1
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
2
|
Bedada FB, Thompson BR, Mikkila JL, Chan SSK, Choi SH, Toso EA, Kyba M, Metzger JM. Inducing positive inotropy in human iPSC-derived cardiac muscle by gene editing-based activation of the cardiac α-myosin heavy chain. Sci Rep 2024; 14:3915. [PMID: 38365813 PMCID: PMC10873390 DOI: 10.1038/s41598-024-53395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Human induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required. HiPSC-CMs are well noted for their immature and sub-physiological cardiac muscle state, and this represents a major hurdle for the field. To address this roadblock, we have developed a hiPSC-CMs (β-MHC dominant) experimental platform focused on directed physiological enhancement of the sarcomere, the functional unit of cardiac muscle. We focus here on the myosin heavy chain (MyHC) protein isoform profile, the molecular motor of the heart, which is essential to cardiac physiological performance. We hypothesized that inducing increased expression of α-MyHC in β-MyHC dominant hiPSC-CMs would enhance contractile performance of hiPSC-CMs. To test this hypothesis, we used gene editing with an inducible α-MyHC expression cassette into isogeneic hiPSC-CMs, and separately by gene transfer, and then investigated the direct effects of increased α-MyHC expression on hiPSC-CMs contractility and relaxation function. Data show improved cardiac functional parameters in hiPSC-CMs induced with α-MyHC. Positive inotropy and relaxation was evident in comparison to β-MyHC dominant isogenic controls both at baseline and during pacing induced stress. This approach should facilitate studies of hiPSC-CMs disease modeling and drug screening, as well as advancing fundamental aspects of cardiac function parameters for the optimization of future cardiac regeneration, repair and re-muscularization applications.
Collapse
Affiliation(s)
- Fikru B Bedada
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Present Address: Department of Clinical Laboratory Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jennifer L Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Sunny S-K Chan
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Si Ho Choi
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Zhang H, Xue Y, Pan T, Zhu X, Chong H, Xu C, Fan F, Cao H, Zhang B, Pan J, Zhou Q, Yang G, Wang J, Wang DJ. Epicardial injection of allogeneic human-induced-pluripotent stem cell-derived cardiomyocytes in patients with advanced heart failure: protocol for a phase I/IIa dose-escalation clinical trial. BMJ Open 2022; 12:e056264. [PMID: 35523485 PMCID: PMC9083430 DOI: 10.1136/bmjopen-2021-056264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Heart failure (HF) is a growing global public health burden. However, due to the very limited regenerative capacity of mature cardiomyocytes in the adult mammalian heart, conventional treatments can only improve the symptoms of HF but fail to restore cardiac function. Heart transplantation is limited by a severe shortage of donors. Cell-based transplantation for the treatment of HF has become a promising strategy. Human-induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been tested in animal models to assess safety and efficacy. This study aims at evaluating the safety and efficacy of epicardial injection of hiPSC-CMs in patients with advanced HF during coronary artery bypass grafting (CABG) surgery. METHODS This study is a dose-escalation, placebo-controlled, single-centre phase I/IIa clinical trial. Dose escalation will be guided by a modified 3+3 design for three doses (1×108, 2×108 and 4×108 cells, sequentially). Patients with advanced heart failure will be enrolled and randomly allocated to receive epicardial injection of hiPSC-CMs during CABG surgery or CABG surgery alone, followed by a 12-month follow-up investigation. The primary endpoint is to assess the safety of hiPSC-CMs transplantation, including haemodynamic compromised sustained ventricular arrhythmias and newly formed tumours during 6 months postoperatively. The secondary endpoint is to evaluate the efficacy of epicardial injection of hiPSC-CMs and CABG surgery combination by comparison with CABG surgery alone. ETHICS AND DISSEMINATION The study protocol has been approved by the Institutional Ethical Committee of Nanjing Drum Tower Hospital (No. SC202000102) and approved by National Health Commission of the PRC (MR-32-21-014649). Findings will be disseminated to the academic community through peer-reviewed publications and presentation at national and international meetings. TRIAL REGISTRATION NUMBER NCT03763136.
Collapse
Affiliation(s)
- He Zhang
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Beijing, China
| | - Yunxing Xue
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Tuo Pan
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Beijing, China
| | - Xiyu Zhu
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Hoshun Chong
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Can Xu
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Fudong Fan
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Hailong Cao
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Bomin Zhang
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Jun Pan
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Qing Zhou
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Gang Yang
- HELP Therapeutics, Nanjing, Jiangsu, China
| | | | - Dong-Jin Wang
- Department of Cardiothoracic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Beijing, China
| |
Collapse
|
4
|
Zhao G, Feng Y, Xue L, Cui M, Zhang Q, Xu F, Peng N, Jiang Z, Gao D, Zhang X. Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater 2022; 139:190-203. [PMID: 33836222 DOI: 10.1016/j.actbio.2021.03.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of death globally, often leading to impaired cardiac function and pathological myocardial microenvironment. Electrical conduction abnormalities of the infarcted myocardium not only induce adverse myocardial remodeling but also prevent tissue repair. Restoring the myocardial electrical integrity, particularly the anisotropic electrical signal propagation within the injured area after infarction is crucial for an effective function recovery. Herein, optimized reduced graphene oxide (rGO) functionalized electrospun silk fibroin (rGO/silk) biomaterials presenting anisotropic conductivity and enhanced suturablity were developed and investigated as cardiac patches for their potential in improving the post-MI myocardial function of rat models. The results show that the anisotropic conductive rGO/silk patches exhibit remarkable therapeutic effect on repairing the infarcted myocardium compared to the nonconductive silk and isotropic conductive rGO/silk patches as determined by the enhanced pumping function, reduced susceptibility to arrhythmias, thickened left ventricular walls and improved survival of functional cardiomyocytes. Their notable effect on promoting the angiogenesis of capillaries in the infarcted myocardium has also been demonstrated. This study highlights an effective and biomimetic reconstruction of the electrical myocardial microenvironment based on the anisotropic conductive rGO/silk biomaterials as a promising option for promoting the repair of infarcted myocardium. STATEMENT OF SIGNIFICANCE: The dysfunctional electrical microenvironment in the infarcted myocardium not only aggravates the adverse myocardial remodeling but also limits the effect of cardiac regenerative medicine. Although various conductive biomaterials have been employed to restore the electrical network in the infarcted myocardium in vivo, the anisotropic nature of the myocardial electrical microenvironment which enables directional electrical signal propagation were neglected. In this study, an anisotropic conductive rGO/silk biomaterial system is developed to improve the myocardial function post infarction by restoring the anisotropic electrical microenvironment in the infarcted myocardium. The promoted effects of anisotropic conductive grafts on repairing infarcted hearts are demonstrated with improved pumping function, cardiomyocyte survival, resistance to ventricular fibrillation, and angiogenesis of capillary network.
Collapse
Affiliation(s)
- Guoxu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China; School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi, PR China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital, School of Medical, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China
| | - Li Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Mengjie Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Niancai Peng
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Zhuangde Jiang
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medical, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China.
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China.
| |
Collapse
|
5
|
Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021; 10:cells10113112. [PMID: 34831333 PMCID: PMC8623147 DOI: 10.3390/cells10113112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Collapse
|
6
|
Eschenhagen T, Ridders K, Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 163:106-117. [PMID: 34687723 DOI: 10.1016/j.yjmcc.2021.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | | | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
7
|
Abstract
The regenerative capacity of the heart has long fascinated scientists. In contrast to other organs such as liver, skin, and skeletal muscle, the heart possesses only a minimal regenerative capacity. It lacks a progenitor cell population, and cardiomyocytes exit the cell cycle shortly after birth and do not re-enter after injury. Thus, any loss of cardiomyocytes is essentially irreversible and can lead to or exaggerate heart failure, which represents a major public health problem. New therapeutic options are urgently needed, but regenerative therapies have remained an unfulfilled promise in cardiovascular medicine until today. Yet, through a clearer comprehension of signaling pathways that regulate the cardiomyocyte cell cycle and advances in stem cell technology, strategies have evolved that demonstrate the potential to generate new myocytes and thereby fulfill an essential central criterion for heart repair.
Collapse
Affiliation(s)
- Florian Weinberger
- Institute for Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; , .,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute for Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; , .,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Hu X, Kueppers ST, Kooreman NG, Gravina A, Wang D, Tediashvili G, Schlickeiser S, Frentsch M, Nikolaou C, Thiel A, Marcus S, Fuchs S, Velden J, Reichenspurner H, Volk HD, Deuse T, Schrepfer S. The H-Y Antigen in Embryonic Stem Cells Causes Rejection in Syngeneic Female Recipients. Stem Cells Dev 2020; 29:1179-1189. [PMID: 32723003 DOI: 10.1089/scd.2019.0299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pluripotent stem cells are promising candidates for cell-based regenerative therapies. To avoid rejection of transplanted cells, several approaches are being pursued to reduce immunogenicity of the cells or modulate the recipient's immune response. These include gene editing to reduce the antigenicity of cell products, immunosuppression of the host, or using major histocompatibility complex-matched cells from cell banks. In this context, we have investigated the antigenicity of H-Y antigens, a class of minor histocompatibility antigens encoded by the Y chromosome, to assess whether the gender of the donor affects the cell's antigenicity. In a murine transplant model, we show that the H-Y antigen in undifferentiated embryonic stem cells (ESCs), as well as ESC-derived endothelial cells, provokes T- and B cell responses in female recipients.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Simon T Kueppers
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.,Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Alessia Gravina
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Dong Wang
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Stephan Schlickeiser
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Marco Frentsch
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christos Nikolaou
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Thiel
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sivan Marcus
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg, Hamburg, Germany
| | - Joachim Velden
- Evotec AG, Histopathology and In Vivo Pharmacology, Hamburg, Germany
| | - Hermann Reichenspurner
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Hans-Dieter Volk
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
|
10
|
Doss MX, Sachinidis A. Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells 2019; 8:cells8050403. [PMID: 31052294 PMCID: PMC6562607 DOI: 10.3390/cells8050403] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-based disease modelling and the cell replacement therapy approach have proven to be very powerful and instrumental in biomedical research and personalized regenerative medicine as evidenced in the past decade by unraveling novel pathological mechanisms of a multitude of monogenic diseases at the cellular level and the ongoing and emerging clinical trials with iPSC-derived cell products. iPSC-based disease modelling has sparked widespread enthusiasm and has presented an unprecedented opportunity in high throughput drug discovery platforms and safety pharmacology in association with three-dimensional multicellular organoids such as personalized organs-on-chips, gene/base editing, artificial intelligence and high throughput "omics" methodologies. This critical review summarizes the progress made in the past decade with the advent of iPSC discovery in biomedical applications and regenerative medicine with case examples and the current major challenges that need to be addressed to unleash the full potential of iPSCs in clinical settings and pharmacology for more effective and safer regenerative therapy.
Collapse
Affiliation(s)
- Michael Xavier Doss
- Technology Development Division, BioMarin Pharmaceutical Inc, 105 Digital Drive, Novato, CA 94949, USA.
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany.
| |
Collapse
|