1
|
Selvaraj S, Karaj A, Chirinos JA, Denney N, Grosso G, Fernando M, Chambers K, Demastus C, Reddy R, Langham M, Kumar D, Maynard H, Pourmussa B, Prenner SB, Cohen JB, Ischiropoulos H, Rickels MR, Poole DC, Church DD, Wolfe RR, Kelly DP, Putt M, Margulies KB, Zamani P. Crossover Trial of Exogenous Ketones on Cardiometabolic Endpoints in Heart Failure With Preserved Ejection Fraction. JACC. HEART FAILURE 2025:S2213-1779(25)00237-9. [PMID: 40243975 DOI: 10.1016/j.jchf.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The etiology of exercise intolerance in heart failure with preserved ejection fraction (HFpEF) is multifactorial. Several contributing pathways may be improved by ketone ester (KE). OBJECTIVES This study aims to determine whether KE improves exercise tolerance in HFpEF. METHODS KETO-HFpEF (Ketogenic Exogenous Therapies in HFpEF) is a randomized, crossover, placebo-controlled trial of acute KE dosing in 20 symptomatic HFpEF participants. Coprimary endpoints include peak oxygen consumption (VO2) during incremental cardiopulmonary exercise testing and time to exhaustion during an additional constant-intensity exercise (75% peak workload) bout. RESULTS The average age was 71 ± 8 years, 60% were women, and 65% were White. KE did not improve peak VO2 (KE: 10.4 ± 3.6 vs placebo: 10.5 ± 4.0 mL/kg/min; P = 0.75). At rest, heart rate, biventricular systolic function, and cardiac output (0.6 L/min [95% CI: 0.3-1.0 L/min]) were greater with KE vs placebo, whereas total peripheral resistance (-3.2 WU [95% CI: -5.2 to -1.2 WU]) and the arteriovenous oxygen content difference (-0.7 mL of O2/dL blood [95% CI: -1.2 to -0.2 mL]) were lower. These differences mostly disappeared during incremental exercise. KE did not improve exercise endurance during the constant-intensity protocol (9.7 ± 7.3 minutes vs 8.7 ± 4.4 minutes; P = 0.51). In 6 participants receiving 6,6-2H2-glucose infusions during constant-intensity exercise, plasma glucose appearance rate before and during exercise was lower with KE (-0.24 mg/kg/min; P < 0.001). During both exercise protocols, KE lowered: 1) respiratory exchange ratios, demonstrating decreased systemic carbohydrate use; 2) nonesterified fatty acids and glucose; and 3) estimated left ventricular filling pressures (E/e'). CONCLUSIONS Despite robust ketosis, shifting substrate use away from carbohydrates, and decreasing estimated left ventricular filling pressures, acute KE supplementation did not improve peak VO2 or constant-intensity exercise in HFpEF. (Ketogenic Exogenous Therapies in HFpEF [KETO-HFpEF]; NCT04633460).
Collapse
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Duke University Medical Center, Durham, North Carolina, USA; Duke Molecular Physiology Institute, Durham, North Carolina, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology, and Informatics, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julio A Chirinos
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicole Denney
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabby Grosso
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Fernando
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kishon Chambers
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassandra Demastus
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Department of Medicine and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Langham
- Department of Medicine and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dushyant Kumar
- Department of Medicine and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hannah Maynard
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bianca Pourmussa
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart B Prenner
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordana B Cohen
- Division of Nephrology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - David D Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert R Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel P Kelly
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary Putt
- Department of Biostatistics, Epidemiology, and Informatics, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth B Margulies
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Payman Zamani
- Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Zamani P, Shah SJ, Cohen JB, Zhao M, Yang W, Afable JL, Caturla M, Maynard H, Pourmussa B, Demastus C, Mohanty I, Miyake MM, Adusumalli S, Margulies KB, Prenner SB, Poole DC, Wilson N, Reddy R, Townsend RR, Ischiropoulos H, Cappola TP, Chirinos JA. Potassium Nitrate in Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA Cardiol 2024:2827840. [PMID: 39693096 DOI: 10.1001/jamacardio.2024.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Importance Nitric oxide deficiency may contribute to exercise intolerance in patients with heart failure with preserved ejection fraction (HFpEF). Prior pilot studies have shown improvements in exercise tolerance with single-dose and short-term inorganic nitrate administration. Objective To assess the impact of chronic inorganic nitrate administration on exercise tolerance in a larger trial of participants with HFpEF. Design, Setting, and Participants This multicenter randomized double-blinded crossover trial was conducted at the University of Pennsylvania, the Philadelphia Veterans Affairs Medical Center, and Northwestern University between October 2016 and July 2022. Participants included patients with symptomatic (New York Heart Association class II/III) HFpEF who had objective signs of elevated left ventricular filling pressures. Image quantification, physiological data modeling and biochemical measurements, unblinding, and statistical analyses were completed in 2024. Intervention Potassium nitrate (KNO3) (6 mmol 3 times daily) vs equimolar doses of potassium chloride (KCl) for 6 weeks, each with a 1-week washout in between. MAIN OUTCOMES AND MEASURES The coprimary end points included peak oxygen uptake and total work performed during a maximal effort incremental cardiopulmonary exercise test. Secondary end points included the exercise systemic vasodilatory reserve (ie, reduction in systemic vascular resistance with exercise) and quality of life assessed using the Kansas City Cardiomyopathy Questionnaire. Results Eighty-four participants were enrolled. Median age was 68 years and 58 participants were women (69.0%). Most participants had NYHA class II disease (69%) with a mean 6-minute walk distance of 335.5 (SD, 97.3) m. Seventy-seven participants received the KNO3 intervention and 74 received the KCl intervention. KNO3 increased trough levels of serum nitric oxide metabolites after 6 weeks (KNO3, 418.4 [SD, 26.9] uM vs KCl, 40.1 [SD, 28.3] uM; P < .001). KNO3 did not improve peak oxygen uptake (KNO3, 10.23 [SD, 0.43] mL/min/kg vs KCl, 10.17 [SD, 0.43] mL/min/kg; P = .73) or total work performed (KNO3, 25.9 [SD, 3.65] kilojoules vs KCl, 23.63 [SD, 3.63] kilojoules; P = .29). KNO3 nitrate did not improve the vasodilatory reserve or quality of life, though it was well-tolerated. Conclusions and Relevance In this study, potassium nitrate did not improve aerobic capacity, total work, or quality of life in participants with HFpEF. Trial Registration ClinicalTrials.gov Identifier: NCT02840799.
Collapse
Affiliation(s)
- Payman Zamani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sanjiv J Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jordana B Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Manyun Zhao
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Wei Yang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jessica L Afable
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Maria Caturla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hannah Maynard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Bianca Pourmussa
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Ipsita Mohanty
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Michelle Menon Miyake
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | | | | | - Stuart B Prenner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Thomas P Cappola
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Julio A Chirinos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
3
|
Borlaug BA, Koepp KE, Reddy YNV, Obokata M, Sorimachi H, Freund M, Haberman D, Sweere K, Weber KL, Overholt EA, Safe BA, Omote K, Omar M, Popovic D, Acker NG, Gladwin MT, Olson TP, Carter RE. Inorganic Nitrite to Amplify the Benefits and Tolerability of Exercise Training in Heart Failure With Preserved Ejection Fraction: The INABLE-Training Trial. Mayo Clin Proc 2024; 99:206-217. [PMID: 38127015 PMCID: PMC10872737 DOI: 10.1016/j.mayocp.2023.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To determine whether nitrite can enhance exercise training (ET) effects in heart failure with preserved ejection fraction (HFpEF). METHODS In this multicenter, double-blind, placebo-controlled, randomized trial conducted at 1 urban and 9 rural outreach centers between November 22, 2016, and December 9, 2021, patients with HFpEF underwent ET along with inorganic nitrite 40 mg or placebo 3 times daily. The primary end point was peak oxygen consumption (VO2). Secondary end points included Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OSS, range 0 to 100; higher scores reflect better health status), 6-minute walk distance, and actigraphy. RESULTS Of 92 patients randomized, 73 completed the trial because of protocol modifications necessitated by loss of drug availability. Most patients were older than 65 years (80%), were obese (75%), and lived in rural settings (63%). At baseline, median peak VO2 (14.1 mL·kg-1·min-1) and KCCQ-OSS (63.7) were severely reduced. Exercise training improved peak VO2 (+0.8 mL·kg-1·min-1; 95% CI, 0.3 to 1.2; P<.001) and KCCQ-OSS (+5.5; 95% CI, 2.5 to 8.6; P<.001). Nitrite was well tolerated, but treatment with nitrite did not affect the change in peak VO2 with ET (nitrite effect, -0.13; 95% CI, -1.03 to 0.76; P=.77) or KCCQ-OSS (-1.2; 95% CI, -7.2 to 4.9; P=.71). This pattern was consistent across other secondary outcomes. CONCLUSION For patients with HFpEF, ET administered for 12 weeks in a predominantly rural setting improved exercise capacity and health status, but compared with placebo, treatment with inorganic nitrite did not enhance the benefit from ET. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02713126.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| | - Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Monique Freund
- Mayo Clinic Community Cardiology Southwest Wisconsin, La Crosse
| | - Doug Haberman
- Mayo Clinic Community Cardiology Southwest Wisconsin, La Crosse
| | - Kara Sweere
- Mayo Clinic Community Cardiology Southeast Minnesota, Albert Lea
| | - Kari L Weber
- Mayo Clinic Community Cardiology Southeast Minnesota, Austin
| | | | - Bethany A Safe
- Mayo Clinic Community Cardiology Southeast Minnesota, Red Wing
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Massar Omar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Dejana Popovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Nancy G Acker
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Mark T Gladwin
- Department of Medicine, Maryland School of Medicine, Baltimore
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
4
|
Balmain BN, Tomlinson AR, MacNamara JP, Hynan LS, Wakeham DJ, Levine BD, Sarma S, Babb TG. Reducing Pulmonary Capillary Wedge Pressure During Exercise Exacerbates Exertional Dyspnea in Patients With Heart Failure With Preserved Ejection Fraction: Implications for V˙/Q˙ Mismatch. Chest 2023; 164:686-699. [PMID: 37030529 PMCID: PMC10548458 DOI: 10.1016/j.chest.2023.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The primary cause of dyspnea on exertion in heart failure with preserved ejection fraction (HFpEF) is presumed to be the marked rise in pulmonary capillary wedge pressure during exercise; however, this hypothesis has never been tested directly. Therefore, we evaluated invasive exercise hemodynamics and dyspnea on exertion in patients with HFpEF before and after acute nitroglycerin (NTG) treatment to lower pulmonary capillary wedge pressure. RESEARCH QUESTION Does reducing pulmonary capillary wedge pressure during exercise with NTG improve dyspnea on exertion in HFpEF? STUDY DESIGN AND METHODS Thirty patients with HFpEF performed two invasive 6-min constant-load cycling tests (20 W): one with placebo (PLC) and one with NTG. Ratings of perceived breathlessness (0-10 scale), pulmonary capillary wedge pressure (right side of heart catheter), and arterial blood gases (radial artery catheter) were measured. Measurements of V˙/Q˙ matching, including alveolar dead space (Vdalv; Enghoff modification of the Bohr equation) and the alveolar-arterial Po2 difference (A-aDO2; alveolar gas equation), were also derived. The ventilation (V˙e)/CO2 elimination (V˙co2) slope was also calculated as the slope of the V˙e and V˙co2 relationship, which reflects ventilatory efficiency. RESULTS Ratings of perceived breathlessness increased (PLC: 3.43 ± 1.94 vs NTG: 4.03 ± 2.18; P = .009) despite a clear decrease in pulmonary capillary wedge pressure at 20 W (PLC: 19.7 ± 8.2 vs NTG: 15.9 ± 7.4 mm Hg; P < .001). Moreover, Vdalv (PLC: 0.28 ± 0.07 vs NTG: 0.31 ± 0.08 L/breath; P = .01), A-aDO2 (PLC: 19.6 ± 6.7 vs NTG: 21.1 ± 6.7; P = .04), and V˙e/V˙co2 slope (PLC: 37.6 ± 5.7 vs NTG: 40.2 ± 6.5; P < .001) all increased at 20 W after a decrease in pulmonary capillary wedge pressure. INTERPRETATION These findings have important clinical implications and indicate that lowering pulmonary capillary wedge pressure does not decrease dyspnea on exertion in patients with HFpEF; rather, lowering pulmonary capillary wedge pressure exacerbates dyspnea on exertion, increases V˙/Q˙ mismatch, and worsens ventilatory efficiency during exercise in these patients. This study provides compelling evidence that high pulmonary capillary wedge pressure is likely a secondary phenomenon rather than a primary cause of dyspnea on exertion in patients with HFpEF, and a new therapeutic paradigm is needed to improve symptoms of dyspnea on exertion in these patients.
Collapse
Affiliation(s)
- Bryce N Balmain
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew R Tomlinson
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - James P MacNamara
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Linda S Hynan
- The O'Donnell School of Public Health and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Denis J Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
5
|
Cai Z, Wu C, Xu Y, Cai J, Zhao M, Zu L. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies. Aging Dis 2023; 14:46-62. [PMID: 36818566 PMCID: PMC9937694 DOI: 10.14336/ad.2022.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for almost half of all heart failure (HF) cases worldwide. Unfortunately, its incidence is expected to continue to rise, and effective therapy to improve clinical outcomes is lacking. Numerous efforts currently directed towards the pathophysiology of human HFpEF are uncovering signal transduction pathways and novel therapeutic targets. The nitric oxide-cyclic guanosine phosphate-protein kinase G (NO-cGMP-PKG) axis has been described as an important regulator of cardiac function. Suppression of the NO-cGMP-PKG signalling pathway is involved in the progression of HFpEF. Therefore, the NO-cGMP-PKG signalling pathway is a potential therapeutic target for HFpEF. In this review, we aim to explore the mechanism of NO-cGMP-PKG in the progression of HFpEF and to summarize potential therapeutic drugs that target this signalling pathway.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Cencen Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Yuan Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Jiageng Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Lingyun Zu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
6
|
Poole DC, Ferguson SK, Musch TI, Porcelli S. Role of nitric oxide in convective and diffusive skeletal microvascular oxygen kinetics. Nitric Oxide 2022; 121:34-44. [PMID: 35123062 DOI: 10.1016/j.niox.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Scott K Ferguson
- Department of Kinesiology and Exercise Science, University of Hawaii, Hilo, HI, 96720, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Boulmpou A, Theodorakopoulou MP, Alexandrou ME, Boutou AK, Papadopoulos CE, Pella E, Sarafidis P, Vassilikos V. Meta-analysis addressing the impact of cardiovascular-acting medication on peak oxygen uptake of patients with HFpEF. Heart Fail Rev 2022; 27:609-623. [DOI: 10.1007/s10741-021-10207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
|
8
|
Bock JM, Ueda K, Feider AJ, Hanada S, Casey DP. Combined inorganic nitrate/nitrite supplementation blunts α-mediated vasoconstriction during exercise in patients with type 2 diabetes. Nitric Oxide 2021; 118:17-25. [PMID: 34718145 DOI: 10.1016/j.niox.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
AIMS Patients with type 2 diabetes mellitus (T2DM) have reduced vasodilatory responses during exercise partially attributable to low nitric oxide (NO) levels. Low NO contributes to greater α-adrenergic mediated vasoconstriction in contracting skeletal muscle. We hypothesized boosting NO bioavailability via 8wks of active beetroot juice (BRA, 4.03 mmol nitrate, 0.29 mmol nitrite, n = 19) improves hyperemia, via reduced α-mediated vasoconstriction, during handgrip exercise relative to nitrate/nitrite-depleted beetroot juice (BRP, n = 18) in patients with T2DM. METHODS Forearm blood flow (FBF) and vascular conductance (FVC) were calculated at rest and during handgrip exercise (20%max, 20contractions·min-1). Phenylephrine (α1-agonist) and dexmedetomidine (α2-agonist) were infused intra-arterially during independent trials to determine the influence of α-mediated vasoconstriction on exercise hyperemia. Vasoconstriction was quantified as the percent-reduction in FVC during α-agonist infusion, relative to pre-infusion, as well as the absolute change in %FVC during exercise relative to the respective rest trial (magnitude of sympatholysis). RESULTS ΔFBF (156 ± 69 to 175 ± 73 ml min-1) and ΔFVC (130 ± 54 to 156 ± 63 ml min-1·100 mmHg-1, both P < 0.05) during exercise were augmented following BRA, but not BRP (P = 0.96 and 0.51). Phenylephrine-induced vasoconstriction during exercise was blunted following BRA (-17.1 ± 5.9 to -12.6 ± 3.1%, P < 0.01), but not BRP (P = 0.58) supplementation; the magnitude of sympatholysis was unchanged by either (beverage-by-time P = 0.15). BRA supplementation reduced dexmedetomidine-induced vasoconstriction during exercise (-23.3 ± 6.7 to -19.7 ± 5.2%) and improved the corresponding magnitude of sympatholysis (25.3 ± 11.4 to 34.4 ± 15.5%, both P < 0.05). CONCLUSIONS BRA supplementation improves the hyperemic and vasodilatory responses to exercise in patients with T2DM which appears to be attributable to reduced α-adrenergic mediated vasoconstriction in contracting skeletal muscle.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, 285 Newton Rd, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 169 Newton Rd, IA, USA.
| |
Collapse
|
9
|
Gee LC, Massimo G, Lau C, Primus C, Fernandes D, Chen J, Rathod KS, Hamers AJP, Filomena F, Nuredini G, Ibrahim AS, Khambata RS, Gupta AK, Moon JC, Kapil V, Ahluwalia A. Inorganic nitrate attenuates cardiac dysfunction: role for xanthine oxidoreductase and nitric oxide. Br J Pharmacol 2021; 179:4757-4777. [PMID: 34309015 DOI: 10.1111/bph.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) is a vasodilator and independent modulator of cardiac remodelling. Commonly, in cardiac disease (e.g. heart failure) endothelial dysfunction (synonymous with NO-deficiency) has been implicated in increased blood pressure (BP), cardiac hypertrophy and fibrosis. Currently no effective therapies replacing NO have succeeded in the clinic. Inorganic nitrate (NO3 - ), through chemical reduction to nitrite and then NO, exerts potent BP-lowering but whether it might be useful in treating undesirable cardiac remodelling is unknown. In a nested age- and sex-matched case-control study of hypertensive patients +/- left ventricular hypertrophy (NCT03088514) we show that lower plasma nitrite concentration and vascular dysfunction accompany cardiac hypertrophy and fibrosis in patients. In mouse models of cardiac remodelling, we also show that restoration of circulating nitrite levels using dietary nitrate improves endothelial dysfunction through targeting of xanthine oxidoreductase (XOR)-driven H2 O2 and superoxide, and reduces cardiac fibrosis through NO-mediated block of SMAD-phosphorylation leading to improvements in cardiac structure and function. We show that via these mechanisms dietary nitrate offers easily translatable therapeutic options for treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Lorna C Gee
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Clement Lau
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Christopher Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Daniel Fernandes
- Departamento de Farmacologia, Federal University of Santa Catarina, Florianópolis, Santa Catarina,, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Alexander Jozua Pedro Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Federica Filomena
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gani Nuredini
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Abdiwahab Shidane Ibrahim
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ajay K Gupta
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Vikas Kapil
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
11
|
Ferguson SK, Woessner MN, Holmes MJ, Belbis MD, Carlström M, Weitzberg E, Allen JD, Hirai DM. Effects of inorganic nitrate supplementation on cardiovascular function and exercise tolerance in heart failure. J Appl Physiol (1985) 2021; 130:914-922. [PMID: 33475460 PMCID: PMC8424551 DOI: 10.1152/japplphysiol.00780.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023] Open
Abstract
Heart failure (HF) results in a myriad of central and peripheral abnormalities that impair the ability to sustain skeletal muscle contractions and, therefore, limit tolerance to exercise. Chief among these abnormalities is the lowered maximal oxygen uptake, which is brought about by reduced cardiac output and exacerbated by O2 delivery-utilization mismatch within the active skeletal muscle. Impaired nitric oxide (NO) bioavailability is considered to play a vital role in the vascular dysfunction of both reduced and preserved ejection fraction HF (HFrEF and HFpEF, respectively), leading to the pursuit of therapies aimed at restoring NO levels in these patient populations. Considering the complementary role of the nitrate-nitrite-NO pathway in the regulation of enzymatic NO signaling, this review explores the potential utility of inorganic nitrate interventions to increase NO bioavailability in the HFrEF and HFpEF patient population. Although many preclinical investigations have suggested that enhanced reduction of nitrite to NO in low Po2 and pH environments may make a nitrate-based therapy especially efficacious in patients with HF, inconsistent results have been found thus far in clinical settings. This brief review provides a summary of the effectiveness (or lack thereof) of inorganic nitrate interventions on exercise tolerance in patients with HFrEF and HFpEF. Focus is also given to practical considerations and current gaps in the literature to facilitate the development of effective nitrate-based interventions to improve exercise tolerance in patients with HF.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Kinesiology and Exercise Science, College of Natural and Health Sciences, University of Hawaii at Hilo, Hilo, Hawaii
| | - Mary N Woessner
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Michael J Holmes
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jason D Allen
- Department of Kinesiology & Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
12
|
Poole DC, Behnke BJ, Musch TI. The role of vascular function on exercise capacity in health and disease. J Physiol 2021; 599:889-910. [PMID: 31977068 PMCID: PMC7874303 DOI: 10.1113/jp278931] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ̇ O 2 max ), critical power (CP) and speed of the V ̇ O 2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V ̇ O 2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V ̇ O 2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q ̇ O 2 ) dependency that slows V ̇ O 2 kinetics, decreasing CP and V ̇ O 2 max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q ̇ O 2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V ̇ O 2 values. Recent discoveries, especially in the muscle microcirculation and Q ̇ O 2 -to- V ̇ O 2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V ̇ O 2 kinetics and determine CP and V ̇ O 2 max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
13
|
Tenopoulou M, Doulias PT. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. F1000Res 2020; 9. [PMID: 33042519 PMCID: PMC7531049 DOI: 10.12688/f1000research.19998.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide is an endogenously formed gas that acts as a signaling molecule in the human body. The signaling functions of nitric oxide are accomplished through two primer mechanisms: cGMP-mediated phosphorylation and the formation of S-nitrosocysteine on proteins. This review presents and discusses previous and more recent findings documenting that nitric oxide signaling regulates metabolic activity. These discussions primarily focus on endothelial nitric oxide synthase (eNOS) as the source of nitric oxide.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
14
|
Bahadoran Z, Mirmiran P, Carlström M, Norouzirad R, Jeddi S, Azizi F, Ghasemi A. Different Pharmacokinetic Responses to an Acute Dose of Inorganic Nitrate in Patients with Type 2 Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 21:878-886. [PMID: 32787767 DOI: 10.2174/1871530320666200813135251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
AIM In this study, we aimed to compare the pharmacokinetics of nitrate (NO3) in patients with type 2 diabetes mellitus (T2DM) and healthy adults. Potential effects of salivary nitrate reductase (NR) activity on cardiometabolic responses to an acute dose of NO3 was also assessed. METHODS Nine healthy adults and nine T2DM patients were recruited to consume a NO3-rich breakfast (~410 mg NO3). Pharmacokinetics of NO3 were examined using repeated measurements of NOx (nitrate+ nitrite) concentrations of serum and saliva over 8 hours and NO3 concentrations of spot and 24-h urine samples. Cardiometabolic parameters, including serum levels of glucose, insulin, and triglycerides as well as blood pressure were also measured. RESULTS Compared to patients with T2DM, serum NOx concentration (Δ1= 16.7 vs. 4.4 μmol/L, P=0.057) of healthy subjects sharply increased within 1 hour after NO3 loading. Healthy subjects had a higher NR activity index, and higher peak salivary NO3 concentration with a lower time to peak. Diabetic patients with high- compared to low-NR values had a higher whole-body NOx exposure (103±31.4 vs. 58.9±22.1 μmol.h/L); they also showed a better glycemic response and more reduction of blood pressure following ingestion of a NO3-rich meal. CONCLUSION T2DM may be associated with a different pattern of NOx pharmacokinetics (especially salivary NOx metabolism). Salivary NR activity may have a critical role in postprandial metabolism of NO3, and diabetic patients with higher NR activity may take more advantages from NO3 supplementation.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Woessner MN, Levinger I, Allen JD, McIlvenna LC, Neil C. The Effect of Dietary Inorganic Nitrate Supplementation on Cardiac Function during Submaximal Exercise in Men with Heart Failure with Reduced Ejection Fraction (HFrEF): A Pilot Study. Nutrients 2020; 12:nu12072132. [PMID: 32709051 PMCID: PMC7400930 DOI: 10.3390/nu12072132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a common end point for patients with coronary artery disease and it is characterized by exercise intolerance due, in part, to a reduction in cardiac output. Nitric oxide (NO) plays a vital role in cardiac function and patients with HFrEF have been identified as having reduced vascular NO. This pilot study aimed to investigate if nitrate supplementation could improve cardiac measures during acute, submaximal exercise. Five male participants (61 ± 3 years) with HFrEF (EF 32 ± 2.2%) completed this pilot study. All participants supplemented with inorganic nitrate (beetroot juice) or a nitrate-depleted placebo for ~13 days prior to testing. Participants completed a three-stage submaximal exercise protocol on a recumbent cycle ergometer with simultaneous echocardiography for calculation of cardiac output (Q), stroke volume (SV), and total peripheral resistance (TPR). Heart rate and blood pressure were measured at rest and during each stage. Both plasma nitrate (mean = ~1028%, p = 0.004) and nitrite (mean = ~109%, p = 0.01) increased following supplementation. There were no differences between interventions at rest, but the percent change in SV and Q from rest to stage two and stage three of exercise was higher following nitrate supplementation (all p > 0.05, ES > 0.8). Both interventions showed decreases in TPR during exercise, but the percent reduction TPR in stages two and three was greater following nitrate supplementation (p = 0.09, ES = 0.98 and p = 0.14, ES = 0.82, respectively). There were clinically relevant increases in cardiac function during exercise following supplementation with nitrate. The findings from this pilot study warrant further investigation in larger clinical trials.
Collapse
Affiliation(s)
- Mary N. Woessner
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Correspondence: ; Tel.: +61-04-2169-2161
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, St Albans, VIC 3021, Australia
| | - Jason D. Allen
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Department of Kinesiology & Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Luke C. McIlvenna
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
| | - Christopher Neil
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Department of Medicine-Western Health, University of Melbourne, St Albans, VIC 3021, Australia
- Western Health Chronic Disease Alliance, University of Melbourne, St Albans, VIC 3021 Australia
| |
Collapse
|
16
|
Gui Y, Chen J, Hu J, Ouyang M, Deng L, Liu L, Sun K, Tang Y, Xiang Q, Xu J, Zhu L, Peng Z, Zou P, Li B, Zheng Z, Xu D. Efficacy and Safety of Inorganic Nitrate Versus Placebo Treatment in Heart Failure with Preserved Ejection Fraction. Cardiovasc Drugs Ther 2020; 34:503-513. [DOI: 10.1007/s10557-020-06980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Woessner MN, Neil C, Saner NJ, Goodman CA, McIlvenna LC, Ortiz de Zevallos J, Garnham A, Levinger I, Allen JD. Effect of inorganic nitrate on exercise capacity, mitochondria respiration, and vascular function in heart failure with reduced ejection fraction. J Appl Physiol (1985) 2020; 128:1355-1364. [DOI: 10.1152/japplphysiol.00850.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This is the largest study to date to examine the effects of inorganic nitrate supplementation in patients with heart failure with reduced ejection fraction (HFrEF) and the first to include measures of vascular function and mitochondrial respiration. Although daily supplementation increased plasma nitrite, our data indicate that supplementation with inorganic nitrate as a standalone treatment is ineffective at improving exercise capacity, vascular function, or mitochondrial respiration in patients with HFrEF.
Collapse
Affiliation(s)
- Mary N. Woessner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Western Health, St. Albans, Victoria, Australia
| | - Christopher Neil
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Western Health, St. Albans, Victoria, Australia
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Craig A. Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Western Health, St. Albans, Victoria, Australia
| | - Luke C. McIlvenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology and Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, St. Albans, Victoria, Australia
| | - Jason D. Allen
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology and Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Hughes WE, Kruse NT, Ueda K, Feider AJ, Hanada S, Bock JM, Casey DP. Dietary nitrate does not acutely enhance skeletal muscle blood flow and vasodilation in the lower limbs of older adults during single-limb exercise. Eur J Appl Physiol 2020; 120:1357-1369. [DOI: 10.1007/s00421-020-04368-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
|
19
|
Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins S, Deo RC, Gladwin MT, Granzier H, Hummel SL, Kass DA, Redfield MM, Sam F, Wang TJ, Desvigne-Nickens P, Adhikari B. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020; 141:1001-1026. [PMID: 32202936 PMCID: PMC7101072 DOI: 10.1161/circulationaha.119.041886] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a major public health problem that is rising in prevalence, is associated with high morbidity and mortality and is considered to be the greatest unmet need in cardiovascular medicine today because of a general lack of effective treatments. To address this challenging syndrome, the National Heart, Lung, and Blood Institute convened a working group made up of experts in HFpEF and novel research methodologies to discuss research gaps and to prioritize research directions over the next decade. Here, we summarize the discussion of the working group, followed by key recommendations for future research priorities. There was uniform recognition that HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach in both humans and animal models to improve understanding of mechanisms and treatment of HFpEF. It was recognized that advances in the understanding of basic mechanisms and the roles of inflammation, macrovascular and microvascular dysfunction, fibrosis, and tissue remodeling are needed and ideally would be obtained from (1) improved animal models, including large animal models, which incorporate the effects of aging and associated comorbid conditions; (2) repositories of deeply phenotyped physiological data and human tissue, made accessible to researchers to enhance collaboration and research advances; and (3) novel research methods that take advantage of computational advances and multiscale modeling for the analysis of complex, high-density data across multiple domains. The working group emphasized the need for interactions among basic, translational, clinical, and epidemiological scientists and across organ systems and cell types, leveraging different areas or research focus, and between research centers. A network of collaborative centers to accelerate basic, translational, and clinical research of pathobiological mechanisms and treatment strategies in HFpEF was discussed as an example of a strategy to advance research progress. This resource would facilitate comprehensive, deep phenotyping of a multicenter HFpEF patient cohort with standardized protocols and a robust biorepository. The research priorities outlined in this document are meant to stimulate scientific advances in HFpEF by providing a road map for future collaborative investigations among a diverse group of scientists across multiple domains.
Collapse
Affiliation(s)
- Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | - Scott L. Hummel
- University of Michigan and the Ann Arbor Veterans Affairs Health System, Ann Arbor, MI
| | | | | | - Flora Sam
- Boston University School of Medicine, Boston, MA
| | | | | | - Bishow Adhikari
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD
| |
Collapse
|
20
|
Zamani P, Proto EA, Mazurek JA, Prenner SB, Margulies KB, Townsend RR, Kelly DP, Arany Z, Poole DC, Wagner PD, Chirinos JA. Peripheral Determinants of Oxygen Utilization in Heart Failure With Preserved Ejection Fraction: Central Role of Adiposity. ACTA ACUST UNITED AC 2020; 5:211-225. [PMID: 32215346 PMCID: PMC7091498 DOI: 10.1016/j.jacbts.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
ΔAVo2 during exercise is a complex metric that incorporates into its calculation skeletal muscle blood flow and DmO2 across the skeletal muscle capillary membrane. Although ΔAVo2 was reduced in patients with HFpEF during both systemic and local (forearm) exercise, there was no difference in forearm DmO2 among subjects with HFpEF, those with hypertension, and healthy control subjects; therefore, abnormalities in forearm DmO2 cannot explain the reduced forearm ΔAVo2 seen in subjects with HFpEF. Local forearm exercise performance predicted about one-third of the variability in systemic aerobic capacity, demonstrating that peripheral factors are important in determining whole-body exercise tolerance. Degree of adiposity strongly correlated with ΔAVo2 during both local and whole-body exercise, suggesting that adipose tissue may play an active role in limiting exercise capacity in subjects with HFpEF.
The aim of this study was to determine the arteriovenous oxygen content difference (ΔAVo2) in adult subjects with and without heart failure with preserved ejection fraction (HFpEF) during systemic and forearm exercise. Subjects with HFpEF had reduced ΔAVo2. Forearm diffusional conductance for oxygen, a lumped conductance parameter that incorporates all impediments to the movement of oxygen from red blood cells in skeletal muscle capillaries into the mitochondria within myocytes, was estimated. Forearm diffusional conductance for oxygen was not different among adults with HFpEF, those with hypertension, and healthy control subjects; therefore, diffusional conductance cannot explain the reduced forearm ΔAVo2. Instead, adiposity was strongly associated with ΔAVo2, suggesting an active role for adipose tissue in reducing exercise capacity in patients with HFpEF.
Collapse
Key Words
- CO, cardiac output
- DEXA, dual-energy x-ray absorptiometry
- DmO2, skeletal muscle diffusional conductance for oxygen
- FIo2, fraction of inspired oxygen
- HFpEF
- HFpEF, heart failure with preserved ejection fraction
- MVC, maximal voluntary contraction force
- NT-proBNP, N-terminal pro–brain natriuretic peptide
- Po2, partial pressure of oxygen
- Vo2, oxygen consumption
- adiposity
- aerobic capacity
- exercise
- oxygen transport
- ΔAVo2, arteriovenous oxygen content difference
Collapse
Affiliation(s)
- Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth A Proto
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy A Mazurek
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stuart B Prenner
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raymond R Townsend
- Division of Nephrology/Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel P Kelly
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoltan Arany
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas
| | - Peter D Wagner
- Division of Pulmonary Medicine, University of California-San Diego, San Diego, California
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Banez MJ, Geluz MI, Chandra A, Hamdan T, Biswas OS, Bryan NS, Von Schwarz ER. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr Res 2020; 78:11-26. [PMID: 32428778 DOI: 10.1016/j.nutres.2020.03.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The potential benefits of supplemental nutrients and dietary interventions against cardiovascular morbidity and mortality have been extensively investigated throughout the years. Numerous supplements claim cardioprotection and reduction of cardiovascular risk factors, but the roles of many supplements have not been determined. In the vast number of supplements on the market asserting cardioprotective effects, only 3 have been thoroughly evaluated and consistently reported as effective by our clinic patients. They have used supplements such as fish oil, multivitamins, and calcium, but many had not known of the benefits of resveratrol, curcumin, and nitric oxide as supplements for improving cardiovascular health. The cardioprotective effects of these dietary supplements in both animal models and humans have been explored with proposed mechanisms of action mostly attributed to antioxidant and anti-inflammatory properties. Resveratrol is one of the most studied polyphenols with established cardiovascular benefits. Preclinical studies have demonstrated these effects exerted via improved inflammatory markers, atherogenic profile, glucose metabolism, and endothelial function and are further supported by clinical trials. Curcumin has a well-established anti-inflammatory role by regulating numerous transcription factors and cytokines linked to inflammation. Inflammation is an underlying pathology in cardiovascular diseases, rendering curcumin a potential therapeutic compound. Similarly, nitric oxide supplementation has demonstrated cardiovascular benefits by normalizing blood pressure; enhancing blood flow; and reducing inflammation, immune dysfunction, and oxidative stress. A comprehensive review was performed evaluating the cardioprotective effects of these 3 dietary supplements with hope to provide updated information, promote further awareness of these supplements, and inspire future studies on their effects on cardiovascular health.
Collapse
Affiliation(s)
- Melissa J Banez
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Matthew I Geluz
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Anjali Chandra
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Tesnim Hamdan
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Olivia S Biswas
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Nathan S Bryan
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030.
| | - Ernst R Von Schwarz
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| |
Collapse
|
22
|
Tickle PG, Hendrickse PW, Degens H, Egginton S. Impaired skeletal muscle performance as a consequence of random functional capillary rarefaction can be restored with overload-dependent angiogenesis. J Physiol 2020; 598:1187-1203. [PMID: 32012275 PMCID: PMC7154729 DOI: 10.1113/jp278975] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss of skeletal muscle capillaries is thought to contribute to a reduction in exercise tolerance, but the relative contribution of a compromised microcirculation with disease, in isolation of co-morbidities, to impaired muscle function is unknown. We therefore developed a novel method to randomly occlude capillaries in the rat hindlimb to mimic the capillary rarefaction observed in many conditions. We demonstrate that muscle fatigue resistance is closely coupled with functional microvascular density, independent of arterial blood flow, while disturbance of the microcirculation leads to long-term impairment of muscle function if left untreated. Mechanical stretch due to muscle overload causes a restoration of fatigue resistance via angiogenic remodelling. These observations highlight the importance of a healthy microcirculation and suggest that restoring impaired microvascular supply, regardless of disease co-morbidities, will assist recovery of exercise tolerance in a variety of conditions that limit quality of life. ABSTRACT To what extent microvascular rarefaction contributes to impaired skeletal muscle function remains unknown. Our understanding of whether pathological changes in the microcirculation can be reversed remains limited by a lack of basic physiological data in otherwise healthy tissue. The principal objectives here were to: (1) quantify the effect of random microvascular rarefaction on limb perfusion and muscle performance, and (2) determine if these changes could be reversed. We developed a novel protocol in rats whereby microspheres injected into the femoral artery allowed a unilateral reduction in functional capillary density in the extensor digitorum longus (EDL), and assessed acute and chronic effects on muscle function. Simultaneous bilateral EDL force and hindlimb blood flow measurements were made during electrical stimulation. Following functional capillary rarefaction there was an acute microsphere dose-dependent reduction in muscle fatigue resistance (P < 0.001), despite preserved femoral artery perfusion. Histological analysis of EDL samples taken from injected animals confirmed a positive correlation between the proportion of functional capillaries and fatigue resistance (P = 0.002). Such impaired performance persisted for at least 2 weeks (P = 0.016). Concomitant mechanical overload improved both perfused capillary density and fatigue resistance (P<0.05), confirming that the capacity for muscle remodelling was retained following chronic distributed ischaemia, and that the impact of capillary rarefaction could be alleviated. These results demonstrate that loss of functional capillaries is detrimental to muscle function, even in otherwise healthy tissue, independent of arterial perfusion. Restoration of muscle performance following a mechanical overload stimulus indicates that angiogenic treatments to alleviate microvascular rarefaction may be key to restoring exercise tolerance.
Collapse
Affiliation(s)
| | - Paul W Hendrickse
- Department of Life Sciences, Manchester Metropolitan University, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Lithuania
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Lithuania
| | | |
Collapse
|
23
|
Carrizzo A, Moltedo O, Damato A, Martinello K, Di Pietro P, Oliveti M, Acernese F, Giugliano G, Izzo R, Sommella E, Migliarino S, Piazza O, Izzo C, Virtuoso N, Strianese A, Trimarco V, Campiglia P, Fucile S, Puca A, Trimarco B, Vecchione C. New Nutraceutical Combination Reduces Blood Pressure and Improves Exercise Capacity in Hypertensive Patients Via a Nitric Oxide-Dependent Mechanism. J Am Heart Assoc 2020; 9:e014923. [PMID: 32078787 PMCID: PMC7335536 DOI: 10.1161/jaha.119.014923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background High blood pressure (BP) has long been recognized as a major health threat and, particularly, a major risk factor for stroke, cardiovascular disease, and end‐organ damage. However, the identification of a novel, alternative, integrative approach for the control of BP and cardiovascular protection is still needed. Methods and Results Sixty‐nine uncontrolled hypertension patients, aged 40 to 68 years, on antihypertensive medication were enrolled in 2 double‐blind studies. Forty‐five were randomized to placebo or a new nutraceutical combination named AkP05, and BP, endothelial function, and circulating nitric oxide were assessed before and at the end of 4 weeks of treatment. Twenty‐four patients were randomized to diuretic or AkP05 for 4 weeks and underwent a cardiopulmonary exercise test to evaluate the effects of AkP05 on functional capacity of the cardiovascular, pulmonary, and muscular systems. Vascular and molecular studies were undertaken on mice to characterize the action of the single compounds contained in the AkP05 nutraceutical combination. AkP05 supplementation reduced BP, improved endothelial function, and increased nitric oxide release; cardiopulmonary exercise test revealed that AkP05 increased maximum O2 uptake, stress tolerance, and maximal power output. In mice, AkP05 reduced BP and improved endothelial function, evoking increased nitric oxide release through the PKCα/Akt/endothelial nitric oxide synthase pathway and reducing reactive oxygen species production via NADPH‐oxidase inhibition. These effects were mediated by synergism of the single compounds of AkP05. Conclusions This is the first study reporting positive effects of a nutraceutical combination on the vasculature and exercise tolerance in treated hypertensive patients. Our findings suggest that AkP05 may be used as an adjunct for the improvement of cardiovascular protection and to better control BP in uncontrolled hypertension.
Collapse
Affiliation(s)
| | | | | | | | - Paola Di Pietro
- Department of Medicine and Surgery University of Salerno Baronissi Italy
| | - Marco Oliveti
- Department of Medicine and Surgery University of Salerno Baronissi Italy
| | | | - Giuseppe Giugliano
- Department of Advanced Biomedical Sciences University Federico II of Naples Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences University Federico II of Naples Italy
| | | | - Serena Migliarino
- Department of Clinical and Molecular Medicine School of Medicine and Psychology Sapienza University of Rome Italy
| | - Ornella Piazza
- Department of Medicine and Surgery University of Salerno Baronissi Italy
| | - Carmine Izzo
- Department of Medicine and Surgery University of Salerno Baronissi Italy
| | - Nicola Virtuoso
- Department of Cardiovascular Medicine A.O.U. Federico II Naples Italy
| | - Andrea Strianese
- Department of Medicine and Surgery University of Salerno Baronissi Italy
| | - Valentina Trimarco
- Department of Advanced Biomedical Sciences Federico II University Hospital Naples Italy
| | | | - Sergio Fucile
- IRCCS Neuromed Pozzilli Italy.,Department of Physiology and Pharmacology Sapienza University of Rome Italy
| | - Annibale Puca
- Department of Medicine and Surgery University of Salerno Baronissi Italy.,Cardiovascular Research Unit IRCCS MultiMedica Milan Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences University Federico II of Naples Italy
| | - Carmine Vecchione
- IRCCS Neuromed Pozzilli Italy.,Department of Medicine and Surgery University of Salerno Baronissi Italy
| |
Collapse
|
24
|
Abstract
Nitrite, an anion produced from the oxidative breakdown of nitric oxide (NO), has traditionally been viewed as an inert molecule. However, this dogma has been challenged with the findings that nitrite can be readily reduced to NO under pathological conditions, hence representing a physiologically relevant storage reservoir of NO either in the blood or tissues. Nitrite administration has been demonstrated to improve myocardial function in subjects with heart failure and to lower the blood pressure in hypertensive subjects. Thus, extensive amount of work has since been carried out to investigate the therapeutic potential of nitrite in treating cardiovascular diseases, especially hypertension. Studies done on several animal models of hypertension have demonstrated the efficacy of nitrite in preventing and ameliorating the pathological changes associated with the disease. This brief review of the current findings aims to re-evaluate the use of nitrite for the treatment of hypertension and in particular to highlight its role in improving endothelial function.
Collapse
Affiliation(s)
- Wei Chih Ling
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor; and
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Abstract
Heart failure (HF) is a clinical syndrome of diverse etiologies and can be associated with preserved, reduced, or mid-range ejection fraction (EF). In the community, heart failure with preserved ejection fraction (HFpEF) is emerging as the most common form of HF. There remains considerable uncertainty regarding its pathogenesis, diagnosis, and optimal therapeutic approach. Hypotheses have been advanced to explain the underlying pathophysiology responsible for HFpEF, but to date, no specific therapy based on these hypotheses has been proven to improve outcomes in HFpEF. We provide a clinically focused review of the epidemiology, clinical presentation, diagnostic approach, pathophysiology, and treatment of HFpEF.
Collapse
Affiliation(s)
- James D Gladden
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, Minnesota 55905; , ,
| | - Antoine H Chaanine
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, Minnesota 55905; , ,
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, Minnesota 55905; , ,
| |
Collapse
|
26
|
Eisman AS, Shah RV, Dhakal BP, Pappagianopoulos PP, Wooster L, Bailey C, Cunningham TF, Hardin KM, Baggish AL, Ho JE, Malhotra R, Lewis GD. Pulmonary Capillary Wedge Pressure Patterns During Exercise Predict Exercise Capacity and Incident Heart Failure. Circ Heart Fail 2019; 11:e004750. [PMID: 29695381 DOI: 10.1161/circheartfailure.117.004750] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Single measurements of left ventricular filling pressure at rest lack sensitivity for identifying heart failure with preserved ejection fraction (HFpEF) in patients with dyspnea on exertion. We hypothesized that exercise hemodynamic measurements (ie, changes in pulmonary capillary wedge pressure [PCWP] indexed to cardiac output [CO]) may more sensitively differentiate HFpEF and non-HFpEF disease states, reflect aerobic capacity, and forecast heart failure outcomes in individuals with normal PCWP at rest. METHODS AND RESULTS We studied 175 patients referred for cardiopulmonary exercise testing with hemodynamic monitoring: controls (n=33), HFpEF with resting PCWP≥15 mm Hg (n=32), and patients with dyspnea on exertion with normal resting PCWP and left ventricular ejection fraction (DOE-nlrW; n=110). Across 1835 paired PCWP-CO measurements throughout exercise, we used regression techniques to define normative bounds of "PCWP/CO slope" in controls and tested the association of PCWP/CO slope with exercise capacity and composite cardiac outcomes (defined as cardiac death, incident resting PCWP elevation, or heart failure hospitalization) in the DOE-nlrW group. Relative to controls (PCWP/CO slope, 1.2±0.4 mm Hg/L/min), patients with HFpEF had a PCWP/CO slope of 3.4±1.9 mm Hg/L/min. We used a threshold (2 SD above the mean in controls) of 2 mm Hg/L/min to define abnormal. PCWP/CO slope >2 in DOE-nlrW patients was common (n=45/110) and was associated with reduced peak Vo2 (P<0.001) and adverse cardiac outcomes after adjustment for age, sex, and body mass index (hazard ratio, 3.47; P=0.03) at a median 5.3-year follow-up. CONCLUSIONS Elevated PCWP/CO slope during exercise (>2 mm Hg/L/min) is common in DOE-nlrW and predicts exercise capacity and heart failure outcomes. These findings suggest that current definitions of HFpEF based on single measures during rest are insufficient and that assessment of exercise PCWP/CO slope may refine early HFpEF diagnosis.
Collapse
Affiliation(s)
- Aaron S Eisman
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ravi V Shah
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Bishnu P Dhakal
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Paul P Pappagianopoulos
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Luke Wooster
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Cole Bailey
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Thomas F Cunningham
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kathryn M Hardin
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Aaron L Baggish
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jennifer E Ho
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rajeev Malhotra
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregory D Lewis
- Cardiology Division and the Pulmonary and Critical Care Unit of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
27
|
Poole DC. Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 2019; 127:1012-1033. [PMID: 31095460 DOI: 10.1152/japplphysiol.00013.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review strikes at the very heart of how the microcirculation functions to facilitate blood-tissue oxygen, substrate, and metabolite fluxes in skeletal muscle. Contemporary evidence, marshalled from animals and humans using the latest techniques, challenges iconic perspectives that have changed little over the past century. Those perspectives include the following: the presence of contractile or collapsible capillaries in muscle, unitary control by precapillary sphincters, capillary recruitment at the onset of contractions, and the notion of capillary-to-mitochondrial diffusion distances as limiting O2 delivery. Today a wealth of physiological, morphological, and intravital microscopy evidence presents a completely different picture of microcirculatory control. Specifically, capillary red blood cell (RBC) and plasma flux is controlled primarily at the arteriolar level with most capillaries, in healthy muscle, supporting at least some flow at rest. In healthy skeletal muscle, this permits substrate access (whether carried in RBCs or plasma) to a prodigious total capillary surface area. Pathologies such as heart failure or diabetes decrease access to that exchange surface by reducing the proportion of flowing capillaries at rest and during exercise. Capillary morphology and function vary disparately among tissues. The contemporary model of capillary function explains how, following the onset of exercise, muscle O2 uptake kinetics can be extremely fast in health but slowed in heart failure and diabetes impairing contractile function and exercise tolerance. It is argued that adoption of this model is fundamental for understanding microvascular function and dysfunction and, as such, to the design and evaluation of effective therapeutic strategies to improve exercise tolerance and decrease morbidity and mortality in disease.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
28
|
Affiliation(s)
- Kavita Sharma
- From the Division of Cardiology, Department of Medicine and Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - David A Kass
- From the Division of Cardiology, Department of Medicine and Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
29
|
Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V, Lancellotti P, Lekakis J, Mohty D, Nihoyannopoulos P, Parissis J, Rizzoni D, Ruschitzka F, Seferovic P, Stabile E, Tousoulis D, Vinereanu D, Vlachopoulos C, Vlastos D, Xaplanteris P, Zimlichman R, Metra M. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail 2019; 21:402-424. [PMID: 30859669 DOI: 10.1002/ejhf.1436] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Ventricular-arterial coupling (VAC) plays a major role in the physiology of cardiac and aortic mechanics, as well as in the pathophysiology of cardiac disease. VAC assessment possesses independent diagnostic and prognostic value and may be used to refine riskstratification and monitor therapeutic interventions. Traditionally, VAC is assessed by the non-invasive measurement of the ratio of arterial (Ea) to ventricular end-systolic elastance (Ees). With disease progression, both Ea and Ees may become abnormal and the Ea/Ees ratio may approximate its normal values. Therefore, the measurement of each component of this ratio or of novel more sensitive markers of myocardial (e.g. global longitudinal strain) and arterial function (e.g. pulse wave velocity) may better characterize VAC. In valvular heart disease, systemic arterial compliance and valvulo-arterial impedance have an established diagnostic and prognostic value and may monitor the effects of valve replacement on vascular and cardiac function. Treatment guided to improve VAC through improvement of both or each one of its components may delay incidence of heart failure and possibly improve prognosis in heart failure. In this consensus document, we describe the pathophysiology, the methods of assessment as well as the clinical implications of VAC in cardiac diseases and heart failure. Finally, we focus on interventions that may improve VAC and thus modify prognosis.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, Limoges, France.,Inserm 1094, Limoges School of Medicine, Limoges, France
| | - Jacque Blacher
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Dirk L Brutsaert
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Julio A Chirinos
- Perelman School of Medicine and Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco De Carlo
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU SantTilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - John Lekakis
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dania Mohty
- Department of Cardiology, Dupuytren University Hospital, Limoges, France.,Inserm 1094, Limoges School of Medicine, Limoges, France
| | - Petros Nihoyannopoulos
- NHLI - National Heart and Lung Institute, Imperial College London, London, UK.,1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - John Parissis
- Heart Failure Unit, School of Medicine and Department of Cardiology, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital, Zurich, University Heart Center, Zurich, Switzerland
| | - Petar Seferovic
- Cardiology Department, Clinical Centre Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eugenio Stabile
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dragos Vinereanu
- University of Medicine and Pharmacy 'Carol Davila', and Department of Cardiology, University and Emergency Hospital, Bucharest, Romania
| | - Charalambos Vlachopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Vlastos
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Xaplanteris
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Reuven Zimlichman
- Department of Medicine and Hypertension Institute, Brunner Institute for Cardiovascular Research, Sackler Faculty of Medicine, The E. Wolfson Medical Center, Institute for Quality in Medicine, Israeli Medical Association, Tel Aviv University, Tel Aviv, Israel
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
30
|
Tamargo J, Caballero R, Delpón E. New drugs in preclinical and early stage clinical development in the treatment of heart failure. Expert Opin Investig Drugs 2018; 28:51-71. [DOI: 10.1080/13543784.2019.1551357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, CIBERCV, Madrid,
Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, CIBERCV, Madrid,
Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, CIBERCV, Madrid,
Spain
| |
Collapse
|
31
|
Borlaug BA, Anstrom KJ, Lewis GD, Shah SJ, Levine JA, Koepp GA, Givertz MM, Felker GM, LeWinter MM, Mann DL, Margulies KB, Smith AL, Tang WHW, Whellan DJ, Chen HH, Davila-Roman VG, McNulty S, Desvigne-Nickens P, Hernandez AF, Braunwald E, Redfield MM. Effect of Inorganic Nitrite vs Placebo on Exercise Capacity Among Patients With Heart Failure With Preserved Ejection Fraction: The INDIE-HFpEF Randomized Clinical Trial. JAMA 2018; 320:1764-1773. [PMID: 30398602 PMCID: PMC6248105 DOI: 10.1001/jama.2018.14852] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE There are few effective treatments for heart failure with preserved ejection fraction (HFpEF). Short-term administration of inorganic nitrite or nitrate preparations has been shown to enhance nitric oxide signaling, which may improve aerobic capacity in HFpEF. OBJECTIVE To determine the effect of 4 weeks' administration of inhaled, nebulized inorganic nitrite on exercise capacity in HFpEF. DESIGN, SETTING, AND PARTICIPANTS Multicenter, double-blind, placebo-controlled, 2-treatment, crossover trial of 105 patients with HFpEF. Participants were enrolled from July 22, 2016, to September 12, 2017, at 17 US sites, with final date of follow-up of January 2, 2018. INTERVENTIONS Inorganic nitrite or placebo administered via micronebulizer device. During each 6-week phase of the crossover study, participants received no study drug for 2 weeks (baseline/washout) followed by study drug (nitrite or placebo) at 46 mg 3 times a day for 1 week followed by 80 mg 3 times a day for 3 weeks. MAIN OUTCOMES AND MEASURES The primary end point was peak oxygen consumption (mL/kg/min). Secondary end points included daily activity levels assessed by accelerometry, health status as assessed by the Kansas City Cardiomyopathy Questionnaire (score range, 0-100, with higher scores reflecting better quality of life), functional class, cardiac filling pressures assessed by echocardiography, N-terminal fragment of the prohormone brain natriuretic peptide levels, other exercise indices, adverse events, and tolerability. Outcomes were assessed after treatment for 4 weeks. RESULTS Among 105 patients who were randomized (median age, 68 years; 56% women), 98 (93%) completed the trial. During the nitrite phase, there was no significant difference in mean peak oxygen consumption as compared with the placebo phase (13.5 vs 13.7 mL/kg/min; difference, -0.20 [95% CI, -0.56 to 0.16]; P = .27). There were no significant between-treatment phase differences in daily activity levels (5497 vs 5503 accelerometry units; difference, -15 [95% CI, -264 to 234]; P = .91), Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (62.6 vs 61.9; difference, 1.1 [95% CI, -1.4 to 3.5]; P = .39), functional class (2.5 vs 2.5; difference, 0.1 [95% CI, -0.1 to 0.2]; P = .43), echocardiographic E/e' ratio (16.4 vs 16.6; difference, 0.1 [95% CI, -1.2 to 1.3]; P = .93), or N-terminal fragment of the prohormone brain natriuretic peptide levels (520 vs 533 pg/mL; difference, 11 [95% CI, -53 to 75]; P = .74). Worsening heart failure occurred in 3 participants (2.9%) during the nitrite phase and 8 (7.6%) during the placebo phase. CONCLUSIONS AND RELEVANCE Among patients with HFpEF, administration of inhaled inorganic nitrite for 4 weeks, compared with placebo, did not result in significant improvement in exercise capacity. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02742129.
Collapse
Affiliation(s)
| | - Kevin J. Anstrom
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | | | - Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - Michael M. Givertz
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - G. Michael Felker
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | | | | | | | - Andrew L. Smith
- Emory School of Medicine, Emory University, Atlanta, Georgia
| | | | - David J. Whellan
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Steven McNulty
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | | | - Adrian F. Hernandez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Eugene Braunwald
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
32
|
|
33
|
Ward JL, Craig JC, Liu Y, Vidoni ED, Maletsky R, Poole DC, Billinger SA. Effect of healthy aging and sex on middle cerebral artery blood velocity dynamics during moderate-intensity exercise. Am J Physiol Heart Circ Physiol 2018; 315:H492-H501. [PMID: 29775407 PMCID: PMC6172645 DOI: 10.1152/ajpheart.00129.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blood velocity measured in the middle cerebral artery (MCAV) increases with finite kinetics during moderate-intensity exercise, and the amplitude and dynamics of the response provide invaluable insights into the controlling mechanisms. The MCAV response after exercise onset is well fit to an exponential model in young individuals but remains to be characterized in their older counterparts. The responsiveness of vasomotor control degrades with advancing age, especially in skeletal muscle. We tested the hypothesis that older subjects would evince a slower and reduced MCAV response to exercise. Twenty-nine healthy young (25 ± 1 yr old) and older (69 ± 1 yr old) adults each performed a rapid transition from rest to moderate-intensity exercise on a recumbent stepper. Resting MCAV was lower in older than young subjects (47 ± 2 vs. 64 ± 3 cm/s, P < 0.001), and amplitude from rest to steady-state exercise was lower in older than young subjects (12 ± 2 vs. 18 ± 3 cm/s, P = 0.04), even after subjects were matched for work rate. As hypothesized, the time constant was significantly longer (slower) in the older than young subjects (51 ± 10 vs. 31 ± 4 s, P = 0.03), driven primarily by older women. Neither age-related differences in fitness, end-tidal CO2, nor blood pressure could account for this effect. Thus, MCAV kinetic analyses revealed a marked impairment in the cerebrovascular response to exercise in older individuals. Kinetic analysis offers a novel approach to evaluate the efficacy of therapeutic interventions for improving cerebrovascular function in elderly and patient populations. NEW & NOTEWORTHY Understanding the dynamic cerebrovascular response to exercise has provided insights into sex-related cerebrovascular control mechanisms throughout the aging process. We report novel differences in the kinetics response of cerebrovascular blood velocity after the onset of moderate-intensity exercise. The exponential increase in brain blood flow from rest to exercise revealed that 1) the kinetics profile of the older group was blunted compared with their young counterparts and 2) the older women demonstrated a slowed response.
Collapse
Affiliation(s)
- Jaimie L Ward
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| | - Jesse C Craig
- Department of Kinesiology and Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Yumei Liu
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
| | | | - David C Poole
- Department of Kinesiology and Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
34
|
Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc 2018; 77:112-123. [DOI: 10.1017/s0029665118000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CVD are characterised by a multi-factorial pathogenesis. Key pathogenetic steps in the development of CVD are the occurrence of endothelial dysfunction and formation of atherosclerotic lesions. Reduced nitric oxide (NO) bioavailability is a primary event in the initiation of the atherosclerotic cascade. NO is a free radical with multiple physiological functions including the regulation of vascular resistance, coagulation, immunity and oxidative metabolism. The synthesis of NO proceeds via two distinct pathways identified as enzymatic and non-enzymatic. The former involves the conversion of arginine into NO by the NO synthases, whilst the latter comprises a two-step reducing process converting inorganic nitrate $({\rm NO}_3^ - )$ into nitrite and subsequently NO.Inorganic ${\rm NO}_3^ - $ is present in water and food, particularly beetroot and green leafy vegetables. Several investigations have therefore used the non-enzymatic NO pathway as a target for nutritional supplementation (${\rm NO}_3^ - $ salts) or dietary interventions (high-${\rm NO}_3^ - $ foods) to increase NO bioavailability and impact on cardiovascular outcomes. Some studies have reported positive effects of dietary ${\rm NO}_3^ - $ on systolic blood pressure and endothelial function in patients with hypertension and chronic heart failure. Nevertheless, results have been inconsistent and the size of the effect appears to be declining in older individuals. Additionally, there is a paucity of studies for disorders such as diabetes, CHD and chronic kidney failure. Thus, whilst dietary ${\rm NO}_3^ - $ supplementation could represent an effective and viable strategy for the primary and secondary prevention of age-related cardiovascular and metabolic diseases, more large-scale, robust studies are awaited to confirm or refute this notion.
Collapse
|
35
|
Rasica L, Porcelli S, Marzorati M, Salvadego D, Vezzoli A, Agosti F, De Col A, Tringali G, Jones AM, Sartorio A, Grassi B. Ergogenic effects of beetroot juice supplementation during severe-intensity exercise in obese adolescents. Am J Physiol Regul Integr Comp Physiol 2018; 315:R453-R460. [PMID: 29693429 DOI: 10.1152/ajpregu.00017.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous studies showed a higher O2 cost of exercise, and therefore, a reduced exercise tolerance in patients with obesity during constant work rate (CWR) exercise compared with healthy subjects. Among the ergogenic effects of dietary nitrate ([Formula: see text]) supplementation in sedentary healthy subjects, a reduced O2 cost and enhanced exercise tolerance have often been demonstrated. The aim of this study was to evaluate the effects of beetroot juice (BR) supplementation, rich in [Formula: see text], on physiological variables associated with exercise tolerance in adolescents with obesity. In a double-blind, randomized crossover study, 10 adolescents with obesity (8 girls, 2 boys; age = 16 ± 1 yr; body mass index = 35.2 ± 5.0 kg/m2) were tested after 6 days of supplementation with BR (5 mmol [Formula: see text] per day) or placebo (PLA). Following each supplementation period, patients carried out two repetitions of 6-min moderate-intensity CWR exercise and one severe-intensity CWR exercise until exhaustion. Plasma [Formula: see text] concentration was significantly higher in BR versus PLA (108 ± 37 vs. 15 ± 5 μM, P < 0.0001). The O2 cost of moderate-intensity exercise was not different in BR versus PLA (13.3 ± 1.7 vs. 12.9 ± 1.1 ml·min-1·W-1, P = 0.517). During severe-intensity exercise, signs of a reduced amplitude of the O2 uptake slow component were observed in BR, in association with a significantly longer time to exhaustion (561 ± 198 s in BR vs. 457 ± 101 s in PLA, P = 0.0143). In obese adolescents, short-term dietary [Formula: see text] supplementation is effective in improving exercise tolerance during severe-intensity exercise. This may prove to be useful in counteracting early fatigue and reduced physical activity in this at-risk population.
Collapse
Affiliation(s)
- Letizia Rasica
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy.,Department of Biomedical Sciences for Health, University of Milan , Milan , Italy
| | - Simone Porcelli
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Mauro Marzorati
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Desy Salvadego
- Department of Medicine, University of Udine , Udine , Italy
| | - Alessandra Vezzoli
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Fiorenza Agosti
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan and Piancavallo, VB, Italy
| | - Alessandra De Col
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan and Piancavallo, VB, Italy
| | - Gabriella Tringali
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan and Piancavallo, VB, Italy
| | - Andrew M Jones
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter , Exeter , United Kingdom
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan and Piancavallo, VB, Italy.,Division of Metabolic Diseases and Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Piancavallo, VB, Italy
| | - Bruno Grassi
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy.,Department of Medicine, University of Udine , Udine , Italy
| |
Collapse
|
36
|
Woessner MN, Levinger I, Neil C, Smith C, Allen JD. Effects of Dietary Inorganic Nitrate Supplementation on Exercise Performance in Patients With Heart Failure: Protocol for a Randomized, Placebo-Controlled, Cross-Over Trial. JMIR Res Protoc 2018; 7:e86. [PMID: 29625952 PMCID: PMC5910532 DOI: 10.2196/resprot.8865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Background Chronic heart failure is characterized by an inability of the heart to pump enough blood to meet the demands of the body, resulting in the hallmark symptom of exercise intolerance. Chronic underperfusion of the peripheral tissues and impaired nitric oxide bioavailability have been implicated as contributors to the decrease in exercise capacity in these patients. nitric oxide bioavailability has been identified as an important mediator of exercise tolerance in healthy individuals, but there are limited studies examining the effects in patients with chronic heart failure. Objective The proposed trial is designed to determine the effects of chronic inorganic nitrate supplementation on exercise tolerance in both patients with heart failure preserved ejection fraction (HFpEF) and heart failure reduced ejection fraction (HFrEF) and to determine whether there are any differential responses between the 2 cohorts. A secondary objective is to provide mechanistic insights into the 2 heart failure groups’ exercise responses to the nitrate supplementation. Methods Patients with chronic heart failure (15=HFpEF and 15=HFrEF) aged 40 to 85 years will be recruited. Following an initial screen cardiopulmonary exercise test, participants will be randomly allocated in a double-blind fashion to consume either a nitrate-rich beetroot juice (16 mmol nitrate/day) or a nitrate-depleted placebo (for 5 days). Participants will continue daily dosing until the completion of the 4 testing visits (maximal cardiopulmonary exercise test, submaximal exercise test with echocardiography, vascular function assessment, and vastus lateralis muscle biopsy). There will then be a 2-week washout period after which the participants will cross over to the other treatment and complete the same 4 testing visits. Results This study is funded by National Heart Foundation of Australia and Victoria University. Enrolment has commenced and the data collection is expected to be completed in mid 2018. The initial results are expected to be submitted for publication by the end of 2018. Conclusions If inorganic nitrate supplementation can improve exercise tolerance in patients with chronic heart failure, it has the potential to aid in further refining the treatment of patients in this population. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12615000906550; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368912 (Archived by WebCite at http://www.webcitation.org/6xymLMiFK)
Collapse
Affiliation(s)
- Mary N Woessner
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Western Center for Health and Research Education, Victoria University, St Albans, Australia
| | - Itamar Levinger
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Christopher Neil
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine-Western Health, University of Melbourne, Melbourne, Australia
| | - Cassandra Smith
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Jason D Allen
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Western Center for Health and Research Education, Victoria University, St Albans, Australia.,Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
37
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|
38
|
Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol 2018; 102:1-10. [DOI: 10.1016/j.vph.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/08/2023]
|
39
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
40
|
Ho XL, Loke WM. Dietary Plant Sterols Supplementation Increases In Vivo Nitrite and Nitrate Production in Healthy Adults: A Randomized, Controlled Study. J Food Sci 2017; 82:1750-1756. [PMID: 28708316 PMCID: PMC5601184 DOI: 10.1111/1750-3841.13752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
Abstract
A randomized, double-blinded, placebo-controlled and crossover study was conducted to simultaneously measure the effects, 3 h after consumption and after 4-wk daily exposure to plant sterols-enriched food product, on in vivo nitrite and nitrate production in healthy adults. Eighteen healthy participants (67% female, 35.3 [mean] ± 9.5 [SD] years, mean body mass index 22.8 kg/m2 ) received 2 soy milk (20 g) treatments daily: placebo and one containing 2.0 g free plant sterols equivalent of their palmityl esters (β-sitosterol, 55%; campesterol, 29%; and stigmasterol, 23%). Nitrite and nitrate concentrations were measured in the blood plasma and urine, using stable isotope-labeled gas chromatography-mass spectrometry. L-arginine and asymmetric dimethylarginine concentrations in blood serum were measured using commercially available enzyme immunoassays. Nitrite and nitrate concentrations in blood plasma (nitrite 5.83 ± 0.50 vs. 4.52 ± 0.27; nitrate 15.78 ± 0.96 vs. 13.43 ± 0.81 μmol/L) and urine (nitrite 1.12 ± 0.22 vs. 0.92 ± 0.36, nitrate 12.23 ± 1.15 vs. 9.71 ± 2.04 μmol/L) were significantly elevated after 4-wk plant sterols supplementation Placebo and 3-h treatments did not affect the blood plasma and urinary concentrations of nitrite and nitrate. Circulating levels of L-arginine and asymmetric dimethylarginine were unchanged in the placebo and treatment arms. Total plant sterols, β-Sitosterol, campesterol, and stigmasterol concentrations were significantly elevated after 4-wk treatments compared to the placebo and 3-h treatments. Blood plasma nitrite and nitrate concentrations correlated significantly with the plasma total and specific plant sterol concentrations. Our results suggest that dietary plant sterols, in the combination used, can upregulate nitrite, and nitrate production in vivo.
Collapse
Affiliation(s)
- Xing Lin Ho
- Centre for Functional Foods & Human Nutrition, School of Chemical & Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Ave 8, Singapore, 569830, Singapore.,Food Science & Nutrition Group, School of Chemical & Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Ave 8, Singapore, 569830, Singapore
| | - Wai Mun Loke
- Centre for Functional Foods & Human Nutrition, School of Chemical & Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Ave 8, Singapore, 569830, Singapore.,Food Science & Nutrition Group, School of Chemical & Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Ave 8, Singapore, 569830, Singapore
| |
Collapse
|
41
|
Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA. Biological Phenotypes of Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2017; 70:2186-2200. [PMID: 29050567 DOI: 10.1016/j.jacc.2017.09.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) involves multiple pathophysiological mechanisms, which result in the heterogeneous phenotypes that are evident clinically, and which have potentially confounded previous HFpEF trials. A greater understanding of the in vivo human processes involved, and in particular, which are the causes and which are the downstream effects, may allow the syndrome of HFpEF to be distilled into distinct diagnoses based on the underlying biology. From this, specific interventions can follow, targeting individuals identified on the basis of their biological phenotype. This review describes the biological phenotypes of HFpEF and therapeutic interventions aimed at targeting these phenotypes.
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon G Williams
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Colin Cunnington
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, United Kingdom
| | - Fozia Ahmed
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, United Kingdom
| | | | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
42
|
Poole DC, Richardson RS, Haykowsky MJ, Hirai DM, Musch TI. Exercise limitations in heart failure with reduced and preserved ejection fraction. J Appl Physiol (1985) 2017; 124:208-224. [PMID: 29051336 DOI: 10.1152/japplphysiol.00747.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hallmark symptom of chronic heart failure (HF) is severe exercise intolerance. Impaired perfusive and diffusive O2 transport are two of the major determinants of reduced physical capacity and lowered maximal O2 uptake in patients with HF. It has now become evident that this syndrome manifests at least two different phenotypic variations: heart failure with preserved or reduced ejection fraction (HFpEF and HFrEF, respectively). Unlike HFrEF, however, there is currently limited understanding of HFpEF pathophysiology, leading to a lack of effective pharmacological treatments for this subpopulation. This brief review focuses on the disturbances within the O2 transport pathway resulting in limited exercise capacity in both HFpEF and HFrEF. Evidence from human and animal research reveals HF-induced impairments in both perfusive and diffusive O2 conductances identifying potential targets for clinical intervention. Specifically, utilization of different experimental approaches in humans (e.g., small vs. large muscle mass exercise) and animals (e.g., intravital microscopy and phosphorescence quenching) has provided important clues to elucidating these pathophysiological mechanisms. Adaptations within the skeletal muscle O2 delivery-utilization system following established and emerging therapies (e.g., exercise training and inorganic nitrate supplementation, respectively) are discussed. Resolution of the underlying mechanisms of skeletal muscle dysfunction and exercise intolerance is essential for the development and refinement of the most effective treatments for patients with HF.
Collapse
|
43
|
Smith JR, Ferguson SK, Hageman KS, Harms CA, Poole DC, Musch TI. Dietary nitrate supplementation opposes the elevated diaphragm blood flow in chronic heart failure during submaximal exercise. Respir Physiol Neurobiol 2017; 247:140-145. [PMID: 29037770 DOI: 10.1016/j.resp.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 02/05/2023]
Abstract
Chronic heart failure (CHF) results in a greater cost of breathing and necessitates an elevated diaphragm blood flow (BF). Dietary nitrate (NO3‾) supplementation lowers the cost of exercise. We hypothesized that dietary NO3‾ supplementation would attenuate the CHF-induced greater cost of breathing and thus the heightened diaphragm BF during exercise. CHF rats received either 5days of NO3‾-rich beetroot (BR) juice (CHF+BR, n=10) or a placebo (CHF, n=10). Respiratory muscle BFs (radiolabeled microspheres) were measured at rest and during submaximal exercise (20m/min, 5% grade). Infarcted left ventricular area and normalized lung weight were not significantly different between groups. During submaximal exercise, diaphragm BF was markedly lower for CHF+BR than CHF (CHF+BR: 195±28; CHF: 309±71mL/min/100g, p=0.04). The change in diaphragm BF from rest to exercise was less (p=0.047) for CHF+BR than CHF. These findings demonstrate that dietary NO3‾ supplementation reduces the elevated diaphragm BF during exercise in CHF rats thus providing additional support for this therapeutic intervention in CHF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Scott K Ferguson
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Craig A Harms
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
44
|
Van Iterson EH, Olson TP. Therapeutic Targets for the Multi-system Pathophysiology of Heart Failure: Exercise Training. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:87. [DOI: 10.1007/s11936-017-0585-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Coggan AR, Broadstreet SR, Mahmood K, Mikhalkova D, Madigan M, Bole I, Park S, Leibowitz JL, Kadkhodayan A, Thomas DP, Thies D, Peterson LR. Dietary Nitrate Increases VO 2peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Ejection Fraction. J Card Fail 2017; 24:65-73. [PMID: 28916479 DOI: 10.1016/j.cardfail.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with heart failure with reduced ejection fraction (HFrEF) exhibit lower efficiency, dyspnea, and diminished peak oxygen uptake (VO2peak) during exercise. Dietary nitrate (NO3-), a source of nitric oxide (NO), has improved these measures in some studies of other populations. We determined the effects of acute NO3- ingestion on exercise responses in 8 patients with HFrEF using a randomized, double-blind, placebo-controlled, crossover design. METHODS AND RESULTS Plasma NO3-, nitrite (NO2-), and breath NO were measured at multiple time points and respiratory gas exchange was determined during exercise after ingestion of beetroot juice containing or devoid of 11.2 mmol of NO3-. NO3- intake increased (P < .05-0.001) plasma NO3- and NO2- and breath NO by 1469 ± 245%, 105 ± 34%, and 60 ± 18%, respectively. Efficiency and ventilation during exercise were unchanged. However, NO3- ingestion increased (P < .05) VO2peak by 8 ± 2% (ie, from 21.4 ± 2.1 to 23.0 ± 2.3 mL.min-1.kg-1). Time to fatigue improved (P < .05) by 7 ± 3 % (ie, from 582 ± 84 to 612 ± 81 seconds). CONCLUSIONS Acute dietary NO3- intake increases VO2peak and performance in patients with HFrEF. These data, in conjunction with our recent data demonstrating that dietary NO3- also improves muscle contractile function, suggest that dietary NO3- supplementation may be a valuable means of enhancing exercise capacity in this population.
Collapse
Affiliation(s)
- Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana; Department of Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Seth R Broadstreet
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Kiran Mahmood
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deana Mikhalkova
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Madigan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Indra Bole
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Soo Park
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Leibowitz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ana Kadkhodayan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deepak P Thomas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Reddy YNV, Lewis GD, Shah SJ, LeWinter M, Semigran M, Davila-Roman VG, Anstrom K, Hernandez A, Braunwald E, Redfield MM, Borlaug BA. INDIE-HFpEF (Inorganic Nitrite Delivery to Improve Exercise Capacity in Heart Failure With Preserved Ejection Fraction): Rationale and Design. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003862. [PMID: 28476756 DOI: 10.1161/circheartfailure.117.003862] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Approximately half of patients with heart failure have preserved ejection fraction. There is no proven treatment that improves outcome. The pathophysiology of heart failure with preserved ejection fraction is complex and includes left ventricular systolic and diastolic dysfunction, pulmonary vascular disease, endothelial dysfunction, and peripheral abnormalities. Multiple lines of evidence point to impaired nitric oxide (NO)-cGMP bioavailability as playing a central role in each of these abnormalities. In contrast to traditional organic nitrate therapies, an alternative strategy to restore NO-cGMP signaling is via inorganic nitrite. Inorganic nitrite, previously considered to be an inert byproduct of NO metabolism, functions as an important in vivo reservoir for NO generation, particularly under hypoxic and acidosis conditions. As such, inorganic nitrite becomes most active at times of greater need for NO signaling, as during exercise when left ventricular filling pressures and pulmonary artery pressures increase. Herein, we present the rationale and design for the INDIE-HFpEF trial (Inorganic Nitrite Delivery to Improve Exercise Capacity in Heart Failure with Preserved Ejection Fraction), which is a multicenter, randomized, double-blind, placebo-controlled cross-over study assessing the effect of inhaled inorganic nitrite on peak exercise capacity, conducted in the National Heart, Lung, and Blood Institute-sponsored Heart Failure Clinical Research Network. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02742129.
Collapse
Affiliation(s)
- Yogesh N V Reddy
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Gregory D Lewis
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Sanjiv J Shah
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Martin LeWinter
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Marc Semigran
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Victor G Davila-Roman
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Kevin Anstrom
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Adrian Hernandez
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Eugene Braunwald
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Margaret M Redfield
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Barry A Borlaug
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.).
| |
Collapse
|
47
|
Deep Phenotyping of Systemic Arterial Hemodynamics in HFpEF (Part 2): Clinical and Therapeutic Considerations. J Cardiovasc Transl Res 2017; 10:261-274. [PMID: 28401511 DOI: 10.1007/s12265-017-9736-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Multiple phase III trials over the last few decades have failed to demonstrate a clear benefit of various pharmacologic interventions in heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF). Therefore, a better understanding of its pathophysiology is important. An accompanying review describes key technical and physiologic aspects regarding the deep phenotyping of arterial hemodynamics in HFpEF. This review deals with the potential of this approach to enhance our clinical, translational, and therapeutic approach to HFpEF. Specifically, the role of arterial hemodynamics is discussed in relation to (1) the pathophysiology of left ventricular diastolic dysfunction, remodeling, and fibrosis, (2) impaired oxygen delivery to peripheral skeletal muscle, which affects peripheral oxygen extraction, (3) the frequent presence of comorbidities, such as renal failure and dementia in this population, and (4) the potential to enhance precision medicine approaches. A therapeutic approach to target arterial hemodynamic abnormalities that are prevalent in this population (particularly, with inorganic nitrate/nitrite) is also discussed.
Collapse
|
48
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
49
|
Abstract
Measures of interaction between the left ventricle (LV) and arterial system (ventricular-arterial coupling) are important but under-recognised cardiovascular phenotypes in heart failure. Ventriculo-arterial coupling is commonly assessed in the pressure-volume plane, using the ratio of effective arterial elastance (EA) to LV end-systolic elastance (EES) to provide information on ventricular-arterial system mechanical efficiency and performance when LV ejection fraction is abnormal. These analyses have significant limitations, such as neglecting systolic loading sequence, and are less informative in heart failure with preserved ejection fraction (HFpEF). EA is almost entirely dependent on vascular resistance and heart rate. Assessment of pulsatile arterial haemodynamics and time-resolved myocardial wall stress provide critical incremental physiological information and should be more widely utilised. Pulsatile arterial load represents a promising therapeutic target in HFpEF. Here, we review various approaches to assess ventricular-arterial interactions, and their pathophysiological and clinical implications in heart failure.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy Sweitzer
- Tucson and Arizona Sarver Heart Center, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|