1
|
Li Y, Wang Y, Zhao L, Stenzel MH, Jiang Y. Metal ion interference therapy: metal-based nanomaterial-mediated mechanisms and strategies to boost intracellular "ion overload" for cancer treatment. MATERIALS HORIZONS 2024; 11:4275-4310. [PMID: 39007354 DOI: 10.1039/d4mh00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion interference therapy (MIIT) has emerged as a promising approach in the field of nanomedicine for combatting cancer. With advancements in nanotechnology and tumor targeting-related strategies, sophisticated nanoplatforms have emerged to facilitate efficient MIIT in xenografted mouse models. However, the diverse range of metal ions and the intricacies of cellular metabolism have presented challenges in fully understanding this therapeutic approach, thereby impeding its progress. Thus, to address these issues, various amplification strategies focusing on ionic homeostasis and cancer cell metabolism have been devised to enhance MIIT efficacy. In this review, the remarkable progress in Fe, Cu, Ca, and Zn ion interference nanomedicines and understanding their intrinsic mechanism is summarized with particular emphasis on the types of amplification strategies employed to strengthen MIIT. The aim is to inspire an in-depth understanding of MIIT and provide guidance and ideas for the construction of more powerful nanoplatforms. Finally, the related challenges and prospects of this emerging treatment are discussed to pave the way for the next generation of cancer treatments and achieve the desired efficacy in patients.
Collapse
Affiliation(s)
- Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| |
Collapse
|
2
|
Li G, Huang H, Wu Y, Shu C, Hwang N, Li Q, Zhao R, Lam HC, Oldham WM, Ei-Chemaly S, Agrawal PB, Tian J, Liu X, Perrella MA. Striated preferentially expressed gene deficiency leads to mitochondrial dysfunction in developing cardiomyocytes. Basic Res Cardiol 2024; 119:151-168. [PMID: 38145999 PMCID: PMC10837246 DOI: 10.1007/s00395-023-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023]
Abstract
A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.
Collapse
Affiliation(s)
- Gu Li
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Cardiology, and Department of Pulmonary, Children's Hospital, Chongqing Medical University, Chongqing, 400015, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Yanshuang Wu
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Chang Shu
- Department of Cardiology, and Department of Pulmonary, Children's Hospital, Chongqing Medical University, Chongqing, 400015, China
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Qifei Li
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Neonatology, Department of Pediatrics and Jackson Health System, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rose Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Hilaire C Lam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Souheil Ei-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Neonatology, Department of Pediatrics and Jackson Health System, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jie Tian
- Department of Cardiology, and Department of Pulmonary, Children's Hospital, Chongqing Medical University, Chongqing, 400015, China
| | - Xiaoli Liu
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Mark A Perrella
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|