1
|
Xiao D, Mi X, Wang Q, Chen S, Chen R, Zhao Y, Liu Y, Wei D. Advancements in manufacturing technologies in the small-diameter artificial blood vessels field. Biomed Mater 2025; 20:032005. [PMID: 40199337 DOI: 10.1088/1748-605x/adca7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Cardiovascular diseases (CVD) can cause narrowing or blockage in small diameter blood vessels (less than 6 millimeters in diameter). Bypass surgery, which involves replacing damaged native blood vessels, can address various CVD. Recent advancements in manufacturing techniques and the application of new materials have led to the creation of artificial blood vessels that more closely resemble native vessels. By combining different materials and manufacturing methods, it is possible to mimic the structure and function of native blood vessels. Surface coating technologies are also employed in the production of artificial blood vessels to replicate certain vascular functions, such as regulating thrombosis and dissolution. Although most products are not yet ready for clinical use, research and development in artificial blood vessels are progressing faster than ever before (figure1).
Collapse
Affiliation(s)
- Di Xiao
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xuelian Mi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiao Tong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, People's Republic of China
| | - Shaojun Chen
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rongtao Chen
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yongjie Zhao
- School of Clinical Medicine, Jining Medical University, 272013 Jining, Shandong, People's Republic of China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Dongmei Wei
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
- Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545001, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
2
|
Wu Y, Wang X, Song L, Zhao Z, Xia Y, Tang K, Wang H, Liu J, Wang Z. Tuning macrophage phenotype for enhancing patency rate and tissue regeneration of vascular grafts. Acta Biomater 2025:S1742-7061(25)00239-9. [PMID: 40158766 DOI: 10.1016/j.actbio.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Macrophages are primary immune cells that play a crucial role in tissue regeneration during the early stages of biomaterial implantation. They create a microenvironment that facilitates cell infiltration, angiogenesis, and tissue remodeling. In the field of vascular tissue engineering, numerous studies have been conducted to modulate the macrophage phenotype by designing various biomaterials, which in turn enhances the regenerative capacity and long-term patency of vascular grafts. However, the mechanism underlying the different phenotypes of macrophages involved in the tissue regeneration of vascular grafts remains unclear. In this study, vascular grafts loaded with various macrophage phenotypes were developed, and their effects were evaluated both in vivo and in vitro. The RAW 264.7 macrophages (M0) were initially treated with LPS or IL-4/IL-10 and polarized into M1 and M2 phenotypes. Subsequently, M0, M1, and M2 macrophages were seeded onto electrospun PCL scaffolds to obtain macrophage-loaded vascular grafts (PCL-M0, PCL-M1, and PCL-M2). As prepared vascular grafts were implanted into the mouse carotid artery for up to one month. The results indicate that the loading of M2 macrophages effectively enhances the patency rate and neotissue formation of vascular grafts. This is achieved through the development of a well-defined endothelium and smooth muscle layer. RNA sequencing was used to investigate the mechanisms of action of different macrophages on tissue regeneration. The study found that M1 macrophages inhibited tissue regeneration by mediating angiogenesis and chronic inflammation through upregulation of VEGFa, IL-1β, and IL-6 expression. In contrast, M2 macrophages regulate the immune microenvironment by upregulating the expression of IL-4 and TGF-β, thereby promoting tissue regeneration. In conclusion, our study demonstrates how different macrophage phenotypes contribute to the initial inflammatory microenvironment surrounding vascular grafts, thereby modulating the biological process of vascular remodeling. STATEMENT OF SIGNIFICANCE: Regulating the biophysical and biochemical characteristics of biomaterials can induce macrophage polarization and enhance vascular remodeling. In previous work, we fabricated a vascular graft with a macroporous structure that promoted macrophage infiltration and polarization into a pro-regenerative phenotype. To illustrate the mechanism, we established a new mouse model and evaluated the effects of different macrophages on vascular regeneration. The study revealed that tuning macrophage phenotype can impact the initial inflammatory microenvironment by secreting cytokines, which can increase the patency rate and regenerative capacity of vascular grafts. These findings provide essential theoretical support for the development of immunoregulatory scaffolds for vascular and other tissue regeneration.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Tianjin 300387, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhe Zhao
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing 100037, China
| | - Huiquan Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
4
|
Lu S, Jolly AJ, Dubner AM, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597485. [PMID: 38895472 PMCID: PMC11185732 DOI: 10.1101/2024.06.04.597485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.
Collapse
|
5
|
Wei Y, Jiang H, Li F, Chai C, Xu Y, Xing M, Deng W, Wang H, Zhu Y, Yang S, Yu Y, Wang W, Wei Y, Guo Y, Tian J, Du J, Guo Z, Wang Y, Zhao Q. Extravascular administration of IGF1R antagonists protects against aortic aneurysm in rodent and porcine models. Sci Transl Med 2024; 16:eadh1763. [PMID: 38691618 DOI: 10.1126/scitranslmed.adh1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaping Xu
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mengmeng Xing
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuexin Zhu
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Weihai 264400, China
| | - Wenming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Liu Q, Liu C, Lei B. siRNA Mediated Downregulation of RhoA Expression Reduces Oxidative Induced Apoptosis in Retinal Ganglion Cells. Curr Mol Med 2024; 24:630-636. [PMID: 37171014 DOI: 10.2174/1566524023666230511095628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUNDS Glaucoma is the second leading cause of blindness. Apoptosis of retinal ganglion cells (RGCs) is an important mechanism of glaucomatous optic injury. Rho kinase expression is significantly increased in apoptotic RGCs. This study aimed to investigate the role of RhoA, a Rho GTPase, on the survival of RGCs and further to explore its potential therapeutic applications. METHODS RGCs were treated with siRhoA for 24 hours in vitro. Knockdown of RhoA was confirmed with quantitative RT-PCR. Oxidative stress was induced by treating the RGCs with 200 μM of H2O2 for 1 hour, and apoptosis of RGCs was quantified with TUNEL assay in situ, and with flow cytometry. The mRNA expression levels of RhoA, Nogo receptor, caspase 3 and Bcl-2 were evaluated by quantitative RT-PCR, and the protein levels of RhoA, ROCK1, ROCK2, Nogo receptor, caspase 3 and Bcl-2 were evaluated by Western blot. We found siRhoA treatment efficiently downregulated the expression of RhoA in RGCs and protected against H2O2-induced injury in RGCs in vitro. Apoptosis of RGC cells under oxidative stress was quantified in situ using TUNEL assay and confirmed with flow cytometry (FCM). RESULTS With the knockdown of RhoA, the expression of ROCK1, ROCK2, Nogo Receptor, Casepase-3 were decreased, while the expression of Bcl-2 was increased in both mRNA and protein level. Our data indicated that siRhoA prevented H2O2-induced apoptosis in RGC cells by modulating the RhoA/ROCK pathway. CONCLUSION The results suggested that siRhoA may exert potentially effective neuroprotection for RGCs by reducing injury.
Collapse
Affiliation(s)
- Qian Liu
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Changgeng Liu
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Bo Lei
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
7
|
Ma Y, Han C, Xie C, Dang Q, Yang L, Li Y, Zhang M, Cheng J, Yang Y, Xu Q, Li P. ATP promotes resident CD34 + cell migration mainly through P2Y2-Stim1-ERK/p38 pathway. Am J Physiol Cell Physiol 2023; 325:C1228-C1243. [PMID: 37721000 DOI: 10.1152/ajpcell.00048.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chuting Han
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qingya Dang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Liju Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuan Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Min Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qingbo Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Lu Y, Leng Y, Li Y, Wang J, Wang W, Wang R, Liu Y, Tan Q, Yang W, Jiang Y, Cai J, Yuan H, Weng L, Xu Q. Endothelial RIPK1 protects artery bypass graft against arteriosclerosis by regulating SMC growth. SCIENCE ADVANCES 2023; 9:eadh8939. [PMID: 37647392 PMCID: PMC10468134 DOI: 10.1126/sciadv.adh8939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
RIPK1 is crucial in the inflammatory response. The process of vascular graft remodeling is also involved in endothelial inflammation, which can influence the behavior of smooth muscle cells. However, the role of endothelial RIPK1 in arterial bypass grafts remains unknown. Here, we established an arterial isograft mouse model in wild-type and endothelial RIPK1 conditional knockout mice. Progressive vascular remodeling and neointima formation occurred in the graft artery, showing SMC accumulation together with endothelial inflammatory adhesion molecule and cytokine expression. Endothelial RIPK1 knockout exacerbated graft stenosis by increasing secretion of N-Shh. Mechanistically, RIPK1 directly phosphorylated EEF1AKMT3 at Ser26, inhibiting its methyltransferase activity and global protein synthesis, which further attenuated N-Shh translation and secretion. Consistently, treatment with the Hedgehog pathway inhibitor GDC0449 markedly alleviated RIPK1 knockout-induced graft stenosis. Our results demonstrated that endothelial RIPK1 played a protective role in arterial bypass graft vascular remodeling, highlighting that targeting Hedgehog pathway may be an attractive strategy for graft failure in the future.
Collapse
Affiliation(s)
- Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
- Life Sciences & Medicine, King’s College London, London, UK
| | - Yiming Leng
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Yalan Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Jie Wang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Wei Wang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Ruilin Wang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Yuanyuan Liu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Qian Tan
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Wenjing Yang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Youxiang Jiang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Jingjing Cai
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410003, Hunan, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
9
|
Yang X, Zong Y, Zhang Z, Zhao Y, Gao X, Zhang J, Hou Q, Li R, Xiao B. Identification of Potential Abnormal Methylation-Modified Genes in Coronary Artery Ectasia. Int J Genomics 2023; 2023:4969605. [PMID: 37662558 PMCID: PMC10474963 DOI: 10.1155/2023/4969605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Background Coronary artery ectasia (CAE) is an easily recognized abnormality of coronary artery anatomy and morphology. However, its pathogenesis remains unclear. Objectives This study aimed to identify abnormal methylation-modified genes in patients with CAE, which could provide a research basis for CAE. Methods Peripheral venous blood samples from patients with CAE were collected for RNA sequencing to identify differentially expressed genes (DEGs), followed by functional enrichment. Then, the DNA methylation profile of CAE was downloaded from GSE87016 (HumanMethylation450 BeadChip data, involving 11 cases and 12 normal controls) to identify differentially methylated genes (DMGs). Finally, after taking interaction genes between DEGs and DMGs, abnormal methylation-modified genes were identified, followed by protein-protein interaction analysis and expression validation using reverse transcriptase polymerase chain reaction. Results A total of 152 DEGs and 4318 DMGs were obtained from RNA sequencing and the GSE87016 dataset, respectively. After taking interaction genes, 9 down-regulated DEGs due to hypermethylation and 11 up-regulated DEGs due to hypomethylation were identified in CAE. A total of 10 core abnormal methylation-modified genes were identified, including six down-regulated DEGs due to hypermethylation (netrin G1, ADAM metallopeptidase domain 12, immunoglobulin superfamily member 10, sarcoglycan dela, Dickkopf WNT signaling pathway inhibitor 3, and GATA binding protein 6), and four up-regulated DEGs due to hypomethylation (adrenomedullin, ubiquitin specific peptidase 18, lymphocyte antigen 6 family member E, and MX dynamin-like GTPase 1). Some signaling pathways were identified in patients with CAE, including cell adhesion molecule, O-glycan biosynthesis, and the renin-angiotensin system. Conclusions Abnormal methylation-modified DEGs involved in signaling pathways may be involved in CAE development.
Collapse
Affiliation(s)
- Xiuchun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Zong
- School of Nursing, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhentian Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueying Gao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Renyi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Gohara Y, Tomonobu N, Kinoshita R, Futami J, Audebert L, Chen Y, Komalasari NLGY, Jiang F, Yoshizawa C, Murata H, Yamamoto KI, Watanabe M, Kumon H, Sakaguchi M. Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells. J Mol Med (Berl) 2023; 101:431-447. [PMID: 36869893 PMCID: PMC10090029 DOI: 10.1007/s00109-023-02292-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 03/05/2023]
Abstract
The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3-namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. KEY MESSAGES: • REIC/Dkk-3 protein effectively suppresses breast cancer progression through an acceleration of PD-L1 degradation. • PD-L1 stability on the cancer cell membrane is kept high by binding with mainly CMTM6. • Competitive binding of REIC/Dkk-3 protein with CMTM6 liberates PD-L1, leading to PD-L1 degradation.
Collapse
Affiliation(s)
- Yuma Gohara
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Léna Audebert
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.,Sorbonne Université, Collège Doctoral, Paris, 75005, France
| | - Youyi Chen
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.,Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Chikako Yoshizawa
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.
| |
Collapse
|
11
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
12
|
Cantu A, Gutierrez MC, Dong X, Leek C, Sajti E, Lingappan K. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L5-L31. [PMID: 36283964 PMCID: PMC9799156 DOI: 10.1152/ajplung.00269.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Exposure to supraphysiological concentrations of oxygen (hyperoxia) predisposes to bronchopulmonary dysplasia (BPD), which is characterized by abnormal alveolarization and pulmonary vascular development, in preterm neonates. Neonatal hyperoxia exposure is used to recapitulate the phenotype of human BPD in murine models. Male sex is considered an independent predictor for the development of BPD, but the main mechanisms underlying sexually dimorphic outcomes are unknown. Our objective was to investigate sex-specific and cell-type specific transcriptional changes that drive injury in the neonatal lung exposed to hyperoxia at single-cell resolution and delineate the changes in cell-cell communication networks in the developing lung. We used single-cell RNA sequencing (scRNAseq) to generate transcriptional profiles of >35,000 cells isolated from the lungs of neonatal male and female C57BL/6 mice exposed to 95% [Formula: see text] between PND1-5 (saccular stage of lung development) or normoxia and euthanized at PND7 (alveolar stage of lung development). ScRNAseq identified 22 cell clusters with distinct populations of endothelial, epithelial, mesenchymal, and immune cells. Our data identified that the distal lung vascular endothelium (composed of aerocytes and general capillary endothelial cells) is exquisitely sensitive to hyperoxia exposure with the emergence of an intermediate capillary endothelial population with both general capillaries (gCap) and aerocytes or alveolar capillaries (aCap) markers. We also identified a myeloid-derived suppressor cell population from the lung neutrophils. Sex-specific differences were evident in all lung cell subpopulations but were striking among the lung immune cells. Finally, we identified that the specific intercellular communication networks and the ligand-receptor pairs that are impacted by neonatal hyperoxia exposure.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manuel C Gutierrez
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eniko Sajti
- Department of Pediatrics, University of California, La Jolla, California
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
14
|
Bai X, Qi Z, Zhu M, Lu Z, Zhao X, Zhang L, Song G. The effect of lncRNA MIR155HG-modified MSCs and exosome delivery to synergistically attenuate vein graft intimal hyperplasia. Stem Cell Res Ther 2022; 13:512. [PMID: 36333764 PMCID: PMC9636746 DOI: 10.1186/s13287-022-03197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background The mesenchymal stem cells (MSCs) were used to repair tissue injury. However, the treatment effect was not satisfactory. We investigated whether lncRNA MIR155HG could promote survival and migration of MSCs under oxidative stress, which mimics in vivo environments. Furthermore, we studied the protective effect of exosomes secreted by MSCs transfected with MIR155HG on endothelial cells. This study aimed to determine whether exploiting MSCs and exosomes modified with lncRNA MIR155HG would exert synergistic therapeutic effect to attenuate vein graft intimal hyperplasia more effectively. Methods Lentivirus containing lncRNA MIR155HG overexpressing vector was packaged and used to infect MSCs. Then, CCK-8 assay, flow cytometry, Transwell assay, and Elisa assay were used to assess the functional changes of MSCs with overexpressed MIR155HG (OE-MSCs). Furthermore, the associated pathways were screened by Western blot. MIR155HG-MSCs-derived exosomes (OE-exo) were collected and co-cultured with human umbilicus vein endothelial cell (HUVEC). We validated the protective effect of OE-exo on HUVEC. In vivo, both MSCs and exosomes modified with MIR155HG were injected into a vein graft rat model via tail vein. We observed MSCs homing and intimal hyperplasia of vein graft using a fluorescent microscope and histological stain. Results Our study found that lncRNA MIR155HG promoted proliferation, migration, and anti-apoptosis of MSCs. NF-κB pathway took part in the regulation process induced by MIR155HG. OE-exo could enhance the activity and healing ability of HUVEC and reduce apoptosis. In vivo, OE-MSCs had a higher rate of homing to vascular endothelium. The combined treatment with OE-MSCs and OE-exo protected vascular endothelial integrity, reduced inflammatory cell proliferation, and significantly attenuated intimal hyperplasia of vein graft. Conclusion LncRNA MIR155HG could promote the survival and activity of MSCs, and reduce the apoptosis of HUVECs using exosome delivery. Exploiting MSCs and exosomes modified with MIR155HG could attenuate vein graft intimal hyperplasia more effectively and maximize the surgical effect.
Collapse
Affiliation(s)
- Xiao Bai
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Thoracoscopy Institute of Cardiac Surgery, Shandong University, Jinan, China
| | - Zaiwen Qi
- The Fifth People’s Hospital of Jinan, Jinan, China
| | - Mingzhen Zhu
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Zhuangzhuang Lu
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Xin Zhao
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Lining Zhang
- grid.27255.370000 0004 1761 1174Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, 250012 China
| | - Guangmin Song
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| |
Collapse
|
15
|
The Microenvironment That Regulates Vascular Wall Stem/Progenitor Cells in Vascular Injury and Repair. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9377965. [PMID: 35958825 PMCID: PMC9357805 DOI: 10.1155/2022/9377965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Vascular repair upon injury is a frequently encountered pathology in cardiovascular diseases, which is crucial for the maintenance of arterial homeostasis and function. Stem/progenitor cells located on vascular walls have multidirectional differentiation potential and regenerative ability. It has been demonstrated that stem/progenitor cells play an essential role in the basic medical research and disease treatment. The dynamic microenvironment around the vascular wall stem/progenitor cells (VW-S/PCs) possesses many stem cell niche-like characteristics to support and regulate cells' activities, maintaining the properties of stem cells. Under physiological conditions, vascular homeostasis is a cautiously balanced and efficient interaction between stem cells and the microenvironment. These interactions contribute to the vascular repair and remodeling upon vessel injury. However, the signaling mechanisms involved in the regulation of microenvironment on stem cells remain to be further elucidated. Understanding the functional characteristics and potential mechanisms of VW-S/PCs is of great significance for both basic and translational research. This review underscores the microenvironment-derived signals that regulate VW-S/PCs and aims at providing new targets for the treatment of related cardiovascular diseases.
Collapse
|
16
|
Xiao W, Chen W, Wang Y, Zhang C, Zhang X, Zhang S, Wu W. Recombinant DTβ4-inspired porous 3D vascular graft enhanced antithrombogenicity and recruited circulating CD93 +/CD34 + cells for endothelialization. SCIENCE ADVANCES 2022; 8:eabn1958. [PMID: 35857526 PMCID: PMC9278867 DOI: 10.1126/sciadv.abn1958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 05/31/2023]
Abstract
Matching material degradation with host remodeling, including endothelialization and muscular remodeling, is important to vascular regeneration. We fabricated 3D PGS-PCL vascular grafts, which presented tunable polymer components, porosity, mechanical strength, and degrading rate. Furthermore, highly porous structures enabled 3D patterning of conjugated heparin-binding peptide, dimeric thymosin β4 (DTβ4), which played key roles in antiplatelets, fibrinogenesis inhibition, and recruiting circulating progenitor cells, thereafter contributed to high patency rate, and unprecedentedly acquired carotid arterial regeneration in rabbit model. Through single-cell RNA sequencing analysis and cell tracing studies, a subset of endothelial progenitor cells, myeloid-derived CD93+/CD34+ cells, was identified as the main contributor to final endothelium regeneration. To conclude, DTβ4-inspired porous 3DVGs present adjustable physical properties, superior anticoagulating, and re-endothelializing potentials, which leads to the regeneration of small-caliber artery, thus offering a promising tool for vessel replacement in clinical applications.
Collapse
Affiliation(s)
- Weiwei Xiao
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wanli Chen
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yinggang Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xinchi Zhang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Siqian Zhang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wei Wu
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
17
|
Wang F, Qin K, Wang K, Wang H, Liu Q, Qian M, Chen S, Sun Y, Hou J, Wei Y, Hu Y, Li Z, Xu Q, Zhao Q. Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Rep 2022; 39:110981. [PMID: 35732119 DOI: 10.1016/j.celrep.2022.110981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/29/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular bypass surgery continues to use autologous grafts and often suffers from a shortage of donor grafts. Decellularized xenografts derived from porcine veins provide a promising candidate because of their abundant availability and low immunogenicity. Unfortunately, transplantation outcomes are far from satisfactory because of insufficient regeneration and adverse pathologic remodeling. Herein, a nitrate-functionalized prosthesis has been incorporated into a decellularized porcine vein graft to fabricate a bio-hybrid vascular graft with local delivery of nitric oxide (NO). Exogenous NO efficiently promotes vascular regeneration and attenuates intimal hyperplasia and vascular calcification in both rabbit and mouse models. The underlying mechanism was investigated using a Sca1 2A-CreER; Rosa-RFP genetic-lineage-tracing mouse model that reveals that Sca1+ stem/progenitor cells (SPCs) are major contributors to vascular regeneration and remodeling, and NO plays a critical role in regulating SPC fate. These results support the translational potential of this off-the-shelf vascular graft.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Kang Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yijin Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingli Hou
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Hu K, Li Y, Ke Z, Yang H, Lu C, Li Y, Guo Y, Wang W. History, progress and future challenges of artificial blood vessels: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:81-98. [PMID: 35837341 PMCID: PMC9255792 DOI: 10.12336/biomatertransl.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, Hubei Province, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Clinical Centre of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| |
Collapse
|
19
|
Wang H, Xing M, Deng W, Qian M, Wang F, Wang K, Midgley AC, Zhao Q. Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioact Mater 2022; 16:433-450. [PMID: 35415291 PMCID: PMC8965769 DOI: 10.1016/j.bioactmat.2022.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
|
20
|
Tao J, Cao X, Yu B, Qu A. Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Front Cardiovasc Med 2022; 9:845070. [PMID: 35224067 PMCID: PMC8866648 DOI: 10.3389/fcvm.2022.845070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular repair upon vessel injury is essential for the maintenance of arterial homeostasis and function. Stem/progenitor cells were demonstrated to play a crucial role in regeneration and replenishment of damaged vascular cells during vascular repair. Previous studies revealed that myeloid stem/progenitor cells were the main sources of tissue regeneration after vascular injury. However, accumulating evidences from developing lineage tracing studies indicate that various populations of vessel-resident stem/progenitor cells play specific roles in different process of vessel injury and repair. In response to shear stress, inflammation, or other risk factors-induced vascular injury, these vascular stem/progenitor cells can be activated and consequently differentiate into different types of vascular wall cells to participate in vascular repair. In this review, mechanisms that contribute to stem/progenitor cell differentiation and vascular repair are described. Targeting these mechanisms has potential to improve outcome of diseases that are characterized by vascular injury, such as atherosclerosis, hypertension, restenosis, and aortic aneurysm/dissection. Future studies on potential stem cell-based therapy are also highlighted.
Collapse
Affiliation(s)
- Jiaping Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- *Correspondence: Baoqi Yu
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- Aijuan Qu
| |
Collapse
|
21
|
Huang W, Huo M, Cheng N, Wang R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front Cardiovasc Med 2022; 8:801077. [PMID: 35127862 PMCID: PMC8814313 DOI: 10.3389/fcvm.2021.801077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.
Collapse
Affiliation(s)
- Weimin Huang
- Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mengen Huo
- Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Nan Cheng
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
22
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Yang S, Zheng X, Qian M, Wang H, Wang F, Wei Y, Midgley AC, He J, Tian H, Zhao Q. Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Front Bioeng Biotechnol 2021; 9:770121. [PMID: 34917597 PMCID: PMC8670382 DOI: 10.3389/fbioe.2021.770121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Artificial small-diameter vascular grafts (SDVG) fabricated from synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL), exhibit beneficial mechanical properties but are often faced with issues impacting their long-term graft success. Nitric oxide (NO) is an important physiological gasotransmitter with multiple roles in orchestrating vascular tissue function and regeneration. We fabricated a functional vascular graft by electrospinning of nitrate-functionalized poly(ε-caprolactone) that could release NO in a sustained manner via stepwise biotransformation in vivo. Nitrate-functionalized SDVG (PCL/NO) maintained patency following abdominal arterial replacement in rats. PCL/NO promoted cell infiltration at 3-months post-transplantation. In contrast, unmodified PCL SDVG showed slow cell in-growth and increased incidence of neointima formation. PCL/NO demonstrated improved endothelial cell (EC) alignment and luminal coverage, and more defined vascular smooth muscle cell (VSMC) layer, compared to unmodified PCL SDVG. In addition, release of NO stimulated Sca-1+ vascular progenitor cells (VPCs) to differentiate and contribute to rapid luminal endothelialization. Furthermore, PCL/NO inhibited the differentiation of VPCs into osteopontin-positive cells, thereby preventing vascular calcification. Overall, PCL/NO demonstrated enhanced cell ingrowth, EC monolayer formation and VSMC layer regeneration; whilst inhibiting calcified plaque formation. Our results suggested that PCL/NO could serve as promising candidates for improved and long-term success of SDVG implants.
Collapse
Affiliation(s)
- Sen Yang
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xueni Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.,Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
24
|
Li Y, Wang Y, Xue F, Feng X, Ba Z, Chen J, Zhou Z, Wang Y, Guan G, Yang G, Xi Z, Tian H, Liu Y, Tan J, Li G, Chen X, Yang M, Chen W, Zhu C, Zeng W. Programmable dual responsive system reconstructing nerve interaction with small-diameter tissue-engineered vascular grafts and inhibiting intimal hyperplasia in diabetes. Bioact Mater 2021; 7:466-477. [PMID: 34466746 PMCID: PMC8379357 DOI: 10.1016/j.bioactmat.2021.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) with hyperglycemia resistance have not been constructed. The intimal hyperplasia caused by hyperglycemia remains problem to hinder the patency of sdTEVGs. Here, inspired by bionic regulation of nerve on vascular, we found the released neural exosomes could inhibit the abnormal phenotype transformation of vascular smooth muscle cells (VSMCs). The transformation was a prime culprit causing the intimal hyperplasia of sdTEVGs. To address this concern, sdTEVGs were modified with an on-demand programmable dual-responsive system of ultrathin hydrogels. An external primary Reactive Oxygen Species (ROS)-responsive Netrin-1 system was initially triggered by local inflammation to induce nerve remolding of the sdTEVGs overcoming the difficulty of nerve regeneration under hyperglycemia. Then, the internal secondary ATP-responsive DENND1A (guanine nucleotide exchange factor) system was turned on by the neurotransmitter ATP from the immigrated nerve fibers to stimulate effective release of neural exosomes. The results showed nerve fibers grow into the sdTEVGs in diabetic rats 30 days after transplantation. At day 90, the abnormal VSMCs phenotype was not detected in the sdTEVGs, which maintained long-time patency without intima hyperplasia. Our study provides new insights to construct vascular grafts resisting hyperglycemia damage. VSMCs undergo a phenotypic transformation under high glucose, which lead to intimal hyperplasia in sdTEVGs. Neural exosomes could inhibit the abnormal phenotype transformation of VSMCs from contractile to synthetic. SdTEVGs with on-demand programmable dual responsive system inhibited intimal hyperplasia in diabetes.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yeqin Wang
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Xuli Feng
- Innovative Drug Research Centre of Chongqing University, Chongqing, 401331, China
| | - Zhaojing Ba
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Junjie Chen
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Zhenhua Zhou
- Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanhong Wang
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Ge Guan
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Guanyuan Yang
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ziwei Xi
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiewan Chen
- Medical English Department, Third Military Medical University, Chongqing, 400038, China
| | - Mingcan Yang
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wen Chen
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Chuhong Zhu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.,The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.,Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| |
Collapse
|
25
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
26
|
Dierick F, Solinc J, Bignard J, Soubrier F, Nadaud S. Progenitor/Stem Cells in Vascular Remodeling during Pulmonary Arterial Hypertension. Cells 2021; 10:cells10061338. [PMID: 34071347 PMCID: PMC8226806 DOI: 10.3390/cells10061338] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the current knowledge on the different progenitor and stem cells that have been shown to participate in pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally, this review also addresses the therapeutic potential of circulating endothelial progenitor cells and mesenchymal stem cells.
Collapse
Affiliation(s)
- France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Julien Solinc
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Juliette Bignard
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Florent Soubrier
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Sophie Nadaud
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
- Correspondence:
| |
Collapse
|
27
|
Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts. Biomaterials 2020; 257:120226. [DOI: 10.1016/j.biomaterials.2020.120226] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
28
|
WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2020; 17:172-184. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT-β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.
Collapse
|
29
|
Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro. Biosci Rep 2020; 39:220749. [PMID: 31652450 PMCID: PMC6822506 DOI: 10.1042/bsr20191006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Houshiheisan (HSHS), a classic prescription in traditional Chinese medicine (TCM), has remarkable efficacy in the treatment of ischemic stroke. Objective: To investigate the pro-angiogenic effect and molecular mechanism of HSHS for stroke recovery. Methods and results: The rat permanent middle cerebral artery occlusion (pMCAO) model was constructed by suture method, HSHS (5.25 or 10.5 g/kg) and Ginaton (28 mg/kg) treatment was intragastrically administrated at 6 h after modeling which remained for 7 consecutive days. Pathological evaluation conducted by Hematoxylin–Eosin (HE) staining and the results showed that HSHS alleviated blood vessel edema, reduced the damage to blood vessels and neurons in the ischemic areas. Immunostaining, quantitative real-time fluorescence PCR results showed that HSHS up-regulated pro-angiogenic factors including platelet endothelial cell adhesion molecule-1 (cluster of differentiation 31 (CD31)), vascular endothelial growth factor (VEGF), vascular endothelial growth factor A (VEGFA), VEGF receptor 2 (VEGFR2), angiopoietin-1 (Ang-1), while down-regulated angiopoietin-2 (Ang-2), stromal cell derived factor-1 (SDF-1), and cxc chemokine receptor 4 (CXCR4) expression in infarct rat cortex, and similar results were obtained in subsequent Western blot experiment. Furthermore, CCK8 assay and transwell migration assay were performed to assess cell proliferation, migration, and tube formation. The medicated serum (MS) of HSHS appeared to have beneficial effects for immortalized human umbilical vein cells (Im-HUVECs) on proliferation and migration after persistence hypoxia. Western blot analysis revealed that the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA, Ang-1, Ang-2, and CXCR4 were significantly up-regulated while Ang-2 was down-regulated by HSHS MS treatment compared with vehicle group in vitro. Conclusion: The present study suggests a novel application of HSHS as an effective angiogenic formula for stroke recovery.
Collapse
|
30
|
Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front Cardiovasc Med 2020; 7:159. [PMID: 33033720 PMCID: PMC7509093 DOI: 10.3389/fcvm.2020.00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of tissue engineering evolved long before the phrase was forged, driven by the thromboembolic complications associated with the early total artificial heart programs of the 1960s. Yet more than half a century of dedicated research has not fulfilled the promise of successful broad clinical implementation. A historical account outlines reasons for this scientific impasse. For one, there was a disconnect between distinct eras each characterized by different clinical needs and different advocates. Initiated by the pioneers of cardiac surgery attempting to create neointimas on total artificial hearts, tissue engineering became fashionable when vascular surgeons pursued the endothelialisation of vascular grafts in the late 1970s. A decade later, it were cardiac surgeons again who strived to improve the longevity of tissue heart valves, and lastly, cardiologists entered the fray pursuing myocardial regeneration. Each of these disciplines and eras started with immense enthusiasm but were only remotely aware of the preceding efforts. Over the decades, the growing complexity of cellular and molecular biology as well as polymer sciences have led to surgeons gradually being replaced by scientists as the champions of tissue engineering. Together with a widening chasm between clinical purpose, human pathobiology and laboratory-based solutions, clinical implementation increasingly faded away as the singular endpoint of all strategies. Moreover, a loss of insight into the healing of cardiovascular prostheses in humans resulted in the acceptance of misleading animal models compromising the translation from laboratory to clinical reality. This was most evident in vascular graft healing, where the two main impediments to the in-situ generation of functional tissue in humans remained unheeded–the trans-anastomotic outgrowth stoppage of endothelium and the build-up of an impenetrable surface thrombus. To overcome this dead-lock, research focus needs to shift from a biologically possible tissue regeneration response to one that is feasible at the intended site and in the intended host environment of patients. Equipped with an impressive toolbox of modern biomaterials and deep insight into cues for facilitated healing, reconnecting to the “user needs” of patients would bring one of the most exciting concepts of cardiovascular medicine closer to clinical reality.
Collapse
Affiliation(s)
- Peter Zilla
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.,Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Manfred Deutsch
- Karl Landsteiner Institute for Cardiovascular Surgical Research, Vienna, Austria
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tim Pennel
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
31
|
Chen W, Jia S, Zhang X, Zhang S, Liu H, Yang X, Zhang C, Wu W. Dimeric Thymosin β4 Loaded Nanofibrous Interface Enhanced Regeneration of Muscular Artery in Aging Body through Modulating Perivascular Adipose Stem Cell-Macrophage Interaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903307. [PMID: 32328425 PMCID: PMC7175290 DOI: 10.1002/advs.201903307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 05/03/2023]
Abstract
Regenerating nonthrombotic and compliant artery, especially in the aging body, remains a major surgical challenge, mainly owing to the inadequate knowledge of the major cell sources contributing to arterial regeneration and insufficient bioactivity of delivered peptides in grafts. Ultrathin nanofibrous sheaths stented with biodegrading elastomer present opening channels and reduced material residue, enabling fast cell recruitment and host remodeling, while incorporating peptides offering developmental cues are challenging. In this study, a recombinant human thymosin β4 dimer (DTβ4) that contains two complete Tβ4 molecules is produced. The adult perivascular adipose is found as the dominant source of vascular progenitors which, when stimulated by the DTβ4-loaded nanofibrous sheath, enables 100% patency rates, near-complete structural as well as adequate functional regeneration of artery, and effectively ameliorates aging-induced defective regeneration. As compared with Tβ4, DTβ4 exhibits durable regenerative activity including recruiting more progenitors for endothelial cells and smooth muscle cells, when incorporated into the ultrathin polycaprolactone sheath. Moreover, the DTβ4-loaded interface promotes smooth muscle cells differentiation, mainly through promoting M2 macrophage polarization and chemokines. Incorporating artificial DTβ4 into ultrathin sheaths of fast degrading vascular grafts creates an effective interface for sufficient muscular remodeling thus offering a robust tool for vessel replacement.
Collapse
Affiliation(s)
- Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Sansan Jia
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Huan Liu
- Department of PathophysiologyInstitute of Basic Medical ScienceXi'an Medical UniversityXi'anChina
| | - Xin Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Cun Zhang
- State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of Pharmacythe Fourth Military Medical UniversityXi'anChina
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
32
|
Song KM, Kim WJ, Choi MJ, Limanjaya A, Ghatak K, Minh NN, Ock J, Yin GN, Hong SS, Suh JK, Ryu JK. Intracavernous delivery of Dickkopf3 gene or peptide rescues erectile function through enhanced cavernous angiogenesis in the diabetic mouse. Andrology 2020; 8:1387-1397. [PMID: 32170840 DOI: 10.1111/andr.12784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe peripheral angiopathy in patients with diabetes is a major contributing factor for low response rate to phosphodiesterase-5 inhibitors. OBJECTIVES To examine whether and how Dickkopf3 (DKK3), a secreted modulator of the Wnt pathway that known to be involved in endothelial cell repair and vascular progenitor cell migration, restores erectile function in diabetic mice. METHODS Eight-week-old C57BL/6 mice received intraperitoneal injections of streptozotocin (50 mg/kg for 5 days). Eight weeks after the diabetes was induced, the efficacy of DKK3 was determined by three independent experiments: experiment 1 (DKK3 peptide [5 μg in 20 μL PBS]); experiment 2 (DKK3 plasmid DNA with electroporation [10, 40, or 100 μg in 20 μL PBS, respectively]); and experiment 3 (DKK3 adenovirus [1 × 107 , 1 × 108 , 1 × 109 virus particles per 20 μL, respectively]). Erectile function was measured by electrical stimulation of the cavernous nerve one week (for peptide) or two weeks (for genes) after treatment. The angiogenic activity of DKK3 was determined in diabetic penis in vivo and in primary cultured mouse cavernous endothelial cells (MCECs) in vitro. RESULTS The cavernous expression of DKK3 protein was significantly lower in the diabetic mice than in controls. DKK3 peptide or adenovirus significantly improved erectile function in diabetic mice (70% of the control values). DKK3 adenovirus profoundly restored cavernous endothelial cell and pericyte contents and increased endothelial junction proteins in diabetic mice in vivo. DKK3 peptide induced upregulation of angiogenic factors (angiopoietin-1, vascular endothelial growth factor, and basic fibroblast growth factor) and accelerated tube formation in MCECs cultivated under the high-glucose condition in vitro. CONCLUSION DKK3 restored cavernous vascular integrity and improved erectile function in diabetic mice. Therapeutic cavernous angiogenesis by the use of DKK3 will be a promising therapeutic strategy to treat diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Woo-Jean Kim
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Department of Anatomy, Kosin University College of Medicine, Busan, Korea
| | - Min-Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Nguyen Nhat Minh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Soon-Sun Hong
- Department of Drug Development, Inha University School of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Department of Urology, Inha University Hospital, Incheon, Korea
| |
Collapse
|
33
|
Lounsbury N. Advances in CXCR7 Modulators. Pharmaceuticals (Basel) 2020; 13:ph13020033. [PMID: 32098047 PMCID: PMC7169404 DOI: 10.3390/ph13020033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
CXC chemokine receptor 7 (CXCR7) is a G-protein-coupled receptor that signals through the β-arrestin pathway. Its ligands include interferon-inducible T cell α chemoattractant (CXCL11) and stromal cell-derived factor-1 (CXCL12). It interacts with CXCR4, and the two are associated with various cancers, as well as other disease states such as coronary artery disease, stroke, inflammation and human immunodeficiency virus (HIV). Antibodies and small interfering RNA (siRNA) have shown the utility of antagonists of CXCR7 in these disease states. Although some small molecules were initially reported as antagonists due to their displayed activity, many function as agonists while still producing the desired pharmacologic effects. A potential reason for this contradiction is that effects may be due to elevated extracellular CXCL12 levels.
Collapse
Affiliation(s)
- Nicole Lounsbury
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL 33169, USA
| |
Collapse
|
34
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
35
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
36
|
Liu B, Song S, Setroikromo R, Chen S, Hu W, Chen D, van der Wekken AJ, Melgert BN, Timens W, van den Berg A, Saber A, Haisma HJ. CX Chemokine Receptor 7 Contributes to Survival of KRAS-Mutant Non-Small Cell Lung Cancer upon Loss of Epidermal Growth Factor Receptor. Cancers (Basel) 2019; 11:cancers11040455. [PMID: 30935067 PMCID: PMC6520904 DOI: 10.3390/cancers11040455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
KRAS-driven non-small cell lung cancer (NSCLC) patients have no effective targeted treatment. In this study, we aimed to investigate targeting epidermal growth factor receptor (EGFR) as a therapeutic approach in KRAS-driven lung cancer cells. We show that ablation of EGFR significantly suppressed tumor growth in KRAS-dependent cells and induced significantly higher expression of CX chemokine receptor 7 (CXCR7) and activation of MAPK (ERK1/2). Conversely, rescue of EGFR led to CXCR7 downregulation in EGFR−/− cells. Dual EGFR and CXCR7 inhibition led to substantial reduction of MAPK (pERK) and synergistic inhibition of cell growth. Analysis of two additional EGFR knockout NSCLC cell lines using CRISPR/Cas9 revealed genotype dependency of CXCR7 expression. In addition, treatment of different cells with gefitinib increased CXCR7 expression in EGFRwt but decreased it in EGFRmut cells. CXCR7 protein expression was detected in all NSCLC patient samples, with higher levels in adenocarcinoma as compared to squamous cell lung carcinoma and healthy control cases. In conclusion, EGFR and CXCR7 have a crucial interaction in NSCLC, and dual inhibition may be a potential therapeutic option for NSCLC patients.
Collapse
Affiliation(s)
- Bin Liu
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Shanshan Song
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
- Toxicology and Targeting Groningen Research Institute for Pharmacy, Department of Pharmacokinetics, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Rita Setroikromo
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Siwei Chen
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Wenteng Hu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Deng Chen
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Anthonie J van der Wekken
- Department of Pulmonary Diseases, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Barbro N Melgert
- Toxicology and Targeting Groningen Research Institute for Pharmacy, Department of Pharmacokinetics, University of Groningen, 9713 AV Groningen, The Netherlands.
- GRIAC- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Ali Saber
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Hidde J Haisma
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
37
|
He H, Yu B, Liu Z, Ye G, You W, Hong Y, Lian Q, Zhang Y, Li X. Vascular progenitor cell senescence in patients with Marfan syndrome. J Cell Mol Med 2019; 23:4139-4152. [PMID: 30920150 PMCID: PMC6533473 DOI: 10.1111/jcmm.14301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular progenitor cells (VPCs) present in the adventitia of the vessel wall play a critical role in the regulation of vascular repair following injury. This study aimed to assess the function of VPCs isolated from patients with Marfan syndrome (MFS). VPCs were isolated from control and MFS donors and characterized. Compared with control‐VPCs, MFS‐VPCs exhibited cellular senescence as demonstrated by increased cell size, higher SA‐β‐gal activity and elevated levels of p53 and p21. RNA sequencing showed that several cellular process‐related pathways including cell cycle and cellular senescence were significantly enriched in MFP‐VPCs. Notably, the expression level of TGF‐β1 was much higher in MFS‐VPCs than control‐VPCs. Treatment of control‐VPCs with TGF‐β1 significantly enhanced mitochondrial reactive oxidative species (ROS) and induced cellular senescence whereas inhibition of ROS reversed these effects. MFS‐VPCs displayed increased mitochondrial fusion and decreased mitochondrial fission. Treatment of control‐VPCs with TGF‐β1 increased mitochondrial fusion and reduced mitochondrial fission. Nonetheless, treatment of mitofusin2 (Mfn2)‐siRNA inhibited TGF‐β1‐induced mitochondrial fusion and cellular senescence. Furthermore, TGF‐β1‐induced mitochondrial fusion was mediated by the AMPK signalling pathway. Our study shows that TGF‐β1 induces VPC senescence in patients with MFS by mediating mitochondrial dynamics via the AMPK signalling pathway.
Collapse
Affiliation(s)
- Haiwei He
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baoqi Yu
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Zipeng Liu
- Center for Genomic Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Gen Ye
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei You
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimei Hong
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qizhou Lian
- Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
38
|
Wei Y, Wu Y, Zhao R, Zhang K, Midgley AC, Kong D, Li Z, Zhao Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials 2019; 204:13-24. [PMID: 30875515 DOI: 10.1016/j.biomaterials.2019.01.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Runxia Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin 300071, PR China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, PR China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|