1
|
Iqbal F, Lupieri A, Aikawa M, Aikawa E. Harnessing Single-Cell RNA Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:585-600. [PMID: 33327741 PMCID: PMC8105278 DOI: 10.1161/atvbaha.120.314776] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The transition of healthy arteries and cardiac valves into dense, cell-rich, calcified, and fibrotic tissues is driven by a complex interplay of both cellular and molecular mechanisms. Specific cell types in these cardiovascular tissues become activated following the exposure to systemic stimuli including circulating lipoproteins or inflammatory mediators. This activation induces multiple cascades of events where changes in cell phenotypes and activation of certain receptors may trigger multiple pathways and specific alterations to the transcriptome. Modifications to the transcriptome and proteome can give rise to pathological cell phenotypes and trigger mechanisms that exacerbate inflammation, proliferation, calcification, and recruitment of resident or distant cells. Accumulating evidence suggests that each cell type involved in vascular and valvular diseases is heterogeneous. Single-cell RNA sequencing is a transforming medical research tool that enables the profiling of the unique fingerprints at single-cell levels. Its applications have allowed the construction of cell atlases including the mammalian heart and tissue vasculature and the discovery of new cell types implicated in cardiovascular disease. Recent advances in single-cell RNA sequencing have facilitated the identification of novel resident cell populations that become activated during disease and has allowed tracing the transition of healthy cells into pathological phenotypes. Furthermore, single-cell RNA sequencing has permitted the characterization of heterogeneous cell subpopulations with unique genetic profiles in healthy and pathological cardiovascular tissues. In this review, we highlight the latest groundbreaking research that has improved our understanding of the pathological mechanisms of atherosclerosis and future directions for calcific aortic valve disease.
Collapse
Affiliation(s)
- Farwah Iqbal
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| |
Collapse
|
2
|
Tang J, Wang H, Huang X, Li F, Zhu H, Li Y, He L, Zhang H, Pu W, Liu K, Zhao H, Bentzon JF, Yu Y, Ji Y, Nie Y, Tian X, Zhang L, Gao D, Zhou B. Arterial Sca1 + Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell 2019; 26:81-96.e4. [PMID: 31883835 DOI: 10.1016/j.stem.2019.11.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
Abstract
Rapid regeneration of smooth muscle after vascular injury is essential for maintaining arterial function. The existence and putative roles of resident vascular stem cells (VSCs) in artery repair are controversial, and vessel regeneration is thought to be mediated by proliferative expansion of pre-existing smooth muscle cells (SMCs). Here, we performed cell fate mapping and single-cell RNA sequencing to identify Sca1+ VSCs in the adventitial layer of artery walls. After severe injury, Sca1+ VSCs migrate into the medial layer and generate de novo SMCs, which subsequently expand more efficiently compared with pre-existing smooth muscle. Genetic lineage tracing using dual recombinases distinguished a Sca1+PDGFRa+ VSC subpopulation that generates SMCs, and genetic ablation of Sca1+ VSCs or specific knockout of Yap1 in Sca1+ VSCs significantly impaired artery repair. These findings provide genetic evidence of a bona fide Sca1+ VSC population that produces SMCs and delineates their critical role in vessel repair.
Collapse
Affiliation(s)
- Juan Tang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haixiao Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Zhu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjuan Pu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kuo Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan Zhao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jacob Fog Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing 211100, China; The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Li Zhang
- The Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Dong Gao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|