1
|
Shen SR, Huang ZQ, Yang YD, Han JB, Fang ZM, Guan Y, Xu JC, Min JL, Wang Y, Wu GJ, Xiao ZX, Luo W, Huang ZQ, Liang G. JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7. Acta Pharmacol Sin 2025; 46:1275-1288. [PMID: 39833306 PMCID: PMC12032042 DOI: 10.1038/s41401-024-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025]
Abstract
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGFβ-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGFβ-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Si-Rui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhu-Qi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Die Yang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji-Bo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zi-Min Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Guan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Chen Xu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ju-Lian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China
| | - Wu Luo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhou-Qing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
2
|
Stopa V, Dafou D, Karagianni K, Nossent AY, Farrugia R, Devaux Y, Sopic M. Epitranscriptomics in atherosclerosis: Unraveling RNA modifications, editing and splicing and their implications in vascular disease. Vascul Pharmacol 2025; 159:107496. [PMID: 40239855 DOI: 10.1016/j.vph.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Atherosclerosis remains a leading cause of morbidity and mortality worldwide, driven by complex molecular mechanisms involving gene regulation and post-transcriptional processes. Emerging evidence highlights the critical role of epitranscriptomics, the study of chemical modifications occurring on RNA molecules, in atherosclerosis development. Epitranscriptomics provides a new layer of regulation in vascular health, influencing cellular functions in endothelial cells, smooth muscle cells, and macrophages, thereby shedding light on the pathogenesis of atherosclerosis and presenting new opportunities for novel therapeutic targets. This review provides a comprehensive overview of the epitranscriptomic landscape, focusing on key RNA modifications such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ), RNA editing mechanisms including A-to-I and C-to-U editing and RNA isoforms. The functional implications of these modifications in RNA stability, alternative splicing, and microRNA biology are discussed, with a focus on their roles in inflammatory signaling, lipid metabolism, and vascular cell adaptation within atherosclerotic plaques. We also highlight how these modifications influence the generation of RNA isoforms, potentially altering cellular phenotypes and contributing to disease progression. Despite the promise of epitranscriptomics, significant challenges remain, including the technical limitations in detecting RNA modifications in complex tissues and the need for deeper mechanistic insights into their causal roles in atherosclerotic pathogenesis. Integrating epitranscriptomics with other omics approaches, such as genomics, proteomics, and metabolomics, holds the potential to provide a more holistic understanding of the disease.
Collapse
Affiliation(s)
- Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Weldy CS, Li Q, Monteiro JP, Guo H, Galls D, Gu W, Cheng PP, Ramste M, Li D, Palmisano BT, Sharma D, Worssam MD, Zhao Q, Bhate A, Kundu RK, Nguyen T, Li JB, Quertermous T. Smooth muscle expression of RNA editing enzyme ADAR1 controls activation of RNA sensor MDA5 in atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602569. [PMID: 39026721 PMCID: PMC11257488 DOI: 10.1101/2024.07.08.602569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Mapping the genomic architecture of complex disease has been predicated on the understanding that genetic variants influence disease risk through modifying gene expression. However, recent discoveries have revealed that a significant burden of disease heritability in common autoinflammatory disorders and coronary artery disease is mediated through genetic variation modifying post-transcriptional modification of RNA through adenosine-to-inosine (A-to-I) RNA editing. This common RNA modification is catalyzed by ADAR enzymes, where ADAR1 edits specific immunogenic double stranded RNA (dsRNA) to prevent activation of the double strand RNA (dsRNA) sensor MDA5 ( IFIH1 ) and stimulation of an interferon stimulated gene (ISG) response. Multiple lines of human genetic data indicate impaired RNA editing and increased dsRNA sensing by MDA5 to be an important mechanism of coronary artery disease (CAD) risk. Here, we provide a crucial link between observations in human genetics and mechanistic cell biology leading to progression of CAD. Through analysis of human atherosclerotic plaque, we implicate the vascular smooth muscle cell (SMC) to have a unique requirement for RNA editing, and that ISG induction occurs in SMC phenotypic modulation, implicating MDA5 activation. Through culture of human coronary artery SMCs, generation of a conditional SMC specific Adar1 deletion mouse model on a pro-atherosclerosis background with additional constitutive deletion of MDA5 ( Ifih1 ), and with incorporation of single cell RNA sequencing cellular profiling, we further show that Adar1 controls SMC phenotypic state by regulating Mda5 activation, is required to maintain vascular integrity, and controls progression of atherosclerosis and vascular calcification. Through this work, we describe a fundamental mechanism of CAD, where cell type and context specific RNA editing and sensing of dsRNA mediates disease progression, bridging our understanding of human genetics and disease causality. One Sentence Summary Smooth muscle expression of RNA editing enzyme ADAR1 regulates activation of double strand RNA sensor MDA5 in novel mechanism of atherosclerosis.
Collapse
|
4
|
Xu X, Zhang M, Zhan S, Chen Y, Wei C, Cao J, Guo J, Dai D, Wang L, Zhong T, Zhang H, Li L. Global A-to-I RNA editing during myogenic differentiation of goat MuSCs. Front Vet Sci 2024; 11:1439029. [PMID: 39444736 PMCID: PMC11496035 DOI: 10.3389/fvets.2024.1439029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background RNA editing, especially A-to-I editing sites, is a common RNA modification critical for stem cell differentiation, muscle development, and disease occurrence. Unveiling comprehensive RNA A-to-I editing events associated with myogenesis of the skeletal muscle satellite cells (MuSCs) is essential for extending our knowledge of the mechanism underpinning muscle development. Results A total of 9,632 RNA editing sites (RESs) were screened in the myoblasts (GM), myocytes (DM1), and myotubes (DM5) samples. Among these sites, 4,559 A-to-I edits were classified and further analyzed. There were 3,266 A-to-I sites in the protein-coding region, out of which 113 missense sites recoded protein. Notably, five A-to-I sites in the 3' UTR of four genes (TRAF6, NALF1, SLC38A1, ENSCHIG00000019092) altered their targeted miRNAs. Furthermore, a total of 370 A-to-I sites with different editing levels were detected, including FBN1, MYH10, GSK3B, CSNK1D, and PRKACB genes. These genes were predominantly enriched in the cytoskeleton in muscle cells, the hippo signaling pathway, and the tight junction. Furthermore, we identified 14 hub genes (TUFM, GSK3B, JAK2, RPSA, YARS1, CDH2, PRKACB, RUNX1, NOTCH2, CDC23, VCP, FBN1, RARS1, MEF2C) that potentially related to muscle development. Additionally, 123 stage-specific A-to-I editing sites were identified, with 43 sites in GM, 25 in DM1, and 55 in DM5 samples. These stage-specific edited genes significantly enriched essential biological pathways, including the cell cycle, oocyte meiosis, motor proteins, and hedgehog signaling pathway. Conclusion We systematically identified the RNA editing events in proliferating and differentiating goat MuSCs, which was crucial for expanding our understanding of the regulatory mechanisms of muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Cai D, Chen SY. ADAR1 Is Essential for Smooth Muscle Homeostasis and Vascular Integrity. Cells 2024; 13:1257. [PMID: 39120288 PMCID: PMC11311430 DOI: 10.3390/cells13151257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
| |
Collapse
|
6
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong S. Phosphoproteomics analysis of serum from dogs affected with pulmonary hypertension secondary to degenerative mitral valve disease. PeerJ 2024; 12:e17186. [PMID: 38708342 PMCID: PMC11067895 DOI: 10.7717/peerj.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Phosphorylation of proteins, impacting vascular function and cell proliferation, might play a role in the development and progression of PH. Unlike gene or protein studies, phosphoproteomic focuses on active proteins that function as end-target proteins within signaling cascades. Studying phosphorylated proteins can reveal active contributors to PH development. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach. Serum samples were collected from healthy control dogs (n = 28), dogs with DMVD (n = 24), and dogs with DMVD and PH (n = 29). Phosphoproteins were enriched from the serum samples and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Data analysis was performed to identify uniquely expressed phosphoproteins in each group and differentially expressed phosphoproteins among groups. Phosphoproteomic analysis revealed nine uniquely expressed phosphoproteins in the serum of dogs in the DMVD+PH group and 15 differentially upregulated phosphoproteins in the DMVD+PH group compared to the DMVD group. The phosphoproteins previously implicated in PH and associated with pulmonary arterial remodeling, including small nuclear ribonucleoprotein G (SNRPG), alpha-2-macroglobulin (A2M), zinc finger and BTB domain containing 42 (ZBTB42), hemopexin (HPX), serotransferrin (TRF) and complement C3 (C3), were focused on. Their unique expression and differential upregulation in the serum of DMVD dogs with PH suggest their potential as biomarkers for PH diagnosis. In conclusion, this phosphoproteomic study identified uniquely expressed and differentially upregulated phosphoproteins in the serum of DMVD dogs with PH. Further studies are warranted to validate the diagnostic utility of these phosphoproteins.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Sirilak Surachetpong
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, Bangkok, Thailand
| |
Collapse
|
7
|
Yang M, Jiang J, Ren R, Gao N, He J, Zhang Y. Role of ADAR1 on Proliferation and Differentiation in Porcine Preadipocytes. Animals (Basel) 2024; 14:1201. [PMID: 38672349 PMCID: PMC11047480 DOI: 10.3390/ani14081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research has identified ADAR1 as a participant in the regulation of lipid accumulation in mice. However, there are no reports on the roles of ADAR1 in proliferation, apoptosis and differentiation of porcine preadipocytes. In this study, we investigated the role of ADAR1 in differentiation, proliferation and apoptosis of porcine preadipocytes using CCK-8, EdU staining, cell cycle detection, RT-qPCR, Western blot, a triglyceride assay and Oil Red O staining. The over-expression of ADAR1 significantly promoted proliferation but inhibited the differentiation and apoptosis of porcine preadipocytes. The inhibition of ADAR1 had the opposite effect on the proliferation, differentiation and apoptosis of porcine preadipocytes with over-expressed ADAR1. Then, the regulation mechanisms of ADAR1 on preadipocyte proliferation were identified using RNA-seq, and 197 DEGs in response to ADAR1 knockdown were identified. The MAPK signaling pathway is significantly enriched, indicating its importance in mediating fat accumulation regulated by ADAR1. The study's findings will aid in uncovering the mechanisms that regulate fat accumulation through ADAR1.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Jun Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Ruimin Ren
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| |
Collapse
|
8
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Zhang J, Li Y, Zhang J, Liu L, Chen Y, Yang X, Liao X, He M, Jia Z, Fan J, Bian JS, Nie X. ADAR1 regulates vascular remodeling in hypoxic pulmonary hypertension through N1-methyladenosine modification of circCDK17. Acta Pharm Sin B 2023; 13:4840-4855. [PMID: 38045055 PMCID: PMC10692360 DOI: 10.1016/j.apsb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 12/05/2023] Open
Abstract
Pulmonary hypertension (PH) is an extremely malignant pulmonary vascular disease of unknown etiology. ADAR1 is an RNA editing enzyme that converts adenosine in RNA to inosine, thereby affecting RNA expression. However, the role of ADAR1 in PH development remains unclear. In the present study, we investigated the biological role and molecular mechanism of ADAR1 in PH pulmonary vascular remodeling. Overexpression of ADAR1 aggravated PH progression and promoted the proliferation of pulmonary artery smooth muscle cells (PASMCs). Conversely, inhibition of ADAR1 produced opposite effects. High-throughput whole transcriptome sequencing showed that ADAR1 was an important regulator of circRNAs in PH. CircCDK17 level was significantly lowered in the serum of PH patients. The effects of ADAR1 on cell cycle progression and proliferation were mediated by circCDK17. ADAR1 affects the stability of circCDK17 by mediating A-to-I modification at the A5 and A293 sites of circCDK17 to prevent it from m1A modification. We demonstrate for the first time that ADAR1 contributes to the PH development, at least partially, through m1A modification of circCDK17 and the subsequent PASMCs proliferation. Our study provides a novel therapeutic strategy for treatment of PH and the evidence for circCDK17 as a potential novel marker for the diagnosis of this disease.
Collapse
Affiliation(s)
- Junting Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Yiying Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Jianchao Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China
| | - Xusheng Yang
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China
| | - Xueyi Liao
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Muhua He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zihui Jia
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China
| | - Jun Fan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Nie
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Wu M, Xun M, Chen Y. Adaptation of Vascular Smooth Muscle Cell to Degradable Metal Stent Implantation. ACS Biomater Sci Eng 2023. [PMID: 37364226 DOI: 10.1021/acsbiomaterials.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron-, magnesium-, or zinc-based metal vessel stents support vessel expansion at the period early after implantation and degrade away after vascular reconstruction, eliminating the side effects due to the long stay of stent implants in the body and the risks of restenosis and neoatherosclerosis. However, emerging evidence has indicated that their degradation alters the vascular microenvironment and induces adaptive responses of surrounding vessel cells, especially vascular smooth muscle cells (VSMCs). VSMCs are highly flexible cells that actively alter their phenotype in response to the stenting, similarly to what they do during all stages of atherosclerosis pathology, which significantly influences stent performance. This Review discusses how biodegradable metal stents modify vascular conditions and how VSMCs respond to various chemical, biological, and physical signals attributable to stent implantation. The focus is placed on the phenotypic adaptation of VSMCs and the clinical complications, which highlight the importance of VSMC transformation in future stent design.
Collapse
Affiliation(s)
- Meichun Wu
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- School of Nursing, University of South China, Hengyang, Hunan 410001, China
| | - Min Xun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
12
|
Chen ZB, He M, Li JYS, Shyy JYJ, Chien S. Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annu Rev Biomed Eng 2023; 25:157-184. [PMID: 36913673 DOI: 10.1146/annurev-bioeng-081922-021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The central dogma of gene expression involves DNA transcription to RNA and RNA translation into protein. As key intermediaries and modifiers, RNAs undergo various forms of modifications such as methylation, pseudouridylation, deamination, and hydroxylation. These modifications, termed epitranscriptional regulations, lead to functional changes in RNAs. Recent studies have demonstrated crucial roles for RNA modifications in gene translation, DNA damage response, and cell fate regulation. Epitranscriptional modifications play an essential role in development, mechanosensing, atherogenesis, and regeneration in the cardiovascular (CV) system, and their elucidation is critically important to understanding the molecular mechanisms underlying CV physiology and pathophysiology. This review aims at providing biomedical engineers with an overview of the epitranscriptome landscape, related key concepts, recent findings in epitranscriptional regulations, and tools for epitranscriptome analysis. The potential applications of this important field in biomedical engineering research are discussed.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Julie Yi-Shuan Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Shu Chien
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
13
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
14
|
Cai D, Sun C, Murashita T, Que X, Chen SY. ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circ Res 2023; 132:e78-e93. [PMID: 36688311 PMCID: PMC10316962 DOI: 10.1161/circresaha.122.321722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKβ, resulting in an increased IKKβ (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Takashi Murashita
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
15
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
16
|
Sun C, Cai D, Chen SY. ADAR1 promotes systemic sclerosis via modulating classic macrophage activation. Front Immunol 2022; 13:1051254. [PMID: 36532023 PMCID: PMC9751044 DOI: 10.3389/fimmu.2022.1051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction As a multisystem autoimmune disorder disease, systemic sclerosis (SSc) is characterized by inflammation and fibrosis in the skin and other internal organs. However, mechanisms underlying the inflammatory response that drives the development of SSc remain largely unknown. Methods ADAR1 heterozygous knockout (AD1+/-) mice and myeloid-specific ADAR1 knockout mice were used to determine the function of ADAR1 in SSc. Histopathological analyses and western blot confirmed the role of ADAR1 in bleomycin-induced increased skin and lung fibrosis. Results In this study, we discover that adenosine deaminase acting on RNA (ADAR1), a deaminase converting adenosine to inosine (i.e., RNA editing) in RNA, is abundantly expressed in macrophages in the early stage of bleomycin-induced SSc. Importantly, ADAR1 is essential for SSc formation and indispensable for classical macrophage activation because ADAR1 deficiency in macrophages significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammation mediator inducible NO synthase (iNOS) and IL-1β in macrophages. Mechanistically, deletion of ADAR1 blocks macrophage activation through diminishing NF-κB signaling. Discussion Our studies reveal that ADAR1 promotes macrophage activation in the onset of SSc. Thus, targeting ADAR1 could be a potential novel therapeutic strategy for treating sclerosis formation.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
17
|
Nossent AY. The epitranscriptome: RNA modifications in vascular remodelling. Atherosclerosis 2022:S0021-9150(22)01500-3. [DOI: 10.1016/j.atherosclerosis.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
|
18
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
19
|
Quiles-Jiménez A, Dahl TB, Bjørås M, Alseth I, Halvorsen B, Gregersen I. Epitranscriptome in Ischemic Cardiovascular Disease: Potential Target for Therapies. Stroke 2022; 53:2114-2122. [PMID: 35240858 DOI: 10.1161/strokeaha.121.037581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global risk of cardiovascular disease, including ischemic disease such as stroke, remains high, and cardiovascular disease is the cause of one-third of all deaths worldwide. The main subjacent cause, atherosclerosis, is not fully understood. To improve early diagnosis and therapeutic strategies, it is crucial to unveil the key molecular mechanisms that lead to atherosclerosis development. The field of epitranscriptomics is blossoming and quickly advancing in fields like cancer research, nevertheless, poorly understood in the context of cardiovascular disease. Epitranscriptomic modifications are shown to regulate the metabolism and function of RNA molecules, which are important for cell functions such as cell proliferation, a key aspect in atherogenesis. As such, epitranscriptomic regulatory mechanisms can serve as novel checkpoints in gene expression during disease development. In this review, we describe examples of the latest research investigating epitranscriptomic modifications, in particular A-to-I editing and the covalent modification N6-methyladenosine and their regulatory proteins, in the context of cardiovascular disease. We additionally discuss the potential of these mechanisms as therapeutic targets and novel treatment options.
Collapse
Affiliation(s)
- Ana Quiles-Jiménez
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Tuva B Dahl
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Division of Critical Care and Emergencies, Oslo University Hospital, Rikshospitalet, Norway. (T.B.D.)
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.).,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (M.B.)
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.)
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.)
| |
Collapse
|
20
|
Guo X, Liu S, Yan R, Nguyen V, Zenati M, Billiar TR, Wang Q. ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway. Life Sci Alliance 2022; 5:5/3/e202101191. [PMID: 34969816 PMCID: PMC8739526 DOI: 10.26508/lsa.202101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
The RNA-sensing signaling pathway has been well studied as an essential antiviral mechanism of innate immunity. However, its role in non-infected cells is yet to be thoroughly characterized. Here, we demonstrated that the RNA sensing signaling pathway also reacts to the endogenous cellular RNAs in endothelial cells (ECs), and this reaction is regulated by the RNA-editing enzyme ADAR1. Cellular RNA sequencing analysis showed that EC RNAs endure extensive RNA editing, especially in the RNA transcripts of short interspersed nuclear elements. The EC-specific deletion of ADAR1 dramatically reduced the editing level on short interspersed nuclear element RNAs, resulting in newborn death in mice with damage evident in multiple organs. Genome-wide gene expression analysis revealed a prominent innate immune activation with a dramatically elevated expression of interferon-stimulated genes. However, blocking the RNA sensing signaling pathway by deletion of the cellular RNA receptor MDA-5 prevented interferon-stimulated gene expression and rescued the newborn mice from death. This evidence demonstrated that the RNA-editing/RNA-sensing signaling pathway dramatically modulates EC function, representing a novel molecular mechanism for the regulation of EC functions.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rose Yan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vy Nguyen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA .,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,VA Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Li Y, LeMaire SA, Shen YH. Molecular and Cellular Dynamics of Aortic Aneurysms Revealed by Single-Cell Transcriptomics. Arterioscler Thromb Vasc Biol 2021; 41:2671-2680. [PMID: 34615376 PMCID: PMC8556647 DOI: 10.1161/atvbaha.121.315852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
The aorta is highly heterogeneous, containing many different types of cells that perform sophisticated functions to maintain aortic homeostasis. Recently, single-cell RNA sequencing studies have provided substantial new insight into the heterogeneity of vascular cell types, the comprehensive molecular features of each cell type, and the phenotypic interrelationship between these cell populations. This new information has significantly improved our understanding of aortic biology and aneurysms at the molecular and cellular level. Here, we summarize these findings, with a focus on what single-cell RNA sequencing analysis has revealed about cellular heterogeneity, cellular transitions, communications among cell populations, and critical transcription factors in the vascular wall. We also review the information learned from single-cell RNA sequencing that has contributed to our understanding of the pathogenesis of vascular disease, such as the identification of cell types in which aneurysm-related genes and genetic variants function. Finally, we discuss the challenges and future directions of single-cell RNA sequencing applications in studies of aortic biology and diseases.
Collapse
Affiliation(s)
- Yanming Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Scott A LeMaire
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Ying H Shen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX
| |
Collapse
|
22
|
Cai D, Sun C, Zhang G, Que X, Fujise K, Weintraub NL, Chen SY. A Novel Mechanism Underlying Inflammatory Smooth Muscle Phenotype in Abdominal Aortic Aneurysm. Circ Res 2021; 129:e202-e214. [PMID: 34551587 PMCID: PMC8575453 DOI: 10.1161/circresaha.121.319374] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Gui Zhang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
23
|
Kong XY, Huse C, Yang K, Øgaard J, Berges N, Vik ES, Nawaz MS, Quiles-Jiménez A, Abbas A, Gregersen I, Holm S, Bjerkli V, Rashidi A, Fladeby C, Suganthan R, Sagen EL, Skjelland M, Lång A, Bøe SO, Bjørås M, Aukrust P, Alseth I, Halvorsen B, Dahl TB. Endonuclease V Regulates Atherosclerosis Through C-C Motif Chemokine Ligand 2-Mediated Monocyte Infiltration. J Am Heart Assoc 2021; 10:e020656. [PMID: 34259011 PMCID: PMC8483470 DOI: 10.1161/jaha.120.020656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background In cardiovascular diseases, atherosclerotic disorder are the most frequent and important with respect to morbidity and mortality. Inflammation mediated by immune cells is central in all parts of the atherosclerotic progress, and further understanding of the underlying mechanisms is needed. Growing evidence suggests that deamination of adenosine‐to‐inosine in RNA is crucial for a correct immune response; nevertheless, the role of adenosine‐to‐inosine RNA editing in atherogenesis has barely been studied. Several proteins have affinity for inosines in RNA, one being ENDOV (endonuclease V), which binds and cleaves RNA at inosines. Data on ENDOV in atherosclerosis are lacking. Methods and Results Quantitative polymerase chain reaction on ENDOV mRNA showed an increased level in human carotid atherosclerotic plaques compared with control veins. Inosine‐ribonuclease activity as measured by an enzyme activity assay is detected in immune cells relevant for the atherosclerotic process. Abolishing EndoV in atherogenic apolipoprotein E‐deficient (ApoE−/−) mice reduces the atherosclerotic plaque burden, both in size and lipid content. In addition, in a brain stroke model, mice without ENDOV suffer less damage than control mice. Finally, lack of EndoV reduces the recruitment of monocytes to atherosclerotic lesions in atherogenic ApoE−/− mice. Conclusions ENDOV is upregulated in human atherosclerotic lesions, and data from mice suggest that ENDOV promotes atherogenesis by enhancing the monocyte recruitment into the atherosclerotic lesion, potentially by increasing the effect of CCL2 activation on these cells.
Collapse
Affiliation(s)
- Xiang Yi Kong
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Camilla Huse
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Kuan Yang
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Jonas Øgaard
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Natalia Berges
- Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Erik Sebastian Vik
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Meh Sameen Nawaz
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Ana Quiles-Jiménez
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | | | - Ida Gregersen
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Sverre Holm
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Vigdis Bjerkli
- Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Azita Rashidi
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Cathrine Fladeby
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Rajikala Suganthan
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Ellen Lund Sagen
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Mona Skjelland
- Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,Department of Neurology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Anna Lång
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Stig Ove Bøe
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Magnar Bjørås
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway.,Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,Section of Clinical Immunology and Infectious Diseases Oslo University Hospital, Rikshospitalet Oslo Norway.,K.G. Jebsen, The Faculty of Health Sciences The Arctic University of Tromsø Tromsø Norway
| | - Ingrun Alseth
- Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| | - Bente Halvorsen
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Tuva Børresdatter Dahl
- Research Institute for Internal Medicine Oslo University Hospital, Rikshospitalet Oslo Norway.,Department of Microbiology Oslo University Hospital, Rikshospitalet Oslo Norway
| |
Collapse
|
24
|
McMahon M, Forester C, Buffenstein R. Aging through an epitranscriptomic lens. NATURE AGING 2021; 1:335-346. [PMID: 37117595 DOI: 10.1038/s43587-021-00058-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 04/30/2023]
Abstract
The mechanistic causes of aging, the time-related decline in function and good health that leads to increased mortality, remain poorly understood. Here we propose that age-dependent alteration of the epitranscriptome, encompassing more than 150 chemically distinct post-transcriptional modifications or editing events, warrants exploration as an important modulator of aging. The epitranscriptome is a potent regulator of RNA function, diverse cellular processes and tissue regenerative capacity. To date, only a few studies link alterations in the epitranscriptome to molecular and physiological changes during aging; however, epitranscriptome dysfunction is associated with and underlies several age-associated pathologies, including cancer and neurodegenerative, cardiovascular and autoimmune diseases. For example, changes in RNA modifications (such as N6-methyladenosine and inosine) impact cardiac physiology and are linked to cardiac fibrosis. Although an uncharted research focus, mapping epitranscriptome alterations in the context of aging may elucidate novel predictors of both health and lifespan, and may identify therapeutic targets for attenuating aging and abrogating age-related diseases.
Collapse
Affiliation(s)
- Mary McMahon
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Craig Forester
- Department of Pediatrics, University of Colorado, Denver, CO, USA
- Children's Hospital Colorado, Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
25
|
Zhao Y, Zang G, Yin T, Ma X, Zhou L, Wu L, Daniel R, Wang Y, Qiu J, Wang G. A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent: Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway. Bioact Mater 2021; 6:375-385. [PMID: 32954055 PMCID: PMC7484501 DOI: 10.1016/j.bioactmat.2020.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Arsenic trioxide (ATO or As2O3) has beneficial effects on suppressing neointimal hyperplasia and restenosis, but the mechanism is still unclear. The goal of this study is to further understand the mechanism of ATO's inhibitory effect on vascular smooth muscle cells (VSMCs). METHODS AND RESULTS Through in vitro cell culture and in vivo stent implanting into the carotid arteries of rabbit, a synthetic-to-contractile phenotypic transition was induced and the proliferation of VSMCs was inhibited by ATO. F-actin filaments were clustered and the elasticity modulus was increased within the phenotypic modulation of VSMCs induced by ATO in vitro. Meanwhile, Yes-associated protein (YAP) nuclear translocation was inhibited by ATO both in vivo and in vitro. It was found that ROCK inhibitor or YAP inactivator could partially mask the phenotype modulation of ATO on VSMCs. CONCLUSIONS The interaction of YAP with the ROCK pathway through ATO seems to mediate the contractile phenotype of VSMCs. This provides an indication of the clinical therapeutic mechanism for the beneficial bioactive effect of ATO-drug eluting stent (AES) on in-stent restenosis (ISR).
Collapse
Affiliation(s)
- Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaoyi Ma
- Beijing Amsinomed Medical Co., Ltd, Beijing, 100021, China
| | - Lifeng Zhou
- Beijing Amsinomed Medical Co., Ltd, Beijing, 100021, China
| | - Lingjuan Wu
- Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Richard Daniel
- Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
26
|
Cui XB, Fei J, Chen S, Edwards GL, Chen SY. ADAR1 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. Am J Physiol Endocrinol Metab 2021; 320:E131-E138. [PMID: 33252250 PMCID: PMC8194408 DOI: 10.1152/ajpendo.00175.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or a high-fat diet (HFD) for 12 wk. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in the stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induced obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.NEW & NOTEWORTHY This study identifies adenosine deaminase acting on RNA 1 as a novel factor promoting high-fat diet-induced obesity, at least partially, through modulating appetite-related genes ghrelin and PYY.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Jia Fei
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Sisi Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Gaylen L Edwards
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
27
|
Yuan X, Zhang T, Yao F, Liao Y, Liu F, Ren Z, Han L, Diao L, Li Y, Zhou B, He F, Wang L. THO Complex-Dependent Posttranscriptional Control Contributes to Vascular Smooth Muscle Cell Fate Decision. Circ Res 2019; 123:538-549. [PMID: 30026254 DOI: 10.1161/circresaha.118.313527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE Modulation of vascular smooth muscle cell (VSMC) phenotype plays a fundamental role in vascular development and diseases. Although extensive studies uncovered the roles of transcriptional regulation in VSMC-specific gene expression, how posttranscriptional regulation contributes to VSMC fate decisions remains to be determined. OBJECTIVE To establish THO complex-dependent VSMC gene expression as a novel regulatory basis controlling VSMC phenotypes. METHODS AND RESULTS Immunohistochemical staining against THOC2 and THOC5, 2 components of the THO complex, revealed a dramatic reduction in their expression in human arteries undergoing carotid endarterectomy compared with normal internal mammary arteries. Silencing of THOC2 or THOC5 led to dedifferentiation of VSMCs in vitro, characterized by decreased VSMC marker gene expression and increased migration and proliferation. Furthermore, RNA high-throughput sequencing (Seq) revealed that THOC5 silencing closely resembled the gene expression changes induced on PDGF (platelet-derived growth factor)-BB/PDGF-DD treatments in cultured VSMCs. Mechanistically, THOC2 and THOC5 physically interacted with and functionally relied on each other to bind to specific motifs on VSMC marker gene mRNAs. Interestingly, mRNAs that lost THOC2 or THOC5 binding during VSMC dedifferentiation were enriched for genes important for the differentiated VSMC phenotype. Last, THOC5 overexpression in injured rat carotid arteries significantly repressed loss of VSMC marker gene expression and neointima formation. CONCLUSIONS Our data introduce dynamic binding of THO to VSMC marker gene mRNAs as a novel mechanism contributing to VSMC phenotypic switching and imply THOC5 as a potential intervention node for vascular diseases.
Collapse
Affiliation(s)
- Xinli Yuan
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.).,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission (X.Y., L.W.)
| | - Tao Zhang
- Fuwai Hospital, Beijing, China; Department of Vascular Surgery, Peking University People's Hospital, Beijing, China (T.Z.)
| | - Fang Yao
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.)
| | - Yingnan Liao
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.)
| | - Fei Liu
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.)
| | - Zongna Ren
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.)
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School (L.H.)
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston (L.D.)
| | - Yankui Li
- Department of Vascular Surgery, the Second Hospital of Tianjin Medical University, China (Y.L.)
| | - Bingying Zhou
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.)
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.H.)
| | - Li Wang
- From the State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.Y., F.Y., Y.L., F.L., Z.R., B.Z., L.W.).,Key Laboratory of Cardiac Regenerative Medicine, National Healthy Commission (X.Y., L.W.)
| |
Collapse
|
28
|
Gatsiou A, Stellos K. Dawn of Epitranscriptomic Medicine. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001927. [PMID: 30354331 DOI: 10.1161/circgen.118.001927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Medicine is at the crossroads of expanding disciplines. Prompt adaptation of medicine to each rapidly advancing research field, bridging bench to bedside, is a key step toward health improvement. Cardiovascular disease still ranks first among the mortality causes in the Western world, indicating a poor adaptation rate of cardiovascular medicine, albeit the gigantic scientific breakthroughs of this century. This urges the cardiovascular research field to explore novel concepts with promising prognostic and therapeutic potential. This review attempts to introduce the newly emerging field of epitranscriptome (or else known as RNA epigenetics) to cardiovascular researchers and clinicians summarizing its applications on health and disease. The traditionally perceived, intermediate carrier of genetic information or as contemporary revised as, occasionally, even the final product of gene expression, RNA, is dynamically subjected to >140 different kinds of chemical modifications determining its fate, which may profoundly impact the cellular responses and thus both health and disease course. Which are the most prevalent types of these RNA modifications, how are they catalyzed, how are they regulated, which role may they play in health and disease, and which are the implications for the cardiovascular medicine are few important questions that are discussed in the present review.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.)
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.).,Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (K.S.).,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health System Foundation Trust, United Kingdom (K.S.)
| |
Collapse
|
29
|
Yang Y, Zhu M, Fan X, Yao Y, Yan J, Tang Y, Liu S, Li K, Tang Z. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Res 2019; 26:261-272. [PMID: 31231762 PMCID: PMC6589548 DOI: 10.1093/dnares/dsz006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/12/2019] [Indexed: 12/04/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing meditated by adenosine deaminases acting on RNA (ADARs) enzymes is a widespread post-transcriptional event in mammals. However, A-to-I editing in skeletal muscle remains poorly understood. By integrating strand-specific RNA-seq, whole genome bisulphite sequencing, and genome sequencing data, we comprehensively profiled the A-to-I editome in developing skeletal muscles across 27 prenatal and postnatal stages in pig, an important farm animal and biomedical model. We detected 198,892 A-to-I editing sites and found that they occurred more frequently at prenatal stages and showed low conservation among pig, human, and mouse. Both the editing level and frequency decreased during development and were positively correlated with ADAR enzymes expression. The hyper-edited genes were functionally related to the cell cycle and cell division. A co-editing module associated with myogenesis was identified. The developmentally differential editing sites were functionally enriched in genes associated with muscle development, their editing levels were highly correlated with expression of their host mRNAs, and they potentially influenced the gain/loss of miRNA binding sites. Finally, we developed a database to visualize the Sus scrofa RNA editome. Our study presents the first profile of the dynamic A-to-I editome in developing animal skeletal muscle and provides evidences that RNA editing is a vital regulator of myogenesis.
Collapse
Affiliation(s)
- Yalan Yang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Min Zhu
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yilong Yao
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junyu Yan
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siyuan Liu
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
30
|
Affiliation(s)
- Ning Shi
- From the Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens.
| |
Collapse
|
31
|
Huan W, Zhang J, Li Y, Zhi K. Involvement of DHX9/YB-1 complex induced alternative splicing of Krüppel-like factor 5 mRNA in phenotypic transformation of vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 317:C262-C269. [PMID: 31116584 DOI: 10.1152/ajpcell.00067.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenotypic transformation of vascular smooth muscle cells is a key phenomenon in the development of aortic dissection disease. However, the molecular mechanisms underlying this phenomenon have not been fully understood. We used β-BAPN combined with ANG II treatment to establish a disease model of acute aortic dissection (AAD) in mice. We first examined the gene expression profile of aortic tissue in mice with AAD using a gene chip, followed by confirmation of DExH-box helicase 9 (DHX9) expression using RT-PCR, Western blot, and immunofluorescence analysis. We further developed vascular smooth muscle cell-specific DHX9 conditional knockout mice and conducted differential and functional analysis of gene expression and alternative splicing in mouse vascular smooth muscle cells. Finally, we examined the involvement of DHX9 in Krüppel-like factor 5 (KLF5) mRNA alternative splicing. Our study reported a significant decrease in the expression of DHX9 in the vascular smooth muscle cells (VSMCs) of mice with AAD. The smooth muscle cell-specific knockout of DHX9 exacerbated the development of AAD and altered the transcriptional level expression of many smooth muscle cell phenotype-related genes. Finally, we reported that DHX9 may induce alternative splicing of KLF5 mRNA by bridging YB-1. These results together suggested a new pathogenic mechanism underlying the development of AAD, and future research of this mechanism may help identify effective therapeutic intervention for AAD.
Collapse
Affiliation(s)
- Wei Huan
- Department of Vascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
32
|
Dorn LE, Tual-Chalot S, Stellos K, Accornero F. RNA epigenetics and cardiovascular diseases. J Mol Cell Cardiol 2019; 129:272-280. [PMID: 30880252 DOI: 10.1016/j.yjmcc.2019.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in the Western world. Despite advances in the prevention and in the management of CVD, the role of RNA epigenetics in the cardiovascular system has been until recently unexplored. The rapidly expanding research field of RNA modifications has introduced a novel layer of gene regulation in mammalian cells. RNA modifications may control all aspects of RNA metabolism, and their study reveals previously unrecognized regulatory pathways that may determine gene expression at a post-transcriptional level. Understanding the role of RNA modifications in CVD may lead towards a better understanding of disease mechanisms and the development of novel biomarkers or therapeutic strategies. In this review, we highlight the most recent and major reports in the field of RNA methylation and adenosine to inosine RNA editing related to the cardiovascular field and we discuss how this breakthrough will advance the field of precision medicine.
Collapse
Affiliation(s)
- Lisa E Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Simon Tual-Chalot
- Cardiovascular Disease Prevention & Resilience Hub, Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Konstantinos Stellos
- Cardiovascular Disease Prevention & Resilience Hub, Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle, Upon Tyne, UK.
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Lopdell TJ, Hawkins V, Couldrey C, Tiplady K, Davis SR, Harris BL, Snell RG, Littlejohn MD. Widespread cis-regulation of RNA editing in a large mammal. RNA (NEW YORK, N.Y.) 2019; 25:319-335. [PMID: 30530731 PMCID: PMC6380278 DOI: 10.1261/rna.066902.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Post-transcriptional RNA editing may regulate transcript expression and diversity in cells, with potential impacts on various aspects of physiology and environmental adaptation. A small number of recent genome-wide studies in Drosophila, mouse, and human have shown that RNA editing can be genetically modulated, highlighting loci that quantitatively impact editing of transcripts. The potential gene expression and physiological consequences of these RNA-editing quantitative trait loci (edQTL), however, are almost entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal (Bos taurus), where we use whole-genome and high-depth RNA sequencing to discover, characterize, and conduct genetic mapping studies of novel transcript edits. Using a discovery population of nine deeply sequenced cows, we identify 2413 edit sites in the mammary transcriptome, the majority of which are adenosine to inosine edits (98.6%). Most sites are predicted to reside in double-stranded secondary structures (85.1%), and quantification of the rates of editing in an additional 355 cows reveals editing is negatively correlated with gene expression in the majority of cases. Genetic analyses of RNA editing and gene expression highlight 152 cis-regulated edQTL, of which 15 appear to cosegregate with expression QTL effects. Trait association analyses in a separate population of 9989 lactating cows also shows 12 of the cis-edQTL coincide with at least one cosegregating lactation QTL. Together, these results enhance our understanding of RNA-editing dynamics in mammals, and suggest mechanistic links by which loci may impact phenotype through RNA editing mediated processes.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Victoria Hawkins
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Bevin L Harris
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| |
Collapse
|
34
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
35
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
36
|
Affiliation(s)
- Renjing Liu
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Section of Cardiovascular Medicine, Department of Medicine, Yale Cardiovascular Research Center (A.J.B., K.A.M.) and Department of Pharmacology, Yale School of Medicine (A.J.B., K.A.M.), Yale University, New Haven, CT
| | - Ashley J Bauer
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Section of Cardiovascular Medicine, Department of Medicine, Yale Cardiovascular Research Center (A.J.B., K.A.M.) and Department of Pharmacology, Yale School of Medicine (A.J.B., K.A.M.), Yale University, New Haven, CT
| | - Kathleen A Martin
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Section of Cardiovascular Medicine, Department of Medicine, Yale Cardiovascular Research Center (A.J.B., K.A.M.) and Department of Pharmacology, Yale School of Medicine (A.J.B., K.A.M.), Yale University, New Haven, CT.
| |
Collapse
|
37
|
Vallin B, Legueux-Cajgfinger Y, Clément N, Glorian M, Duca L, Vincent P, Limon I, Blaise R. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1326-1340. [PMID: 29940197 DOI: 10.1016/j.bbamcr.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Here, we cloned a new family of four adenylyl cyclase (AC) splice variants from interleukin-1β (IL-1β)-transdifferentiated vascular smooth muscle cells (VSMCs) encoding short forms of AC8 that we have named "AC8E-H". Using biosensor imaging and biochemical approaches, we showed that AC8E-H isoforms have no cyclase activity and act as dominant-negative regulators by forming heterodimers with other full-length ACs, impeding the traffic of functional units towards the plasma membrane. The existence of these dominant-negative isoforms may account for an unsuspected additional degree of cAMP signaling regulation. It also reconciles the induction of an AC in transdifferentiated VSMCs with the vasoprotective influence of cAMP. The generation of alternative splice variants of ACs may constitute a generalized strategy of adaptation to the cell's environment whose scope had so far been ignored in physiological and/or pathological contexts.
Collapse
Affiliation(s)
- Benjamin Vallin
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Yohan Legueux-Cajgfinger
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Nathalie Clément
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Martine Glorian
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Laurent Duca
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne (URCA), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), Campus Moulin de la Housse, 51687 Reims, France
| | - Pierre Vincent
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Isabelle Limon
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Régis Blaise
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| |
Collapse
|
38
|
Lim YH, Kwon DH, Kim J, Park WJ, Kook H, Kim YK. Identification of long noncoding RNAs involved in muscle differentiation. PLoS One 2018; 13:e0193898. [PMID: 29499054 PMCID: PMC5834194 DOI: 10.1371/journal.pone.0193898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a large class of regulatory RNAs with diverse roles in cellular processes. Thousands of lncRNAs have been discovered; however, their roles in the regulation of muscle differentiation are unclear because no comprehensive analysis of lncRNAs during this process has been performed. In the present study, by combining diverse RNA sequencing datasets obtained from public database, we discovered lncRNAs that could behave as regulators in the differentiation of smooth or skeletal muscle cells. These analyses confirmed the roles of previously reported lncRNAs in this process. Moreover, we discovered dozens of novel lncRNAs whose expression patterns suggested their possible involvement in the phenotypic switch of vascular smooth muscle cells. The comparison of lncRNA expression change suggested that many lncRNAs have common roles during the differentiation of smooth and skeletal muscles, while some lncRNAs may have opposite roles in this process. The expression change of lncRNAs was highly correlated with that of their neighboring genes, suggesting that they may function as cis-acting lncRNAs. Furthermore, within the lncRNA sequences, there were binding sites for miRNAs with expression levels inversely correlated with the expression of corresponding lncRNAs during differentiation, suggesting a possible role of these lncRNAs as competing endogenous RNAs. The lncRNAs identified in this study will be a useful resource for future studies of gene regulation during muscle differentiation.
Collapse
Affiliation(s)
- Yeong-Hwan Lim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
40
|
RNA Editing, ADAR1, and the Innate Immune Response. Genes (Basel) 2017; 8:genes8010041. [PMID: 28106799 PMCID: PMC5295035 DOI: 10.3390/genes8010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.
Collapse
|