/000529444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinical emergency caused by the rapid decline of renal function caused by various etiologies. Growth differentiation factor 11 (GDF11) can promote renal tubular regeneration and improve kidney function in AKI, but the specific mechanism remains unclear. Herein, we investigated the effect and mechanisms of GDF11 in ameliorating AKI induced by ischemia-reperfusion (I/R). METHODS An animal model of AKI was established by I/R method, and the changes of serum urea nitrogen and creatinine were measured to evaluate the AKI. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokines, malondialdehyde, superoxide dismutase, nitric oxide synthase, and arginase 1 levels. Flow cytometry was used to count the M1/M2 macrophages. IHC, WB, and q-PCR experiments were used to evaluate the expression of GDF11. RESULTS The changes in serum levels of urea nitrogen and creatinine after I/R suggest that an animal model of AKI induced by I/R was successfully established. AKI caused by I/R significantly changed the M1/M2 macrophage polarization balance, with an increase in M2 being significantly higher than M1 as well as increased oxidative stress. Treatment with GDF11 after I/R significantly increased the differentiation of M2 cells and inhibited the differentiation of M1 macrophages, as well as decreased oxidative stress. CONCLUSION GDF11 can promote the repair of AKI caused by I/R by regulating the balance of M1/M2 polarization in macrophages and oxidative stress.
Collapse
Affiliation(s)
- Wei-hua Liu
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Feng
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xuan Wang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Wei
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - He-qun Zou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
35
|
Deficiency of GDF-11 Accelerates TAC-Induced Heart Failure by Impairing Cardiac Angiogenesis. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
36
|
Moigneu C, Abdellaoui S, Ramos-Brossier M, Pfaffenseller B, Wollenhaupt-Aguiar B, de Azevedo Cardoso T, Camus C, Chiche A, Kuperwasser N, Azevedo da Silva R, Pedrotti Moreira F, Li H, Oury F, Kapczinski F, Lledo PM, Katsimpardi L. Systemic GDF11 attenuates depression-like phenotype in aged mice via stimulation of neuronal autophagy. NATURE AGING 2023; 3:213-228. [PMID: 37118117 PMCID: PMC10154197 DOI: 10.1038/s43587-022-00352-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Cognitive decline and mood disorders increase in frequency with age. Many efforts are focused on the identification of molecules and pathways to treat these conditions. Here, we demonstrate that systemic administration of growth differentiation factor 11 (GDF11) in aged mice improves memory and alleviates senescence and depression-like symptoms in a neurogenesis-independent manner. Mechanistically, GDF11 acts directly on hippocampal neurons to enhance neuronal activity via stimulation of autophagy. Transcriptomic and biochemical analyses of these neurons reveal that GDF11 reduces the activity of mammalian target of rapamycin (mTOR), a master regulator of autophagy. Using a murine model of corticosterone-induced depression-like phenotype, we also show that GDF11 attenuates the depressive-like behavior of young mice. Analysis of sera from young adults with major depressive disorder (MDD) reveals reduced GDF11 levels. These findings identify mechanistic pathways related to GDF11 action in the brain and uncover an unknown role for GDF11 as an antidepressant candidate and biomarker.
Collapse
Affiliation(s)
- Carine Moigneu
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Soumia Abdellaoui
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | - Claire Camus
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Aurélie Chiche
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Nicolas Kuperwasser
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | | | - Han Li
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Franck Oury
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | - Flávio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pierre-Marie Lledo
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
| | - Lida Katsimpardi
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France.
| |
Collapse
|
37
|
Gerardo-Ramírez M, German-Ramirez N, Escobedo-Calvario A, Chávez-Rodríguez L, Bucio-Ortiz L, Souza-Arroyo V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE. The hepatic effects of GDF11 on health and disease. Biochimie 2022; 208:129-140. [PMID: 36584866 DOI: 10.1016/j.biochi.2022.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The growth differentiation factor 11 (GDF11), a member of the superfamily of the transforming growth factor β, has gained relevance in the last few years due to its remarkable effects in cellular biology, particularly in the nervous system, skeletal muscle, the heart, and many epithelial tissues. Some controversies have been raised about this growth factor. Many of them have been related to technical factors but also the nature of the cellular target. In liver biology and pathobiology, the GDF11 has shown to be related in many molecular aspects, with a significant impact on the physiology and the initiation and progression of the natural history of liver diseases. GDF11 has been involved as a critical regulator in lipid homeostasis, which, as it is well known, is the first step in the progression of liver disease. However, also it has been reported that the GDF11 is involved in fibrosis, senescence, and cancer. Although there are some controversies, much of the literature indicates that GDF11 displays effects tending to solve or mitigate pathological states of the liver, with reasonable evidence of correlation with other organs or systems. To a large extent, the controversy, as mentioned, is due to technical problems, such as the specificity of GDF11 antibodies, confusion with its closer family member, myostatin, and the state of differentiation in the tissues. In the present work, we reviewed the specific effects of GDF11 in the biology and pathobiology of the liver as a potential and promising factor for therapeutic intervention shortly.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natanael German-Ramirez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
38
|
Kruszewski M, Aksenov MO. Association of Myostatin Gene Polymorphisms with Strength and Muscle Mass in Athletes: A Systematic Review and Meta-Analysis of the MSTN rs1805086 Mutation. Genes (Basel) 2022; 13:2055. [PMID: 36360291 PMCID: PMC9690375 DOI: 10.3390/genes13112055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/26/2023] Open
Abstract
Polymorphism (rs1805086), c.458A>G, p.Lys(K)153Arg(R), (K153R) of the myostatin gene (MSTN) has been associated with a skeletal muscle phenotype (hypertrophic response in muscles due to strength training). However, there are not enough reliable data to demonstrate whether MSTN rs1805086 K and R allelic variants are valid genetic factors that can affect the strength phenotype of athletes' skeletal muscles. The aim is to conduct a systematic review and meta-analysis of the association of MSTN rs1805086 polymorphism with the strength phenotype of athletes. This study analyzed 71 research articles on MSTN and performed a meta-analysis of MSTN K153R rs1805086 polymorphism in strength-oriented athletes and a control (non-athletes) group. It was found that athletes in the strength-oriented athlete group had a higher frequency of the R minor variant than that in the control group (OR = 2.02, P = 0.05). Thus, the obtained results convincingly demonstrate that there is an association between the studied polymorphism and strength phenotype of athletes; therefore, further studies on this association are scientifically warranted.
Collapse
Affiliation(s)
- Marek Kruszewski
- Department of Physical Education, Faculty of Individual Sports, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warszawa, Poland
| | - Maksim Olegovich Aksenov
- Academic Department of Physical Education, Plekhanov Russian University of Economics, Moscow 117997, Russia
- Department of Physical Education Theory, Faculty of Physical Training, Sport and Tourism, Banzarov Buryat State University, Ulan-Ude 670000, Russia
| |
Collapse
|
39
|
Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, Zhang R, Li C. GDF11 Regulates PC12 Neural Stem Cells via ALK5-Dependent PI3K-Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012279. [PMID: 36293138 PMCID: PMC9602726 DOI: 10.3390/ijms232012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), belonging to the transforming factor-β superfamily, regulates anterior-posterior patterning and inhibits neurogenesis during embryonic development. However, recent studies recognized GDF11 as a rejuvenating (or anti-ageing) factor to reverse age-related cardiac hypertrophy, repair injured skeletal muscle, promote cognitive function, etc. The effects of GDF11 are contradictory and the mechanism of action is still not well clarified. The objective of the present study was to investigate effects of GDF11 on PC12 neural stem cells in vitro and to reveal the underlying mechanism. We systematically assessed the effects of GDF11 on the life activities of PC12 cells. GDF11 significantly suppressed cell proliferation and migration, promoted differentiation and apoptosis, and arrested cell cycle at G2/M phase. Both TMT-based proteomic analysis and phospho-antibody microarray revealed PI3K-Akt pathway was enriched when treated with GDF11. Inhibition of ALK5 or PI3K obviously attenuated the effects of GDF11 on PC12 neural stem cells, which exerted that GDF11 regulated neural stem cells through ALK5-dependent PI3K-Akt signaling pathway. In summary, these results demonstrated GDF11 could be a negative regulator for neurogenesis via ALK5 activating PI3K-Akt pathway when it directly acted on neural stem cells.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| |
Collapse
|
40
|
Zhang K, Liu P, Yuan L, Geng Z, Li B, Zhang B. Neuroprotective effects of TRPV1 by targeting GDF11 in the Mpp+/MPTP-induced Parkinson's disease model. Biochem Biophys Res Commun 2022; 623:104-110. [PMID: 35921703 DOI: 10.1016/j.bbrc.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Protecting dopaminergic neurons is a key approach in the prevention of Parkinson's disease (PD). Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is widely distributed in the mammalian nervous system. In this study, we designed experiments to investigate the effect and mechanisms of TRPV1 against DA neurons damage of PD. Our results showed that trpv1-deficient mice showed a significant loss of TH + neurons than PD mice after MPTP intraperitoneal injection, in addition, a significant decline in motor function was observed in trpv1-deficient mice versus the MPTP model. In addition, our study indicated that GDF11 overexpression inhibited MPP + - induced oxidative stress, cell senescence, and apoptosis in neurons. Results also showed that TRPV1 prevented the down-regulation of GDF11 expression in PD model, gdf11 knockdown blocks the effects of TRPV1 on the antioxidant, antiaging, and antiapoptotic activities of dopaminergic neurons. Consequently, our findings indicate that TRPV1 protects dopaminergic neurons from injury by promoting GDF11 expression in PD model.
Collapse
Affiliation(s)
- Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
41
|
Frohlich J, Kovacovicova K, Raffaele M, Virglova T, Cizkova E, Kucera J, Bienertova-Vasku J, Wabitsch M, Peyrou M, Bonomini F, Rezzani R, Chaldakov GN, Tonchev AB, Di Rosa M, Blavet N, Hejret V, Vinciguerra M. GDF11 inhibits adipogenesis and improves mature adipocytes metabolic function via WNT/β-catenin and ALK5/SMAD2/3 pathways. Cell Prolif 2022; 55:e13310. [PMID: 35920128 PMCID: PMC9528760 DOI: 10.1111/cpr.13310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective GDF11 is a member of the TGF‐β superfamily that was recently implicated as potential “rejuvenating” factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. Methods We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre‐adipocyte cell lines. Results Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre‐adipocytes by ALK5‐SMAD2/3 activation in cooperation with the WNT/β‐catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. Conclusion We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11‐based “anti‐obesity” therapy.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Psychogenics Inc, Tarrytown, New York, USA
| | - Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tereza Virglova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Eliska Cizkova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Kucera
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic.,Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.,Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.,Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Nicolas Blavet
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vaclav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Center for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| |
Collapse
|
42
|
Hanada K, Fukasawa K, Hiroki H, Imai S, Takayama K, Hirai H, Ohfusa R, Hayashi Y, Itoh F. Combination therapy of anamorelin with a myostatin inhibitor is advantageous for cancer cachexia in a mouse model. Cancer Sci 2022; 113:3547-3557. [PMID: 35849084 PMCID: PMC9530881 DOI: 10.1111/cas.15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cachexia is a multifactorial disease that causes continuous skeletal muscle wasting. Thereby, it seems to be a key determinant of cancer‐related death. Although anamorelin, a ghrelin receptor agonist, has been approved in Japan for the treatment of cachexia, few medical treatments for cancer cachexia are currently available. Myostatin (MSTN)/growth differentiation factor 8, which belongs to the transforming growth factor‐β family, is a negative regulator of skeletal muscle mass, and inhibition of MSTN signaling is expected to be a therapeutic target for muscle‐wasting diseases. Indeed, we have reported that peptide‐2, an MSTN‐inhibiting peptide from the MSTN prodomain, alleviates muscle wasting due to cancer cachexia. Herein, we evaluated the therapeutic benefit of myostatin inhibitory D‐peptide‐35 (MID‐35), whose stability and activity were more improved than those of peptide‐2 in cancer cachexia model mice. The biologic effects of MID‐35 were better than those of peptide‐2. Intramuscular administration of MID‐35 effectively alleviated skeletal muscle atrophy in cachexia model mice, and the combination therapy of MID‐35 with anamorelin increased food intake and maximized grip strength, resulting in longer survival. Our results suggest that this combination might be a novel therapeutic tool to suppress muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Shú Imai
- Laboratory of Stem cells Regulation
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.,Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto, Japan
| | | | - Rina Ohfusa
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | | |
Collapse
|
43
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Wang H, Shi Y, He F, Ye T, Yu S, Miao H, Liu Q, Zhang M. GDF11 inhibits abnormal adipogenesis of condylar chondrocytes in temporomandibular joint osteoarthritis. Bone Joint Res 2022; 11:453-464. [PMID: 35787089 PMCID: PMC9350697 DOI: 10.1302/2046-3758.117.bjr-2022-0019.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464.
Collapse
Affiliation(s)
- Helin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Medical Rehabilitation, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuqian Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Feng He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Tao Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shibin Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hui Miao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Abstract
Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in reproductive development and regulation. Its chemical and mechanistic similarities to members of the Transforming Growth Factor β (TGF-β) family have led to its placement within this signaling family. As a member of the TGF-β family, AMH exists as a noncovalent complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain. To produce a signal, the mature domain will bind to the extracellular domains of two type I and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will be discussed in this review, AMH possesses several unique characteristics which set it apart from other ligands within the TGF-β family. In particular, AMH has a dedicated type II receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has remained largely uncharacterized, despite being the largest prodomain within the family. Recent advancements in the field have provided valuable insight into the molecular mechanisms of AMH signaling, however there are still many areas of AMH signaling not understood. Herein, we will discuss what is known about the biochemistry of AMH and AMHR2, focusing on recent advances in understanding the unique characteristics of AMH signaling and the molecular mechanisms of receptor engagement.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N. Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
46
|
Wu Z, Fang L, Yang S, Gao Y, Wang Z, Meng Q, Dang X, Sun YP, Cheng JC. GDF-11 promotes human trophoblast cell invasion by increasing ID2-mediated MMP2 expression. Cell Commun Signal 2022; 20:89. [PMID: 35705978 PMCID: PMC9202197 DOI: 10.1186/s12964-022-00899-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor-11 (GDF-11), also known as bone morphogenetic protein-11, belongs to the transforming growth factor-beta superfamily. GDF-11 was first identified as an important regulator during embryonic development. Increasing evidence has demonstrated that GDF-11 regulates the development of various organs and its aberrant expressions are associated with the risk of cardiovascular diseases and cancers. Extravillous trophoblast (EVT) cells invasion is a critical event for placenta development and needs to be finely regulated. However, to date, the biological function of GDF-11 in the human EVT cells remains unknown. METHODS HTR-8/SVneo, a human EVT cell line, and primary cultures of human EVT cells were used to examine the effect of GDF-11 on matrix metalloproteinase 2 (MMP2) expression. Matrigel-coated transwell invasion assay was used to examine cell invasiveness. A series of in vitro experiments were applied to explore the underlying mechanisms that mediate the effect of GDF-11 on MMP2 expression and cell invasion. RESULTS Treatment with GDF-11 stimulates MMP2 expression, in the HTR-8/SVneo and primary human EVT cells. Using a pharmacological inhibitor and siRNA-mediated knockdown approaches, our results demonstrated that the stimulatory effect of GDF-11 on MMP2 expression was mediated by the ALK4/5-SMAD2/3 signaling pathways. In addition, the expression of inhibitor of DNA-binding protein 2 (ID2) was upregulated by GDF-11 and that was required for the GDF-11-stimulated MMP2 expression and EVT cell invasion. CONCLUSIONS These findings discover a new biological function and underlying molecular mechanisms of GDF-11 in the regulation of human EVT cell invasion. Video Abstract.
Collapse
Affiliation(s)
- Ze Wu
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Sizhu Yang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Yibo Gao
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Zhen Wang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Qingxue Meng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Xuan Dang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
47
|
Song L, Wu F, Li C, Zhang S. Dietary intake of GDF11 delays the onset of several biomarkers of aging in male mice through anti-oxidant system via Smad2/3 pathway. Biogerontology 2022; 23:341-362. [PMID: 35604508 PMCID: PMC9125541 DOI: 10.1007/s10522-022-09967-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Current studies have generated controversy over the age-related change in concentration of growth differentiation factor 11 (GDF11) and its role in the genesis of rejuvenation conditions. In this study, we displayed rGDF11 on the surface of Yarrowic Lipolytica (Y. lipolytica), and proved the bioavailability of the yeast-displayed rGDF11 by oral delivery in aged male mice. On the basis of these findings, we started to explore the anti-aging activity and underlying mechanisms of displayed rGDF11. It was found that dietary intake of displayed rGDF11 had little influence on the body weight and biochemical parameters of aged male mice, but delayed the occurrence and development of age-related biomarkers such as lipofuscin (LF) and senescence-associated-β-galactosidase, and to some extent, prolonged the lifespan of aged male mice. Moreover, we demonstrated once again that dietary intake of displayed rGDF11 enhanced the activity of anti-oxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX), reduced the reactive oxygen species (ROS) level, and slowed down the protein oxidation and lipid peroxidation. Importantly, we showed for the first time that rGDF11 enhanced the activity of CAT, SOD and GPX through activation of the Smad2/3 signaling pathway. Our study also provided a simple and safe route for delivery of recombinant GDF11, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
48
|
Duan F, Wang X, Wang H, Wang Y, Zhang Y, Chen J, Zhu X, Chen B. GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFβR1/SMAD-2 pathway. Int Immunopharmacol 2022; 108:108777. [PMID: 35461108 DOI: 10.1016/j.intimp.2022.108777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Severe acute pancreatitis (SAP), as a typical acute inflammatory injury disease, is one of the acute gastrointestinal diseases with a remarkable mortality rate. Macrophages, typical inflammatory cells involved in SAP, play an important role in the pathogenesis of SAP, which are separated into proinflammation M1 and antiinflammation M2. Growth and differentiation factor 11 (GDF11), as a member of the TGF-β family also called BMP-11, has been discovered to suppress inflammation. However, the mechanism by which GDF11 inhibits inflammation and whether it can ameliorate SAP are still elusive. The present research aimed to investigate the roles of GDF11 in SAP and the potential immunomodulatory effect of macrophage polarization. The mouse and rat SAP model were constructed by caerulein and retrograde injection of sodium taurocholate respectively. The effects of GDF11 on SAP were observed by serology, histopathology and tissue inflammation, and the effects of GDF11 on the polarization of macrophages in vivo were observed. Raw264.7 and THP1 crells were used to study the effect of GDF11 on macrophage polarization in vitro. To further investigate the causal link underneath, our team first completed RNA and proteome sequencing, and utilized specific suppressor to determine the implicated signal paths. Herein, we discovered that GDF11 alleviated the damage of pancreatic tissues in cerulein induced SAP mice and SAP rats induced by retrograde injection of sodium taurocholate, and further found that GDF11 facilitated M2 macrophage polarization and diminished M1 macrophage polarization in vivo and in vitro. Subsequently, we further found that the regulation of GDF11 on macrophage polarization through TGFβR1/smad2 pathway. Our results revealed that GDF11 ameliorated SAP and diminished M1 macrophage polarization and facilitated M2 macrophage polarization. The Role of GDF11 in modulating macrophage polarization might be one of the mechanisms by which GDF11 played a protective role in pancreatic tissues during SAP.
Collapse
Affiliation(s)
- Feixiang Duan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiaowu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| |
Collapse
|
49
|
Peng L, Gagliano-Jucá T, Pencina KM, Krishnan S, Li Z, Tracy RP, Jasuja R, Bhasin S. Age Trends in Growth and Differentiation Factor-11 and Myostatin Levels in Healthy Men, and Differential Response to Testosterone, Measured Using Liquid Chromatography-Tandem Mass Spectrometry. J Gerontol A Biol Sci Med Sci 2022; 77:763-769. [PMID: 34037752 PMCID: PMC8974345 DOI: 10.1093/gerona/glab146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Growth and differentiation factor (GDF)-11 controls embryonic development and has been proposed as an antiaging factor. GDF-8 (myostatin) inhibits skeletal muscle growth. Difficulties in accurately measuring circulating GDF-11 and GDF-8 have generated controversy. METHODS We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous measurement of circulating GDF-8 and GDF-11 that employs denaturation, reduction, and alkylation; cation-exchange solid-phase extraction; tryptic digestion; followed by separation and quantification using 2 signature peptides for multiple reaction monitoring and C-terminal [13C615N4]-Arg peptides as internal standards. We evaluated age trends in serum GDF-11 and GDF-8 concentrations in community-dwelling healthy men, 19 years or older, and determined the effects of graded testosterone doses on GDF-8 and GDF-11 concentrations in healthy men in a randomized trial. RESULTS The assay demonstrated linearity over a wide range, lower limit of quantitation 0.5 ng/mL for both proteins, and excellent precision, accuracy, and specificity (no detectable cross-reactivity of GDF-8 in GDF-11 assay or of GDF-11 in GDF-8 assay). Mean ± SD (median ± 1QR) GDF-8 and GDF-11 levels in healthy community-dwelling men, 19 years and older, were 7.2 ± 1.9 (6.8 ± 1.4) ng/mL. Neither GDF-8 nor GDF-11 levels were related to age or body composition. Testosterone treatment significantly increased serum GDF-8 but not GDF-11 levels. CONCLUSIONS The LC-MS/MS method for the simultaneous measurement of circulating total GDF-8 and GDF-11 demonstrates the characteristics of a valid assay. Testosterone treatment increased GDF-8 levels, but not GDF-11. Increase in GDF-8 levels by testosterone treatment, which increased muscle mass, suggests that GDF-8 acts as a chalone to restrain muscle growth.
Collapse
Affiliation(s)
- Liming Peng
- Brigham Research Assay Core Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thiago Gagliano-Jucá
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karol M Pencina
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Zhuoying Li
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Russell P Tracy
- Larner College of Medicine, University of Vermont, Burlington, USA
| | - Ravi Jasuja
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Follistatin dysregulation impaired trophoblast biological functions by GDF11-Smad2/3 axis in preeclampsia placentas. Placenta 2022; 121:145-154. [PMID: 35339026 DOI: 10.1016/j.placenta.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the main causes of maternal, fetal, and neonatal mortality. So far, the underlying mechanism of this pregnancy-specific syndrome remains unelucidated. The expression of Follistatin (FST) decreased in maternal serum (especially early onset severe PE) and placental trophoblasts of PE patients. However, whether FST-deficiency in preeclamptic placentas alters trophoblast function remains to be determined. METHODS Trophoblast cell lines were cultured in vitro and LV3 short hairpin RNA (shRNA) was used to silence FST. Growth and differentiation factor 11 (GDF11) expression level in placentas and serum were detected by immunohistochemistry and enzyme-linked immune-sorbent assay, respectively. To verify the effect of reduced FST expression on trophoblasts, microRNA-24-3p, which was predicted to target the 3'-untranslated region (3'-UTR) of FST, was screened out, and miR-24-3p mimic, inhibitor was used to regulate FST expression in trophoblasts. RESULTS Downregulation of FST significantly enhanced the apoptosis and impaired migration and invasion of trophoblast. Reduced FST caused the upregulation of GDF11 in trophoblasts. Interestingly, GDF11 reduced in preeclamptic placental microvascular endothelial cells. Dysregulation of FST-GDF11-Smad2/3 signaling pathway, leading to increased apoptosis of trophoblast. Expression levels of miR-24-3p, was significantly elevated in preeclamptic placentas. Trophoblast cells transfected with miR-24-3p mimics displayed impaired migration and invasion and increased apoptosis. Treated by miR-24-3p inhibitor, trophoblast cells exhibited rescued function. DISCUSSION FST-deficiency impaired trophoblast function by upregulating GDF11 levels in trophoblasts. The regulation of FST-GDF11-Smad2/3 axis by microRNAs mimic or inhibitor may be critical to trophoblast function regulation and helps to deepen our understanding of the molecular mechanism of PE.
Collapse
|