1
|
Su X, Shao B, Chen Z, Gu H, Xiong K, Wang G, Zou Q, Cao Y, Zhang C, Xu H, Yuan Y, Zhao X, Liu Y, Shen Y, Xie D, Chen YH. SNAP25-dependent membrane trafficking of the Kv1.5 channel regulates the onset of atrial fibrillation. Nat Commun 2025; 16:3730. [PMID: 40253375 PMCID: PMC12009440 DOI: 10.1038/s41467-025-59096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Synaptosomal-associated protein 25 kDa (SNAP25) is essential for vesicular trafficking and protein docking at presynaptic membranes in the nervous system, yet its role in the heart remains poorly understood. Here, we show an unrecognized function of SNAP25, which is selectively expressed in the atria, in regulating atrial electrical remodeling and the onset of atrial fibrillation (AF). SNAP25 protein is downregulated in the atria of AF patients. Cardiomyocyte-specific knockout of SNAP25 in male mice significantly shortens the atrial effective refractory period and action potential duration (APD), increasing susceptibility to AF, which is attributed to elevated Kv1.5 current and membrane expression. Blocking Kv1.5 channels effectively restores atrial APD and reduces AF incidence. Mechanistically, SNAP25 deficiency reduces the internalization of Kv1.5 from the cell surface membrane to early endosomes. In human iPSC-derived atrial cardiomyocytes, SNAP25 deficiency similarly elevates arrhythmic activity and accelerates repolarization. In conclusion, this study reveals that SNAP25 regulates AF susceptibility by controlling the trafficking of the atrial-specific Kv1.5 channel, highlighting SNAP25 as a promising therapeutic target for atrial arrhythmias.
Collapse
Affiliation(s)
- Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Beihua Shao
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhiwen Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hongcheng Gu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Guanghua Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qicheng Zou
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuting Cao
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Caihong Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hongtao Xu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yixin Yuan
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuxia Zhao
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yunli Shen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China.
- Affiliated Shanghai Blue Cross Brain hospital, School of Medicine, Tongji University, Shanghai, 200020, China.
| |
Collapse
|
2
|
Tabata K, Sudo T, Nagata Y, Ihara K, Asada K, Kinoshita A, Tanaka Y, Yamauchi Y, Sasaki T, Hachiya H, Imai Y, Fujita H, Sasano T, Furukawa T, Iwata T, Tanaka T. Rare genetic variants involved in increased risk of paroxysmal atrial fibrillation in a Japanese population. Sci Rep 2025; 15:13216. [PMID: 40240483 PMCID: PMC12003908 DOI: 10.1038/s41598-025-97794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world and can cause serious complications such as stroke or heart failure. Paroxysmal atrial fibrillation (PAF), a subtype of AF, accounts for approximately 25% of AF cases and is estimated to affect approximately 30 million people worldwide. Despite extensive genetic research on AF, the genetic factors involved in PAF in East Asian (EAS) populations remain unidentified. The aim of our study was to identify genetic factors associated with PAF in the Japanese population, contributing to our understanding of the genetic architecture of AF in Japanese populations. We conducted whole-exome sequencing on a cohort of 1176 PAF individuals and 1172 non-PAF control subjects in a Japanese population. We processed the sequencing data in accordance with the best practices outlined in the Genome Analysis Toolkit (GATK) and conducted gene-based association tests under three variant grouping strategies (masks) using the burden test, SKAT, and SKAT-O. We then performed a meta-analysis of the resulting P-values, which revealed that four genes-ZNF785, SMPD3, GFRA4, and LGALS1-were significantly associated with PAF, representing novel findings. These findings provide new insights into PAF pathogenesis and suggest potential biomarkers for early detection.
Collapse
Affiliation(s)
- Kanji Tabata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takeaki Sudo
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yuki Nagata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsuhiro Kinoshita
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yasuaki Tanaka
- Department of Cardiology, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Yasuteru Yamauchi
- Department of Cardiology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Takeshi Sasaki
- Department of Cardiology, Heart Rhythm Center, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hitoshi Hachiya
- Cardiology Division, Cardiovascular Center, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yasushi Imai
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Hideo Fujita
- Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan.
| |
Collapse
|
3
|
Shuai Z, Jie MS, Wen XK, Xu H, Yuan L. Effects of exercise intervention on exercise capacity and cardiopulmonary function in patients with atrial fibrillation: A randomized controlled trial systematic review and meta-analysis. Med Clin (Barc) 2025; 164:106908. [PMID: 40220475 DOI: 10.1016/j.medcli.2025.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 04/14/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common cardiac arrhythmia that significantly impacts the cardiopulmonary function and quality of life of patients. Despite various treatment strategies, non-pharmacological interventions, particularly exercise interventions, have gained attention in recent years. OBJECTIVE Through systematic review and meta-analysis, this study explores the impact of physical activity on the exercise capacity and quality of life of AF patients. It assesses the safety, clinical outcomes, and physiological mechanisms of exercise intervention in the treatment of AF. METHODS The systematic review and individual patient data (IPD) meta-analysis method were employed, following the PRISMA-IPD guidelines, for literature selection, data extraction, and quality assessment. The analysis focused on the impact of exercise on the cardiopulmonary function and quality of life of AF patients in randomized controlled trials. RESULTS A total of 12 randomized controlled trials involving 287 AF patients were included. Meta-analysis demonstrated a significant improvement in the 6-minute walk test capacity (SMD=87.87, 95% CI [42.23, 133.51]), static heart rate improvement (SMD=-7.63, 95% CI [-11.42, -3.85]), and cardiopulmonary function enhancement (SMD=2.37, 95% CI [0.96, 3.77]) due to exercise. There was also a significant improvement in the quality of life (SMD=0.720, 95% CI [0.038, 1.402]). CONCLUSION Exercise has a significant effect on improving exercise capacity and cardiopulmonary function in patients with atrial fibrillation. Particularly, high-intensity exercise training has a more significant impact on improving cardiopulmonary function and exercise capacity, emphasizing the importance of personalized exercise plans in enhancing the cardiopulmonary health of AF patients. Further research is needed to explore the effects of exercise on improving the quality of life in the future. PROSPERO ID CRD2023493917.
Collapse
Affiliation(s)
- Zhang Shuai
- Graduate Development, Harbin Sport University, Harbin, Heilongjiang, China
| | - Mao Su Jie
- Graduate Development, Harbin Sport University, Harbin, Heilongjiang, China
| | - Xiao Kai Wen
- Chinese Fencing Academy, Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Hong Xu
- Nanjing Polytechnic Institute Sports Work Department, Nanjing, Jiangsu, China.
| | - Lu Yuan
- Nanjing Polytechnic Institute Sports Work Department, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Dychiao AT, Lu TH, Peng SY, Fan C, Song S, Zhang C, Wang M, Shi S, Wu J, Li SH, Chang Y, Sung HW, Li RK. Noninvasive assessment of a bioconductive patch for treating atrial fibrillation with magnetic resonance imaging. J Control Release 2025; 380:317-329. [PMID: 39909283 DOI: 10.1016/j.jconrel.2025.01.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Electrical and structural remodeling disrupt atrial electrical conduction, leading to atrial fibrillation (AF). Epicardially delivered conductive biomaterial patches can effectively transmit electrical signals and potentially diminish AF. However, given the progressive nature of AF development, continuous and noninvasive monitoring is essential for assessing the therapeutic efficacy of these patches over time. In this study, superparamagnetic iron oxide nanoparticles (SPIO NPs) are synthesized and used to label a bio-conductive patch made of poly-3-amino-4-methoxybenzoic acid (PAMB) conjugated to gelatin (PAMBG-NP). Incorporating SPIO NPs does not alter the mechanical, electrical, or biocompatible properties of PAMBG. PAMBG-NP restores conduction velocity, suppresses rotor generation, and prevents re-entry currents, thereby relieving AF burden in an in vitro pacing model. In vivo, a bell-shaped PAMBG-NP patch is applied to the right and left atria of KCNE1 knockout mice. Compared to its Gelatin-NP counterpart, PAMBG-NP significantly reduces AF duration and enhances post-AF recovery over a 60-day period. Furthermore, magnetic resonance imaging indicates that PAMBG-NP degrades more slowly than Gelatin-NP, along with having a reduced incidence of AF in PAMBG-NP-treated animals. Therefore, incorporating SPIO NPs into PAMBG enables real-time, in vivo monitoring, potentially facilitating the noninvasive evaluation of its therapeutic efficacy.
Collapse
Affiliation(s)
- Adrian Tabora Dychiao
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ting-Hsuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Yao Peng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng Fan
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Siyang Song
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Chongyu Zhang
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Minyao Wang
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Sophia Shi
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Murninkas M, Levi O, Elyagon S, Komissar A, Marom N, Naumchik A, Dalal N, Gradwohl G, Etzion Y. Differential effects of anesthetics and sex on supraventricular electrophysiology and atrial fibrillation substrate in rats. Lab Anim (NY) 2025; 54:80-91. [PMID: 40140635 PMCID: PMC11957991 DOI: 10.1038/s41684-025-01532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Rodents are increasingly used in atrial electrophysiology research, yet such studies are often performed under anesthesia owing to technical challenges. Here we developed an implantable device for comprehensive atrial studies in ambulatory rats and investigated the effects of commonly used anesthetics on supraventricular electrophysiology and arrhythmic substrate, comparing them with the unanesthetized state (UAS). Adult rats were evaluated 4 weeks after implantation. Studies were conducted in the UAS under 2% isoflurane (ISO) and under 40 mg/kg pentobarbital (PEN). Pacing protocols determined various parameters, including sinoatrial node recovery time, atrioventricular node effective refractory period and atrial effective refractory period. Arrhythmic substrate was assessed after 20 triggering bursts per condition, and arrhythmic tendency was analyzed manually and through the complexity ratio, an unbiased measure recently developed by our group. PEN mildly increased heart rate in both sexes, while ISO did not affect heart rate but prolonged the corrected sinus node recovery time in males. PEN increased atrioventricular node effective refractory period in both sexes, while ISO affected males only. Both ISO and PEN prolonged atrial effective refractory period compared with UAS in both sexes. Arrhythmic measures were higher in males and were attenuated by ISO and, to a lesser extent, by PEN in males only. The dominant frequency of arrhythmic events was reduced by both anesthetics in both sexes. These findings demonstrate a significant impact of commonly used anesthetics on rat supraventricular electrophysiology, with sex-based differences, highlighting the importance of methodologies that enable cardiac electrophysiology studies in unanesthetized rodents.
Collapse
Affiliation(s)
- Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aviv Komissar
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Marom
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Naumchik
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Dalal
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gideon Gradwohl
- Medical Engineering Unit, The Jerusalem College of Technology, Jerusalem, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
6
|
Nowak KW, Zabczyk M, Natorska J, Polak M, Zalewski J, Undas A. Altered fibrin clot properties and elevated von Willebrand factor are associated with progression to permanent atrial fibrillation: A cohort study. Eur J Clin Invest 2025; 55:e14384. [PMID: 39831567 DOI: 10.1111/eci.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND The role of a prothrombotic state in atrial fibrillation (AF) progression to permanent arrythmia (PerAF) is unclear. Formation of denser and poorly lysable fibrin clots has been observed in AF patients also with sinus rhythm in association with higher stroke risk. We investigated whether altered fibrin clot properties and other prothrombotic state markers may contribute to AF transition to PerAF. METHODS In the cohort study, in 226 anticoagulated patients (median age 69 years, median CHA2DS2-VASc of 3) with paroxysmal (n = 83, 36.7%) or persistent (n = 143, 63.3%) AF, we assessed at baseline plasma clot permeability (Ks), clot lysis time (CLT), proteins involved in fibrinolysis and von Willebrand factor (vWF) antigen. We recorded patients with PerAF during a median follow-up of 58 months. RESULTS During follow-up, PerAF was documented in 62 (27.4%, 5.7%/year) subjects, who had higher prevalence of heart failure, higher body mass index and longer history of arrhythmia. AF transition to PerAF was associated with 25.7% longer CLT in relation to 21.3% higher plasminogen activator inhibitor type 1, and 29% higher vWF compared to the remainder, with no differences in Ks, plasminogen or α2-antiplasmin. By multivariable analysis, CLT (per 10 min, odds ratio [OR] 2.734, 95% confidence interval [CI] 1.788-4.180, p < .001), vWF (per 10%, OR 1.352, 95% CI 1.145-1.596, p < .001) and heart failure (OR 2.637, 95% CI 1.008-6.900, p = .048) were associated with progression to PerAF. CONCLUSION Suppressed fibrin clot susceptibility to lysis and elevated vWF could contribute to progression to PerAF despite anticoagulation, which suggests links between blood coagulation and AF progression.
Collapse
Affiliation(s)
- Karol Witold Nowak
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Coronary Artery Disease and Heart Failure, Saint John Paul II Hospital, Krakow, Poland
| | - Michal Zabczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, Saint John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, Saint John Paul II Hospital, Krakow, Poland
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Krakow, Poland
| | - Jaroslaw Zalewski
- Department of Coronary Artery Disease and Heart Failure, Saint John Paul II Hospital, Krakow, Poland
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, Saint John Paul II Hospital, Krakow, Poland
| |
Collapse
|
7
|
Schotten U, Goette A, Verheule S. Translation of pathophysiological mechanisms of atrial fibrosis into new diagnostic and therapeutic approaches. Nat Rev Cardiol 2025; 22:225-240. [PMID: 39443702 DOI: 10.1038/s41569-024-01088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrosis is one of the main manifestations of atrial cardiomyopathy, an array of electrical, mechanical and structural alterations associated with atrial fibrillation (AF), stroke and heart failure. Atrial fibrosis can be both a cause and a consequence of AF and, once present, it accelerates the progression of AF. The pathophysiological mechanisms leading to atrial fibrosis are diverse and include stretch-induced activation of fibroblasts, systemic inflammatory processes, activation of coagulation factors and fibrofatty infiltrations. Importantly, atrial fibrosis can occur in different forms, such as reactive and replacement fibrosis. The diversity of atrial fibrosis mechanisms and patterns depends on sex, age and comorbidity profile, hampering the development of therapeutic strategies. In addition, the presence and severity of comorbidities often change over time, potentially causing temporal changes in the mechanisms underlying atrial fibrosis development. This Review summarizes the latest knowledge on the molecular and cellular mechanisms of atrial fibrosis, its association with comorbidities and the sex-related differences. We describe how the various patterns of atrial fibrosis translate into electrophysiological mechanisms that promote AF, and critically appraise the clinical applicability and limitations of diagnostic tools to quantify atrial fibrosis. Finally, we provide an overview of the newest therapeutic interventions under development and discuss relevant knowledge gaps related to the association between clinical manifestations and pathological mechanisms of atrial fibrosis and to the translation of this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Paderborn, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Li L, Coarfa C, Yuan Y, Abu-Taha I, Wang X, Song J, Zeng Y, Chen X, Koirala A, Grimm SL, Kamler M, McClendon LK, Tallquist M, Nattel S, Dobrev D, Li N. Fibroblast-Restricted Inflammasome Activation Promotes Atrial Fibrillation and Heart Failure With Diastolic Dysfunction. JACC Basic Transl Sci 2025:S2452-302X(25)00061-0. [PMID: 40243956 DOI: 10.1016/j.jacbts.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 04/18/2025]
Abstract
Atrial fibrillation (AF) often coexists with heart failure, both involving inflammatory signaling and cardiac fibroblasts. To understand the role of fibroblast NLR family pyrin domain containing 3 (NLRP3) inflammasome in cardiac function, we found that NLRP3 was up-regulated in atrial fibroblasts from AF patients. Fibroblast-specific activation of NLRP3 in mice induced AF-promoting atrial myopathy and heart failure with diastolic dysfunction, accompanied by increased fibrosis, and reduced conduction velocity. Knockdown of NLRP3 prevented the AF-promoting atrial substrate and cardiomyopathy in the context of NLRP3 activation in fibroblasts. We identify the fibroblast NLRP3 inflammasome as a key pathway governing the promotion of proarrhythmic fibrosis in AF and cardiomyopathy.
Collapse
Affiliation(s)
- Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yue Yuan
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Jia Song
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Yuying Zeng
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Xiaohui Chen
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Amrit Koirala
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Lisa K McClendon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Michelle Tallquist
- Center for Cardiovascular Research, University of Hawaii, Honolulu, Hawaii, USA
| | - Stanley Nattel
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
9
|
Tian F, Yu G, Yang M, Sun Y, Gui Z, Zhao X, Wang N, Wan H, Peng X. Domestic water hardness, genetic risk, and distinct phenotypes of cardiovascular disease. Environ Health 2025; 24:9. [PMID: 40087673 PMCID: PMC11907801 DOI: 10.1186/s12940-025-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
AIMS The study aimed to investigate the association between domestic water hardness and the incidence of AF and the interaction effects between water hardness and genetic susceptibility to incident AF risk. As a secondary objective, its associations with incident heart failure (HF), coronary heart disease (CHD), and stroke were measured. METHODS The UK Biobank is a prospective cohort study comprising over 500,000 participants recruited in the United Kingdom between 2006 and 2010, aged 37 to 73 years. A total of 447,950 participants did not have prevalent AF, and 423,946 participants who were free of HF, CHD, and stroke at baseline were included. Water hardness was assessed by CaCO3 concentration. The genetic risk score for AF was based on the standard polygenic risk score. Cox proportional hazards regression models and restricted cubic spline (RCS) analysis were conducted. RESULTS During a median follow-up of 13.74 years, 30,726 (6.86%) individuals were diagnosed with AF for the first time. Compared with those with water hardness ≤ 60 mg/L, individuals with domestic water hardness 121-180 mg/L had a 17% lower risk of developing AF (HR 0.83, 95% CI 0.79-0.87), but water hardness of 61-120 mg/L and > 180 mg/L was associated with a higher risk of incident AF (both 1.04, 1.01-1.07). A non-linear relationship between water hardness and incident AF (P for non-linear = 0.001) was found. Individuals with water hardness 121-180 mg/L were also significantly associated with a lower risk of incident HF (HR 0.82, 95% CI 0.75-0.89), CHD (HR 0.80, 95% CI 0.76-0.84) and stroke (HR 0.88, 95% CI 0.81-0.95). There were no significant interaction effects between water hardness level and genetic susceptibility to AF, HF, CHD, and stroke risk (all P for interaction > 0.05). CONCLUSION Potential U-shaped associations between domestic water hardness and incident AF across varying levels of genetic risk were found. Hard water (121-180 mg/L) may offer the most benefits compared to soft water when considering overall cardiovascular health, including AF, HF, CHD, and stroke.
Collapse
Affiliation(s)
- Feng Tian
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Mengyuan Yang
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zihao Gui
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Xiaoyu Zhao
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China.
| | - Xuetao Peng
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China.
| |
Collapse
|
10
|
Zito E, Bianchini L, Sommariva E, Costa M, Forleo GB, Tondo C, Schiavone M. The Genetic Mechanisms and Pathology of Atrial Fibrillation: A Narrative Review. Biomedicines 2025; 13:654. [PMID: 40149630 PMCID: PMC11940445 DOI: 10.3390/biomedicines13030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Atrial fibrillation (AF), the most prevalent tachyarrhythmia worldwide, is a complex condition influenced by genetic, structural, and environmental factors. While AF in the elderly is often associated with underlying cardiac disease, early-onset or "lone" AF (LAF) exhibits a stronger genetic predisposition. Studies have identified both monogenic and polygenic contributors to AF risk. Monogenic mutations, inherited in Mendelian patterns, often affect ion channels and regulatory proteins, while polygenic variants modulate susceptibility and interact with environmental factors. Genome-wide association studies (GWAS) and exosome-wide association studies (ExWAS) have expanded our understanding of AF genetics, identifying numerous susceptibility loci, though challenges remain in linking these variants to specific molecular mechanisms. Pathophysiologically, AF results from a balance of triggers, drivers, and substrates. Triggers, such as ectopic foci in the pulmonary veins, initiate AF episodes, while structural and electrical remodeling perpetuates the arrhythmia. Fibrosis, atrial dilation, and tachycardia-induced remodeling promote reentry circuits and irregular conduction, increasing AF vulnerability. The interplay between genetic predisposition and remodeling processes underscores the complexity of AF maintenance, particularly in persistent AF forms. Emerging insights into AF genetics and pathophysiology highlight the need for personalized approaches to its prevention and management. Understanding genetic risk, combined with targeted therapies addressing structural and electrical remodeling, holds promise for improved patient outcomes. Future research into AF's molecular and genetic mechanisms will be key to advancing precision medicine in this field.
Collapse
Affiliation(s)
- Elio Zito
- Cardiology School, University of Milan, 20122 Milan, Italy (M.C.)
| | - Lorenzo Bianchini
- Department of Clinical Electrophysiology & Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy (C.T.)
| | - Elena Sommariva
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy;
| | | | | | - Claudio Tondo
- Department of Clinical Electrophysiology & Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy (C.T.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Marco Schiavone
- Department of Clinical Electrophysiology & Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy (C.T.)
| |
Collapse
|
11
|
Yu JF, Dong Q, Du YM. Interleukin-6: Molecular Mechanisms and Therapeutic Perspectives in Atrial Fibrillation. Curr Med Sci 2025:10.1007/s11596-025-00021-7. [PMID: 40035997 DOI: 10.1007/s11596-025-00021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical, structural, and autonomic remodeling of the atria. AF is closely associated with elevated interleukin-6 (IL-6) levels, which contribute to atrial remodeling and the progression of AF. This review summarizes the mechanisms by which IL-6 promotes AF through inflammatory pathways, atrial fibrosis, electrical remodeling, and calcium mishandling. Experimental models have demonstrated that IL-6 neutralization reduces the incidence of AF, highlighting its potential as a therapeutic target. Future studies should focus on IL-6 blockade strategies to manage AF, aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Jin-Fang Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Qian N, Jin J, Gao Y, Liu J, Wang Y. Sex Differences in Atrial Fibrillation: Evidence from Circulating Metabolites. Metabolites 2025; 15:170. [PMID: 40137135 PMCID: PMC11943541 DOI: 10.3390/metabo15030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Significant sex differences exist in atrial fibrillation (AF). Better understanding of its underlying mechanism would help AF management. This study aimed to investigate the contribution of circulating metabolites to sex differences in AF and the association between them. Methods: A total of 108 patients with AF were enrolled. Untargeted metabolomics were performed in plasma samples of male and female patients. Correlation analysis with clinical characteristics and Mendelian randomization were used to identify sex-specific metabolites associated with AF, which was further validated in additional patients. Transcriptomics data of the left atrium were used to investigate the molecular alteration of the left atrium responding to identified sex-specific circulating metabolites. The effect of selected sex-specific metabolites on cardiomyocytes was further investigated. Results: A total of 60 annotated metabolites were found with different levels between male and female patients. Among these sex-specific metabolites, three metabolites, 7-Methylguanosine, succinic acid, and N-Undecylbenzenesulfonic acid, were positively related to the left atrial remodeling. Additionally, succinic acid was significantly associated with increased risk of AF (OR = 1.26; 95% CI: 1.13 to 1.40; p < 0.001). And, SUCLA2, the gene of succinic acid metabolism, was significantly increased in the left atrium of male patients (fold change = 1.53; p = 0.008). Treatment with succinic acid led to cardiomyocyte hypertrophy and mitochondrial dysfunction. Conclusions: This study highlights sex differences in circulating metabolites in patients with AF and identifies the associations between sex-specific metabolites and AF. succinic acid, which is much higher in male patients, contributes to the process of AF.
Collapse
Affiliation(s)
- Ningjing Qian
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Junyan Jin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Jiayi Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
13
|
Moreno-Loaiza O, Soares VC, de Assumpção Souza M, Vera-Nuñez N, Rodriguez de Yurre Guirao A, da Silva TP, Pozes AB, Perticarrari L, Monteiro E, Albino MC, Silva SB, Dias SSG, Maciel L, Muzi-Filho H, de Oliveira DF, Braga BC, Diniz LP, Cruz MC, Barbosa SR, Castro-Junior AB, Conde L, Cabral-Castro MJ, de Souza OF, Tavares Pinheiro MV, Araújo de Oliveira Junior N, Rezende de Siqueira L, Cosenza RP, Munhoz da Fontoura C, Secco JCP, da Rocha Ferreira J, Silvestre de Sousa A, Albuquerque D, Luiz RR, Nicolau-Neto P, Pretti MA, Boroni M, Bonamino MH, Kasai-Brunswick TH, Mello DB, Gonçalves-Silva T, Ramos IP, Bozza FA, Madeiro JPDV, Pedrosa RC, Carneiro-Ramos MS, da Silva Martinho H, Bozza PT, Mesquita de Souza F, Victor Lucena da Silva G, Cunha TM, Uzelac I, Fenton F, Moll-Bernardes R, Paiva CN, Escobar AL, Medei E. IL-1β enhances susceptibility to atrial fibrillation in mice by acting through resident macrophages and promoting caspase-1 expression. NATURE CARDIOVASCULAR RESEARCH 2025; 4:312-329. [PMID: 39915330 PMCID: PMC11980030 DOI: 10.1038/s44161-025-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/09/2025] [Indexed: 03/19/2025]
Abstract
Atrial fibrillation (AF) is more prevalent in patients with elevated interleukin (IL)-1β levels. Here we show that daily administration of IL-1β for 15 days sensitizes mice to AF, leading to fibrosis, accumulation of β-pleated sheet proteins in the left atrium, and systemic inflammation, resembling the pathophysiological changes observed in patients with AF. IL-1β administration creates a positive feedback loop, dependent on the IL-1 receptor (IL-1R) activity in cardiac resident macrophages. This results in increased caspase-1 maturation in the left atrium and elevated Il1b and Casp1 transcription in atrial macrophages. IL-1β treatment accelerated action potential and Ca2+ restitution in the left atrium, leading to action-potential shortening. This, along with increased caspase-1 maturation and IL-1R signaling, was essential for inducing AF. Lack of IL-1R in macrophages, but not cardiomyocytes, prevented IL-1β-induced AF sensitivity. By depleting recruited macrophages or deleting IL-1R specifically in cardiac resident macrophages, we further demonstrate that IL-1β/IL-1R signaling in these resident macrophages is responsible for increased AF susceptibility. These findings offer insights into the therapeutic potential of targeting IL-1β/IL-1R signaling in patients with AF and emphasize the importance of recognizing different underlying causes in this patient group.
Collapse
Affiliation(s)
- Oscar Moreno-Loaiza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Manuela de Assumpção Souza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narendra Vera-Nuñez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tatiana Pereira da Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz Pozes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Perticarrari
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelin Monteiro
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Clara Albino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sophia Barros Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dahienne Ferreira de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Cabral Braga
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan Pereira Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Costa Cruz
- Centro de Facilidades e Apoio à Pesquisa (CEFAP), Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | - Luciana Conde
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Jorge Cabral-Castro
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Pathology Department, Fluminense Federal University, Niterói, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Ronir Raggio Luiz
- Institute for Studies in Public Health-IESC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Clementino Fraga University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Marco Antonio Pretti
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martin Hernán Bonamino
- Molecular Carcinogenesis Program, Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Bastos Mello
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Roberto Coury Pedrosa
- Clementino Fraga University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Mesquita de Souza
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gabriel Victor Lucena da Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ilija Uzelac
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Claudia N Paiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, CA, USA
| | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Fan Y, Ye J, Wang X, Song L, Zhang Y, Wang Y. Instant termination as a novel indicator for prognosis of persistent atrial fibrillation during cryoballoon ablation: a propensity score-matched analysis. Front Cardiovasc Med 2025; 12:1522086. [PMID: 40094024 PMCID: PMC11906448 DOI: 10.3389/fcvm.2025.1522086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Instant atrial fibrillation termination (AFT) during radiofrequency ablation has been suggested as a predictor of prognosis in persistent atrial fibrillation (AF). However, its role in cryoballoon ablation remains unclear. This study investigated the association between AFT and recurrent atrial tachyarrhythmia in patients with persistent AF undergoing cryoballoon ablation. Methods Patients with non-valvular, drug-resistant, persistent AF who underwent cryoballoon ablation between January 2021 and June 2023 were included and categorized based on the presence or absence of AFT. Propensity score matching (PSM) was applied to eliminate covariate imbalances. Baseline characteristics, procedural details, and clinical outcomes were compared between the groups. Results A total of 189 patients [65.0 (59.0-71.0) years] were included. Among them, 41 experienced instant AFT, while 148 remained in AF rhythm. The baseline conditions were similar, except that patients with AFT presented significantly lower left atrial diameter (LAD). During a follow-up of 16.0 [9.1-26.9] months, the recurrence rates of arrhythmias were significantly lower in the AFT group (log-rank P = 0.044). Both AFT [HR: 0.298, 95% CI: (0.091-0.976), P = 0.035] and baseline LAD [HR: 1.079, 95% CI: (1.012-1.151), P = 0.021] were independent predictors of recurrence. We further assessed the prognostic value of AFT in PSM groups which showed that the recurrence rates were also significantly lower in the AFT group (log-rank P = 0.049). Conclusion Instant AFT during cryoballoon ablation is associated with a reduced risk of arrhythmic recurrence in patients with persistent AF.
Collapse
Affiliation(s)
- Youqi Fan
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jian Ye
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Xiaoya Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Liuguang Song
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yu Zhang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Zhou Y, Ye T, Yu F, Song Z, Wang L, Zhang C, Yang B, Yang J, Wang X. Inhibition of P2X7 receptor mitigates atrial fibrillation susceptibility in isoproterenol-induced rats. Biochem Biophys Res Commun 2025; 749:151340. [PMID: 39855041 DOI: 10.1016/j.bbrc.2025.151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common cardiac arrhythmia that is characterized by atrial electrical remodeling. The P2X7 receptor (P2X7R), an ATP-gated ion channel, has been implicated in cardiovascular pathologies; however, its role in atrial electrical remodeling remains unclear. This study investigated whether inhibition of P2X7R could mitigate isoproterenol (ISO)-induced atrial electrical remodeling in rats and explored the underlying mechanisms. METHODS Two gene expression profiles related to AF (GSE79768 and GSE10598) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using GEO2R. Mendelian randomization (MR) investigated the causal relationship between P2X7R expression and AF. Enrichment analysis was also conducted. An animal model was established via intraperitoneal injection of ISO for 2 weeks. The rats were divided into three groups: control (CTL), ISO, and ISO + Brilliant Blue G (BBG). Cardiac electrophysiological parameters were assessed using programmed electrical stimulation. Myocardial fibrosis and hypertrophy were evaluated using Sirius Red and Wheat Germ Agglutinin staining, respectively. P2X7R abundance was assessed using immunofluorescence, and relevant proteins were detected by Western blotting. RESULTS GEO2R and MR analyses indicated a correlation between P2X7R expression and AF. Rats in the ISO group exhibited increased P2X7R levels, abnormal cardiac electrophysiology, altered ion channel protein expression, myocardial hypertrophy, and fibrosis. Enrichment analysis indicated that oxidative stress responses might be involved, and Western blotting showed significantly elevated levels of NOX, CaMKII, and associated proteins. BBG (P2X7R inhibitor) treatment mitigated these effects. CONCLUSIONS P2X7R was associated with AF, and inhibition of P2X7R curbed electrical and structural remodeling in ISO-induced AF, potentially via the NOX/CaMKII pathway.
Collapse
Affiliation(s)
- Yunping Zhou
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Tianxin Ye
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Fangcong Yu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Zhuonan Song
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Longbo Wang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Jinxiu Yang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.
| | - Xingxiang Wang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
16
|
Muszyński P, Cieślińska M, Dziemidowicz M, Bonda-Ostaszewska E, Hirnle T, Bonda TA. The Influence of Empagliflozin on the Expression of Mitochondrial Regulatory Proteins in Human Myocardium in an Ex Vivo Model of Short-Term Atrial Tachypacing. Int J Mol Sci 2025; 26:1664. [PMID: 40004127 PMCID: PMC11854933 DOI: 10.3390/ijms26041664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Atrial fibrillation (AF) is associated with energetic deficiency and oxidative stress due to mitochondrial dysfunction, resulting in electric remodeling. Long-term treatment was found to ameliorate mitochondrial function and decrease inducibility in animal models. No studies examine the short-term effect of SGLT-2 inhibitors administration in AF. In the present study, the samples of the right atrial appendage collected from 10 patients subjected to elective cardiac surgery were sliced and incubated in a control buffer (EMPA 0), 0.2 µmol/L empagliflozin (EMPA 0.2), or 1.0 µmol/L (EMPA 1). The expression of mitochondrial biogenesis, fission, and fusion proteins was measured by Western blot after 30 min of electrical stimulation (control-1 Hz or tachypacing-5 Hz). The PGC-1α protein expression was increased after 30 min of stimulation with 1 Hz when incubated under a higher concentration of empagliflozin. After tachypacing, EMPA 0.2 increased PGC-1α, while EMPA 1.0 upregulated NRF-1. Both concentrations increased NRF-2 during control stimulation. The oxygen consumption was higher in AF, and was decreased by SGLT-2i. Empagliflozin exerts dynamic effects on the expression of PGC-1α and other proteins involved in mitochondrial function and oxidative stress in cardiomyocytes and may modulate cellular response to tachycardia.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (P.M.); (M.C.); (M.D.)
| | - Magdalena Cieślińska
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (P.M.); (M.C.); (M.D.)
| | - Magdalena Dziemidowicz
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (P.M.); (M.C.); (M.D.)
| | | | - Tomasz Hirnle
- Department of Cardiosurgery, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Tomasz Andrzej Bonda
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (P.M.); (M.C.); (M.D.)
| |
Collapse
|
17
|
Fan S, Hu Y, Shi J. Role of ferroptosis in atrial fibrillation: a review. Front Pharmacol 2025; 16:1362060. [PMID: 39981174 PMCID: PMC11839810 DOI: 10.3389/fphar.2025.1362060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiovascular disease remains the leading cause of mortality, with atrial fibrillation emerging as one of the most common conditions encountered in clinical practice. However, its underlying mechanisms remain poorly understood, prompting ongoing research. Ferroptosis, a recently discovered form of regulated cell death characterized by lipid peroxidation and disrupted cellular redox balance leading to cell death due to iron overload, has attracted significant attention. Since its identification, ferroptosis has been extensively studied in various contexts, including cancer, stroke, myocardial ischemia/reperfusion injury, and heart failure. Growing evidence suggests that ferroptosis may also play a critical role in the onset and progression of atrial fibrillation, though research in this area is still limited. This article provides a concise overview of the potential mechanisms by which ferroptosis may contribute to the pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Shaowei Fan
- Lugouqiao Second Community Health Service Center, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Jingjing Shi
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
18
|
Benali K, Macle L, Haïssaguerre M, Nattel S, Deyell M, Da Costa A, Andrade JG. Impact of Catheter Ablation of Atrial Fibrillation on Disease Progression. JACC Clin Electrophysiol 2025; 11:421-435. [PMID: 40010884 DOI: 10.1016/j.jacep.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 02/28/2025]
Abstract
Atrial fibrillation (AF) remains a major public health challenge worldwide with a globally increasing prevalence and exponential increase in health care costs. The progression from paroxysmal (defined as self-terminating episodes of AF lasting <7 days) to persistent AF (eg, AF episodes lasting longer than 7 days) is associated with premature mortality, increasing incidence of thromboembolism and heart failure, as well as increased rates of hospitalization and health care use. Given recognition that complications of AF increase as the disease advances, there is an urgent need to ensure therapeutic interventions are capable of delaying or halting disease progression. Whereas pharmacotherapy can be relatively effective at managing the symptoms associated with AF, antiarrhythmic drugs are less effective than catheter ablation in reducing arrhythmia burden, improving quality of life, and reducing health care use. Moreover, pharmacologic therapy does not modify the pathophysiological processes responsible for disease progression. Catheter ablation confers a more comprehensive disease-modifying intervention, targeting multiple mechanisms underlying AF progression through a combination of trigger elimination, electroanatomical substrate modification, and autonomic nervous system modulation. Until recently, the belief that catheter ablation was an effective method to prevent disease progression was mostly speculative. However, recent randomized controlled trials have established catheter ablation as disease-modifying intervention. Given this knowledge, it appears that early intervention is critical to optimally affect the disease progression. The purpose of this paper is to review the rationale and evidence supporting disease modification using catheter ablation as a key part of the AF treatment paradigm.
Collapse
Affiliation(s)
- Karim Benali
- Montreal Heart Institute, Université de Montréal, Montréal, Canada; Saint-Etienne University Hospital Center, Saint-Etienne, France; Hôpital Haut-Levêque, Bordeaux, France; IHU LIRYC-Electrophysiology and Heart Modeling Institute, Bordeaux University
| | - Laurent Macle
- Montreal Heart Institute, Université de Montréal, Montréal, Canada
| | - Michel Haïssaguerre
- Hôpital Haut-Levêque, Bordeaux, France; IHU LIRYC-Electrophysiology and Heart Modeling Institute, Bordeaux University
| | - Stanley Nattel
- Montreal Heart Institute, Université de Montréal, Montréal, Canada
| | - Marc Deyell
- Vancouver General Hospital, Vancouver, British Columbia, Canada; Centre for Cardiovascular Innovation, Vancouver, British Columbia, Canada
| | | | - Jason G Andrade
- Montreal Heart Institute, Université de Montréal, Montréal, Canada; Vancouver General Hospital, Vancouver, British Columbia, Canada; Centre for Cardiovascular Innovation, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
Ferreira M, Geraldes V, Felix AC, Oliveira M, Laranjo S, Rocha I. Advancing Atrial Fibrillation Research: The Role of Animal Models, Emerging Technologies and Translational Challenges. Biomedicines 2025; 13:307. [PMID: 40002720 PMCID: PMC11853233 DOI: 10.3390/biomedicines13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, presenting a significant global healthcare challenge due to its rising incidence, association with increased morbidity and mortality, and economic burden. This arrhythmia is driven by a complex interplay of electrical, structural, and autonomic remodelling, compounded by genetic predisposition, systemic inflammation, and oxidative stress. Despite advances in understanding its pathophysiology, AF management remains suboptimal, with ongoing debates surrounding rhythm control, rate control, and anticoagulation strategies. Animal models have been instrumental in elucidating AF mechanisms, facilitating preclinical research, and advancing therapeutic development. This review critically evaluates the role of animal models in studying AF, emphasizing their utility in exploring electrical, structural, and autonomic remodelling. It highlights the strengths and limitations of various models, from rodents to large animals, in replicating human AF pathophysiology and advancing translational research. Emerging approaches, including optogenetics, advanced imaging, computational modelling, and tissue engineering, are reshaping AF research, bridging the gap between preclinical and clinical applications. We also briefly discuss ethical considerations, the translational challenges of animal studies and future directions, including integrative multi-species approaches, omics technologies and personalized computational models. By addressing these challenges and addressing emerging methodologies, this review underscores the importance of refining experimental models and integrating innovative technologies to improve AF management and outcomes.
Collapse
Affiliation(s)
- Monica Ferreira
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Vera Geraldes
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Ana Clara Felix
- Pediatric Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal; (A.C.F.); (S.L.)
| | - Mario Oliveira
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
- Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal
| | - Sergio Laranjo
- Pediatric Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal; (A.C.F.); (S.L.)
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
20
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Saljic A, Heijman J, Dobrev D. From Atrial Small-conductance Calcium-activated Potassium Channels to New Antiarrhythmics. Eur Cardiol 2024; 19:e26. [PMID: 39872420 PMCID: PMC11770539 DOI: 10.15420/ecr.2024.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/27/2024] [Indexed: 01/30/2025] Open
Abstract
Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF. Small-conductance calcium-activated potassium (SK or KCa2.x) channels encoded by KCNN1-3 have recently gathered interest as novel antiarrhythmic targets with potential atrial-predominant effects. Here, the molecular composition of smallconductance calcium-activated potassium channels and their complex regulation in AF as the basis for understanding the distinct mechanism of action of pore-blockers (apamin, UCL1684, ICAGEN) and modulators of calcium-dependent activation (NS8593, AP14145, AP30663) are summarised. Furthermore, the preclinical and early clinical evidence for the role of small-conductance calcium-activated potassium channel inhibitors in the treatment of AF are reviewed.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-EssenEssen, Germany
| | - Jordi Heijman
- Gottfried Schatz Research Centre, Division of Medical Physics & Biophysics, Medical University of GrazGraz, Austria
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht UniversityMaastricht, the Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Departments of Medicine and Research Centre, Montreal Heart Institute and Université de MontréalMontreal, Canada
- Department of Integrative Physiology, Baylor College of MedicineHouston, TX, US
| |
Collapse
|
22
|
Silva Cunha P, Laranjo S, Monteiro S, Portugal G, Guerra C, Rocha AC, Pereira M, Ferreira RC, Heijman J, Oliveira MM. The impact of atrial voltage and conduction velocity phenotypes on atrial fibrillation recurrence. Front Cardiovasc Med 2024; 11:1427841. [PMID: 39736879 PMCID: PMC11683111 DOI: 10.3389/fcvm.2024.1427841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Low atrial voltage and slow conduction velocity (CV) have been associated with atrial fibrillation (AF); however, their interaction and relative importance as early disease markers remain incompletely understood. We aimed to elucidate the relationship between atrial voltage and CV using high-density electroanatomic (HDE) maps of patients with AF. Methods HDE maps obtained during sinus rhythm in 52 patients with AF and five healthy controls were analysed. Atrial voltage and CV maps were generated, and their correlations were assessed. Subgroup analyses were performed based on clinically relevant factors such as AF type, CV, and voltage levels. Finally, cluster analysis was conducted to identify distinct phenotypes within the population, reflecting different patterns of conduction and voltage. Results A moderate positive correlation was found between the mean atrial voltage and CV (r = 0.570). Subgroup analysis revealed differences in voltage (p = 0.0044) but not in global CV (p = 0.42), with no significant differences between AF types. Three distinct phenotypes emerged: normal voltage/normal CV, normal voltage/low CV, and low voltage/low CV, with distinct recurrence rates, suggesting different disease progression paths. Slower atrial CV was identified as a significant predictor of arrhythmia recurrence at 12 and 24 months after AF ablation, surpassing the predictive potential of atrial voltage. Conclusion Atrial voltage and CV analyses revealed distinct phenotypes. Lower atrial CV emerged as a significant predictor of AF recurrence, exceeding the predictive significance of atrial voltage. These findings emphasise the importance of considering CV and voltage in managing AF and offer potential insights for personalised strategies.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- CCUL @ RISE, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Departamento de Fisiologia, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sofia Monteiro
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
| | - Guilherme Portugal
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
| | - Cátia Guerra
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
| | | | | | - Rui Cruz Ferreira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- CCUL @ RISE, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Yang Y, Li Q, Liu X, Shao C, Yang H, Niu S, Peng H, Meng X. The combination of decitabine with multi-omics confirms the regulatory pattern of the correlation between DNA methylation of the CACNA1C gene and atrial fibrillation. Front Pharmacol 2024; 15:1497977. [PMID: 39734414 PMCID: PMC11681619 DOI: 10.3389/fphar.2024.1497977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Background Studies have shown that DNA methylation of the CACNA1C gene is involved in the pathogenesis of various diseases and the mechanism of drug action. However, its relationship with atrial fibrillation (AF) remains largely unexplored. Objective To investigate the association between DNA methylation of the CACNA1C gene and AF by combining decitabine (5-Aza-2'-deoxycytidine, AZA) treatment with multi-omics analysis. Methods HepG2 cells were treated with AZA to observe the expression of the CACNA1C gene, which was further validated using gene expression microarrays. Pyrosequencing was employed to validate differentially methylated sites of the CACNA1C gene observed in DNA methylation microarrays. A custom DNA methylation dataset based on the MSigDB database was combined with ChIP-sequencing and RNA-sequencing data to explore the regulatory patterns of DNA methylation of the CACNA1C gene. Results Treatment of HepG2 cells with three different concentrations of AZA (2.5 µM, 5.0 µM, and 10.0 µM) resulted in 1.6, 2.5, and 2.9-fold increases in the mRNA expression of the CACNA1C gene, respectively, compared to the DMSO group, with statistical significance at the highest concentration group (p < 0.05). Similarly, AZA treatment of T47D cells showed upregulated mRNA expression of the CACNA1C gene in the gene expression microarray results (adj P < 0.05). DNA methylation microarray analysis revealed that methylation of a CpG site in intron 30 of the CACNA1C gene may be associated with AF (adj P < 0.05). Pyrosequencing of this site and its adjacent two CpG sites demonstrated significant differences in DNA methylation levels between AF and sinus rhythm groups (p < 0.05). Subsequent multivariate logistic regression models confirmed that the DNA methylation degree of these three sites and their average was associated with AF (p < 0.05). Additionally, the UCSC browser combined with ChIP-sequencing revealed that the aforementioned region was enriched in enhancer markers H3K27ac and H3K4me1. Differential expression and pathway analysis of RNA-sequencing data ultimately identified ATF7IP and KAT2B genes as potential regulators of the CACNA1C gene. Conclusion The DNA methylation levels at three CpG sites in intron 30 of the CACNA1C gene are associated with AF status, and potentially regulated by ATF7IP and KAT2B.
Collapse
Affiliation(s)
- Yuling Yang
- Department of Pharmacy, Zhengzhou No. 7 People’s Hospital, Zhengzhou, Henan, China
| | - Qijun Li
- Department of Dermatology, Puyang Oilfield General Hospital, Puyang, Henan, China
| | - Xiaoning Liu
- Medical School, Huanghe Science and Technology College, Zhengzhou, Henan, China
| | - Caixia Shao
- Department of Surgery, Zhengzhou No. 7 People’s Hospital, Zhengzhou, Henan, China
| | - Heng Yang
- Department of Cardiac Surgery, Zhengzhou No. 7 People’s Hospital, Zhengzhou, Henan, China
| | - Siquan Niu
- Department of Cardiology, Zhengzhou No. 7 People’s Hospital, Zhengzhou, Henan, China
| | - Hong Peng
- Medical School, Huanghe Science and Technology College, Zhengzhou, Henan, China
| | - Xiangguang Meng
- Department of Pharmacy, Zhengzhou No. 7 People’s Hospital, Zhengzhou, Henan, China
- Medical School, Huanghe Science and Technology College, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Pavel MA, Chen H, Hill M, Sridhar A, Barney M, DeSantiago J, Owais A, Sandu S, Darbar FA, Ornelas-Loredo A, Al-Azzam B, Chalazan B, Rehman J, Darbar D. A Titin Missense Variant Causes Atrial Fibrillation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.06.24318402. [PMID: 39677424 PMCID: PMC11643245 DOI: 10.1101/2024.12.06.24318402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rare and common genetic variants contribute to the risk of atrial fibrillation (AF). Although ion channels were among the first AF candidate genes identified, rare loss-of-function variants in structural genes such as TTN have also been implicated in AF pathogenesis partly by the development of an atrial myopathy, but the underlying mechanisms are poorly understood. While TTN truncating variants (TTNtvs) have been causally linked to arrhythmia and cardiomyopathy syndromes, the role of missense variants (mvs) remains unclear. We report that rare TTNmvs are associated with adverse clinical outcomes in AF patients and we have identified a mechanism by which a TTNmv (T32756I) causes AF. Modeling the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) revealed that the mutant cells display aberrant contractility, increased activity of a cardiac potassium channel (KCNQ1, Kv7.1), and dysregulated calcium homeostasis without compromising the sarcomeric integrity of the atrial cardiomyocytes. We also show that a titin-binding protein, the Four-and-a-Half Lim domains 2 (FHL2), has increased binding with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I-iPSC-aCMs, enhancing the slow delayed rectifier potassium current (I ks). Suppression of FHL2 in mutant iPSC-aCMs normalized the I ks, supporting FHL2 as an I ks modulator. Our findings demonstrate that a single amino acid change in titin not only affects function but also causes ion channel remodeling and AF. These findings emphasize the need for high-throughput screening to evaluate the pathogenicity of TTNmvs and establish a mechanistic link between titin, potassium ion channels, and sarcomeric proteins that may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Mahmud Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Michael Hill
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jaime DeSantiago
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shashank Sandu
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Faisal A. Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Aylin Ornelas-Loredo
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Bahaa Al-Azzam
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Brandon Chalazan
- Division of Genetics, Genomics, and Metabolism, Department of Pediatrics, Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Pharmacology, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA
| |
Collapse
|
25
|
Ren W, Huang Y, Meng S, Cao Z, Qin N, Zhao J, Huang T, Guo X, Chen X, Zhou Z, Zhu Y, Yu L, Wang H. Salidroside treatment decreases the susceptibility of atrial fibrillation in diabetic mice by reducing mTOR-STAT3-MCP-1 signaling and atrial inflammation. Int Immunopharmacol 2024; 142:113196. [PMID: 39306893 DOI: 10.1016/j.intimp.2024.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinic, and type 2 diabetes mellitus (T2DM) is an independent risk factor for AF. Salidroside (Sal), the active ingredient of the Rhodiola rosea, has hypoglycemic, anti-inflammatory, anti-fibrotic and anti-arrhythmic effects. The aim of this study is to investigate the effects and underlying molecular mechanisms of Sal on T2DM associated atrial inflammation and the pathogenesis of AF. In the in vivo study, T2DM mice model was established by high-fat diet and intraperitoneal injection of streptozotocin (STZ). Sal (25 mg/kg/d, 50 mg/kg/d, and 100 mg/kg/d) was administered orally for 4 weeks. T2DM caused atrial electrical and structural remodeling and significantly increased the susceptibility of AF. Meanwhile, mTOR-STAT3-MCP-1 signaling and inflammatory markers were also significantly enhanced in diabetic atria. However, Sal dose-dependently ameliorated cardiac dysfunction, mitigated atrial structural and electrical remodeling, and reduced atrial inflammation. Moreover, Sal-treated group exhibited remarkably down-regulated activity of mTOR-STAT3-MCP-1 pathway, and decreased atrial monocyte/macrophage infiltration. In palmitic acid (PA)-challenged HL-1 cells, Sal attenuated cytotoxicity, downregulated the expressions of TNF-α, IL-6, MCP-1, and inhibited the activation of mTOR-STAT3 signaling. However, co-treatment with MHY1485 (a mTOR agonist) reversed these effects. Taken together, the present study demonstrates that Sal treatment decreases the susceptibility of AF in diabetic mice by reducing mTOR-STAT3-MCP-1 signaling and atrial monocyte/macrophage infiltration. Sal treatment may represent a novel preventive therapy for cardiac arrhythmia and atrial fibrillation in diabetic patients.
Collapse
Affiliation(s)
- Wenpu Ren
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Nana Qin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xin Chen
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yan Zhu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
26
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
27
|
Wijdeveld LFJM, Collinet ACT, Huiskes FG, Brundel BJJM. Metabolomics in atrial fibrillation - A review and meta-analysis of blood, tissue and animal models. J Mol Cell Cardiol 2024; 197:108-124. [PMID: 39476947 DOI: 10.1016/j.yjmcc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/10/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia associated with severe cardiovascular complications. AF presents a growing global challenge, however, current treatment strategies for AF do not address the underlying pathophysiology. To advance diagnosis and treatment of AF, a deeper understanding of AF root causes is needed. Metabolomics is a fast approach to identify, quantify and analyze metabolites in a given sample, such as human serum or atrial tissue. In the past two decades, metabolomics have enabled research on metabolite biomarkers to predict AF, metabolic features of AF, and testing metabolic mechanisms of AF in animal models. Due to the field's rapid evolution, the methods of AF metabolomics studies have not always been optimal. Metabolomics research has lacked standardization and requires expertise to face methodological challenges. PURPOSE OF THE REVIEW We summarize and meta-analyze metabolomics research on AF in human plasma and serum, atrial tissue, and animal models. We present the current progress on metabolic biomarkers candidates, metabolic features of clinical AF, and the translation of metabolomics findings from animal to human. We additionally discuss strengths and weaknesses of the metabolomics method and highlight opportunities for future AF metabolomics research.
Collapse
Affiliation(s)
- Leonoor F J M Wijdeveld
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA 02142, Cambridge, United States
| | - Amelie C T Collinet
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Fabries G Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Niskala A, Heijman J, Dobrev D, Jespersen T, Saljic A. Targeting the NLRP3 inflammasome signalling for the management of atrial fibrillation. Br J Pharmacol 2024; 181:4939-4957. [PMID: 38877789 DOI: 10.1111/bph.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 06/16/2024] Open
Abstract
Inflammatory signalling via the nod-like receptor (NLR) family pyrin domain-containing protein-3 (NLRP3) inflammasome has recently been implicated in the pathophysiology of atrial fibrillation (AF). However, the precise role of the NLRP3 inflammasome in various cardiac cell types is poorly understood. Targeting components or products of the inflammasome and preventing their proinflammatory consequences may constitute novel therapeutic treatment strategies for AF. In this review, we summarise the current understanding of the role of the inflammasome in AF pathogenesis. We first review the NLRP3 inflammasome pathway and inflammatory signalling in cardiomyocytes, (myo)fibroblasts and immune cells, such as neutrophils, macrophages and monocytes. Because numerous compounds targeting NLRP3 signalling are currently in preclinical development, or undergoing clinical evaluation for other indications than AF, we subsequently review known therapeutics, such as colchicine and canakinumab, targeting the NLRP3 inflammasome and evaluate their potential for treating AF.
Collapse
Affiliation(s)
- Alisha Niskala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan N, Chen M, Chen S, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim Y, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak H, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm 2024; 40:1217-1354. [PMID: 39669937 PMCID: PMC11632303 DOI: 10.1002/joa3.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 12/14/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
| | | | - Jonathan Kalman
- Department of CardiologyRoyal Melbourne HospitalMelbourneAustralia
- Department of MedicineUniversity of Melbourne and Baker Research InstituteMelbourneAustralia
| | - Eduardo B. Saad
- Electrophysiology and PacingHospital Samaritano BotafogoRio de JaneiroBrazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | | | - Jason G. Andrade
- Department of MedicineVancouver General HospitalVancouverBritish ColumbiaCanada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Serge Boveda
- Heart Rhythm Management DepartmentClinique PasteurToulouseFrance
- Universiteit Brussel (VUB)BrusselsBelgium
| | - Hugh Calkins
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Ngai‐Yin Chan
- Department of Medicine and GeriatricsPrincess Margaret Hospital, Hong Kong Special Administrative RegionChina
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shih‐Ann Chen
- Heart Rhythm CenterTaipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General HospitalTaichungTaiwan
| | | | - Ralph J. Damiano
- Division of Cardiothoracic Surgery, Department of SurgeryWashington University School of Medicine, Barnes‐Jewish HospitalSt. LouisMOUSA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center MunichTechnical University of Munich (TUM) School of Medicine and HealthMunichGermany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Luigi Di Biase
- Montefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Young‐Hoon Kim
- Division of CardiologyKorea University College of Medicine and Korea University Medical CenterSeoulRepublic of Korea
| | - Mark la Meir
- Cardiac Surgery DepartmentVrije Universiteit Brussel, Universitair Ziekenhuis BrusselBrusselsBelgium
| | - Jose Luis Merino
- La Paz University Hospital, IdipazUniversidad AutonomaMadridSpain
- Hospital Viamed Santa ElenaMadridSpain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia InstituteSt. David's Medical CenterAustinTXUSA
- Case Western Reserve UniversityClevelandOHUSA
- Interventional ElectrophysiologyScripps ClinicSan DiegoCAUSA
- Department of Biomedicine and Prevention, Division of CardiologyUniversity of Tor VergataRomeItaly
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ)QuebecCanada
| | - Santiago Nava
- Departamento de ElectrocardiologíaInstituto Nacional de Cardiología ‘Ignacio Chávez’Ciudad de MéxicoMéxico
| | - Takashi Nitta
- Department of Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| | - Mark O’Neill
- Cardiovascular DirectorateSt. Thomas’ Hospital and King's CollegeLondonUK
| | - Hui‐Nam Pak
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital BernBern University Hospital, University of BernBernSwitzerland
| | - Luis Carlos Saenz
- International Arrhythmia CenterCardioinfantil FoundationBogotaColombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm DisordersUniversity of Adelaide and Royal Adelaide HospitalAdelaideAustralia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum BethanienMedizinische Klinik III, Agaplesion MarkuskrankenhausFrankfurtGermany
| | - Gregory E. Supple
- Cardiac Electrophysiology SectionUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico MonzinoIRCCSMilanItaly
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Atul Verma
- McGill University Health CentreMcGill UniversityMontrealCanada
| | - Elaine Y. Wan
- Department of Medicine, Division of CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| |
Collapse
|
30
|
Yang Z, Wang J, Jiang C, Guo H, Li M, Zhao Z, Zhao M, Li S, Lai Y, He L, Guo X, Li S, Liu N, Jiang C, Tang R, Long D, Du X, Sang C, Dong J, Ma C. Association between the preprocedural serum potassium level and atrial fibrillation recurrence after catheter ablation. Heart Rhythm 2024; 21:2429-2436. [PMID: 38901520 DOI: 10.1016/j.hrthm.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The association between serum potassium and atrial fibrillation (AF) recurrence after catheter ablation remains unclear. OBJECTIVE The purpose of this study was to investigate whether preprocedural serum potassium level influences AF recurrence in patients who underwent catheter ablation. METHODS We used data of patients with AF who underwent de novo catheter ablation from the prospective Chinese Atrial Fibrillation Registry Study. Patients with prior ablation and without baseline serum potassium were excluded. The primary outcome was 1-year AF recurrence after a 3-month blanking period from the ablation procedure. Restricted cubic spline and Cox proportional models were used to compare outcomes across serum potassium groups. RESULTS A total of 4838 patients with AF who underwent de novo catheter ablation was enrolled. At 1 year, AF recurrence occurred in 1347 patients (27.8%). The relationship between preprocedural serum potassium levels and 1-year AF recurrence after ablation presented as U shape (P for nonlinear = .048). Compared with the group of serum potassium within 4.41-4.60 mmol/L, the risk of AF recurrence increased significantly in the lowest serum potassium group (≤4.00 mmol/L) after multivariable analysis (hazard ratio [HR] 1.26; 95% confidence interval 1.06-1.51; P = .010). Other groups with lower or higher serum potassium levels including 4.01-4.20 mmol/L (HR 1.18), 4.21-4.40 mmol/L (HR 1.16), 4.61-4.80 mmol/L (HR 1.07), and ≥4.81 mmol/L (HR 1.11) showed nonsignificant higher recurrence risk. CONCLUSION The relationship between preprocedural potassium and AF recurrence was U shaped, with an optimal potassium range (4.41-4.60 mmol/L). Lower potassium level is associated with increased AF recurrence risk after catheter ablation.
Collapse
Affiliation(s)
- Zejun Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Chao Jiang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hang Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Mingxiao Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Zixu Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Manlin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Sitong Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Liu He
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xueyuan Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Songnan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Chenxi Jiang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Ribo Tang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Deyong Long
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China; Heart Health Research Center, Beijing, China
| | - Caihua Sang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
31
|
López-Gálvez R, Rivera-Caravaca JM, Mandaglio-Collados D, Ruiz-Alcaraz AJ, Lahoz-Tornos Á, Hernández-Romero D, Orenes-Piñero E, Ramos-Bratos MP, Martínez CM, Carpes M, Arribas-Leal JM, Cánovas S, Lip GYH, Marín F. Endothelial activation, Cell-Cell Interactions, and Inflammatory Pathways in Postoperative Atrial Fibrillation Following Cardiac Surgery. Biomed J 2024:100821. [PMID: 39603594 DOI: 10.1016/j.bj.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) is common after cardiac surgery and related to endothelial activation and systemic inflammation. Herein, we investigate the pathophysiological mechanisms of AF through endothelial activation and cell-cell interactions related to the development of POAF. METHODS Patients without previous AF undergoing cardiac surgery were studied. Permanent AF patients were included as positive controls. Interleukin (IL)-6, Von Willebrand factor (vWF), N-terminal pro-brain natriuretic peptide (NT-proBNP) and high sensitivity troponin T (hsTnT) were evaluated by electrochemiluminescence. Vascular cell adhesion molecule-1 (VCAM-1) and human Growth Differentiation Factor 15 (GDF-15) was assessed by ELISA. Connexins (Cxs) 40 and 43 were measured by tissue immunolabelling, and apoptosis by TUNEL assay. RESULTS We included 117 patients (median age 67: 27.8% female): 17 with permanent AF; 27 with POAF and 73 with non- AF. Patients with permanent AF and POAF had higher levels of NT-proBNP, hs-TnT, apoptotic nuclei and decrease Cx43 expression, compared to non-AF patients (all p-value <0.05). VCAM-1 and GDF-15 were significantly higher in permanent AF vs. non-AF (p=0.013 and p=0.035). CONCLUSIONS Greater endothelial activation and inflammation in AF patients compared to those without AF was found. The proinflammatory state in AF patients, in addition to the lower expression of Cx43, seems to be associated with atrial remodeling processes occurring in AF.
Collapse
Affiliation(s)
- Raquel López-Gálvez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain.
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John and Moores University, and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Faculty of Nursing, University of Murcia, Murcia, Spain
| | - Darío Mandaglio-Collados
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Álvaro Lahoz-Tornos
- Department of Cardiovascular Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Diana Hernández-Romero
- Department of Legal and Forensic Medicine, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María Pilar Ramos-Bratos
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Carlos M Martínez
- Pathology Core. Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Marina Carpes
- Pathology Core. Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José María Arribas-Leal
- Department of Cardiovascular Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Sergio Cánovas
- Department of Cardiovascular Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John and Moores University, and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Aalborg University, Denmark
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| |
Collapse
|
32
|
Hill MC, Simonson B, Roselli C, Xiao L, Herndon CN, Chaffin M, Mantineo H, Atwa O, Bhasin H, Guedira Y, Bedi KC, Margulies KB, Klattenhoff CA, Tucker NR, Ellinor PT. Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation. Nat Commun 2024; 15:10002. [PMID: 39562555 PMCID: PMC11576987 DOI: 10.1038/s41467-024-54296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, yet the molecular basis of AF remains incompletely understood. To determine the cell type-specific transcriptional changes underlying AF, we perform single-nucleus RNA-seq (snRNA-seq) on left atrial (LA) samples from patients with AF and controls. From more than 175,000 nuclei we find that only cardiomyocytes (CMs) and macrophages (MΦs) have a significant number of differentially expressed genes in patients with AF. Attractin Like 1 (ATRNL1) was overexpressed in CMs among patients with AF and localized to the intercalated disks. Further, in both knockdown and overexpression experiments we identify a potent role for ATRNL1 in cell stress response, and in the modulation of the cardiac action potential. Finally, we detect an unexpected expression pattern for a leading AF candidate gene, KCNN3. In sum, we uncover a role for ATRNL1 which may serve as potential therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Matthew C Hill
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline N Herndon
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ondine Atwa
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harshit Bhasin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Guedira
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nathan R Tucker
- Departments of Pharmacology and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
33
|
Durak H, Ergül E. Association of induced atrial fibrillation in the electrophysiology laboratory with endothelial dysfunction and documented atrial fibrillation. Int J Cardiol 2024; 415:132465. [PMID: 39159757 DOI: 10.1016/j.ijcard.2024.132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Atrial fibrillation (AF) is a common arrhythmia that increases morbidity and mortality, as well as healthcare costs. The induction of AF (IAF) during programmed atrial pacing in an electrophysiological study (EPS) is a prevalent phenomenon that has been underappreciated by electrophysiologists. Despite extensive research on AF, only a few studies have focused on this phenomenon. The aim of our study was to investigate the association between history of AF and IAF and the underlying pathophysiological factors such as arterial stiffness, subclinical atherosclerosis, and impaired endothelial function. METHODS This cross-sectional and observational study included 87 patients who had palpitations and were scheduled for EPS. Patients underwent biochemical investigations, transthoracic echocardiography, carotid ultrasound, carotid-femoral artery pulse wave velocity (PWV), and flow-mediated dilatation (FMD) measurements before EPS. Patients were divided into two groups, AF-induced and non-induced in EPS, for further statistical analysis. RESULTS AF was induced in 16 of 87 patients (18.3%) included in the analysis. The FMD (%) was significantly lower (16.01 ± 10.1 vs. 8.7 ± 5.7, P = 0.022) and, remarkably, the proportion of patients with a history of AF was significantly higher (2.8% vs. 37.5%, P < 0.001) in the IAF group. ROC analysis showed that a documented AF and FMD predicted IAF, with AUC of 0.741 (p = 0.012) and 0.740 (p = 0.001), respectively. Logistic regression analysis revealed that FMD and history of AF were strong predictors of IAF (odds ratio [OR], 0.853; 95% confidence interval [CI] 0.737-0.988; P = 0.034, OR: 10.1, 95% CI 4.9-20.5; P = 0.003, respectively). CONCLUSION Endothelial dysfunction and documented AF were associated with IAF during EPS.
Collapse
Affiliation(s)
- Hüseyin Durak
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Cardiology, Rize, Turkey.
| | - Elif Ergül
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Cardiology, Rize, Turkey
| |
Collapse
|
34
|
Zhang X, Wu Y, Smith CER, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca 2+-Driven Arrhythmogenic Events in Female Patients With Atrial Fibrillation: Insights From Computational Modeling. JACC Clin Electrophysiol 2024; 10:2371-2391. [PMID: 39340505 PMCID: PMC11602355 DOI: 10.1016/j.jacep.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Substantial sex-based differences have been reported in atrial fibrillation (AF), but the underlying mechanisms are poorly understood. OBJECTIVES This study sought to gain a mechanistic understanding of Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in male vs female atrial cardiomyocytes and establish their responses to Ca2+-targeted interventions. METHODS We integrated reported sex differences and AF-associated changes (ie, expression and phosphorylation of Ca2+-handling proteins, cardiomyocyte ultrastructural characteristics, and dimensions) into our human atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Sex-specific responses of atrial cardiomyocytes to arrhythmia-provoking protocols and Ca2+-targeted interventions were evaluated. RESULTS Simulated quiescent cardiomyocytes showed increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Sensitivity analysis uncovered distinct arrhythmogenic contributions of each component involved in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation emerged as the major SCR contributor in female AF cardiomyocytes, whereas reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulated Ca2+-targeted interventions identified potential strategies (eg, t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2⁺-ATPase) to attenuate Ca2+-driven arrhythmogenic events in women, and revealed enhanced efficacy when applied in combination. CONCLUSIONS Sex-specific modeling uncovers increased Ca2+-driven arrhythmogenic events in female vs male atria in AF, and suggests combined Ca2+-targeted interventions are promising therapeutic approaches in women.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/xianweizhang1
| | - Yixuan Wu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Charlotte E R Smith
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/Char_Smith3
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - Stefano Morotti
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/MorottiLab
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA. https://twitter.com/dr_dobrev
| | - Eleonora Grandi
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| | - Haibo Ni
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| |
Collapse
|
35
|
Xiao Z, Yang H, Pan Y, Meng H, Qu Z, Kong B, Shuai W, Huang H. Ubiquitin-specific protease 38 promotes atrial fibrillation in diabetic mice by stabilizing iron regulatory protein 2. Free Radic Biol Med 2024; 224:88-102. [PMID: 39173894 DOI: 10.1016/j.freeradbiomed.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common cardiovascular disease often observed in diabetes mellitus, and there is currently no satisfactory therapeutic option. Ubiquitin-specific protease 38 (USP38) has been implicated in the degradation of numerous substrate proteins in the myocardium. Herein, we aim to investigate the role of USP38 in AF induced by diabetes. METHODS Cardiac-specific transgenic USP38 mice and cardiac-specific knockout USP38 mice were constructed, and streptozotocin was used to establish diabetic mouse model. Functional, electrophysiological, histologic, biochemical studies were performed. RESULTS The expression of USP38 was upregulated in atrial tissues of diabetic mice and HL-1 cells exposed to high glucose. USP38 overexpression increased susceptibility to AF, accompanied by aberrant expression of calcium-handling protein, heightened iron load and oxidation stress in diabetic mice. Conversely, USP38 deficiency reduced vulnerability to AF by hampering ferroptosis. Mechanistically, USP38 bound to iron regulatory protein 2 (IRP2), stabilizing it and remove K48-linked polyubiquitination chains, thereby increasing intracellular iron overload, lipid peroxidation, and ultimately contributing to ferroptosis. In addition, reduced iron overload by deferoxamine treatment alleviated oxidation stress and decreased vulnerability to AF in diabetic mice. CONCLUSION Overall, our findings reveal the detrimental role of USP38 in diabetes-related AF, manifested by increased level of iron overload and oxidation stress.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Yucheng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zongze Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
37
|
Wang SY, Wang YJ, Dong MQ, Li GR. Acacetin is a Promising Drug Candidate for Cardiovascular Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1661-1692. [PMID: 39347953 DOI: 10.1142/s0192415x24500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Phytochemical flavonoids have been proven to be effective in treating various disorders, including cardiovascular diseases. Acacetin is a natural flavone with diverse pharmacological effects, uniquely including atrial-selective anti-atrial fibrillation (AF) via the inhibition of the atrial specific potassium channel currents [Formula: see text] (ultra-rapidly delayed rectifier potassium current), [Formula: see text] (acetylcholine-activated potassium current), [Formula: see text] (calcium-activated small conductance potassium current), and [Formula: see text] (transient outward potassium current). [Formula: see text] inhibition by acacetin, notably, suppresses experimental J-wave syndromes. In addition, acacetin provides extensive cardiovascular protection against ischemia/reperfusion injury, cardiomyopathies/heart failure, autoimmune myocarditis, pulmonary artery hypertension, vascular remodeling, and atherosclerosis by restoring the downregulated intracellular signaling pathway of Sirt1/AMPK/PGC-1α followed by increasing Nrf2/HO-1/SOD thereby inhibiting oxidation, inflammation, and apoptosis. This review provides an integrated insight into the capabilities of acacetin as a drug candidate for treating cardiovascular diseases, especially atrial fibrillation and cardiomyopathies/heart failure.
Collapse
Affiliation(s)
- Shu-Ya Wang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, P. R. China
| | - Ya-Jing Wang
- Department of Pharmacy, School of Pharmacy, Changzhou University Changzhou, Jiangsu 213164, P. R. China
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu 210032, P. R. China
| | - Ming-Qing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, P. R. China
| | - Gui-Rong Li
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu 210032, P. R. China
| |
Collapse
|
38
|
Ferreira M, Oliveira M, Laranjo S, Rocha I. Linking Sleep Disorders to Atrial Fibrillation: Pathways, Risks, and Treatment Implications. BIOLOGY 2024; 13:761. [PMID: 39452070 PMCID: PMC11504130 DOI: 10.3390/biology13100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
Sleep is a complex biobehavioural process essential for overall health, with various dimensions including duration, continuity, timing, and satisfaction. This study investigated the intricate relationships between common sleep disorders such as insomnia and obstructive sleep apnoea (OSA) and their impact on atrial fibrillation (AF), a prevalent arrhythmia with significant health implications. Using a comprehensive review of the current literature, this study examined the pathophysiological mechanisms linking sleep disorders to cardiovascular risks, focusing on autonomic nervous system disturbances, inflammation, and oxidative stress associated with OSA. These findings indicate that sleep disorders significantly elevate the risk of AF through mechanisms such as increased sympathetic activity and structural cardiac remodelling. Additionally, this study highlights the potential benefits of treating sleep disorders, particularly with continuous positive airway pressure (CPAP) therapy, in reducing AF recurrence and improving cardiovascular outcomes. This conclusion emphasises the importance of integrated therapeutic approaches that address both sleep disorders and AF to enhance patient outcomes and quality of life. Future research should explore these connections to develop more effective and holistic treatment strategies.
Collapse
Affiliation(s)
- Monica Ferreira
- Faculdade de Medicina and Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (M.O.)
| | - Mario Oliveira
- Faculdade de Medicina and Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (M.O.)
- Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal
- Cardiology, Heart and Vessels Department, Hospital CUF Tejo, 1350-352 Lisboa, Portugal;
| | - Sergio Laranjo
- Cardiology, Heart and Vessels Department, Hospital CUF Tejo, 1350-352 Lisboa, Portugal;
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Rocha
- Faculdade de Medicina and Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (M.O.)
| |
Collapse
|
39
|
Iwamiya S, Ihara K, Nitta G, Sasano T. Atrial Fibrillation and Underlying Structural and Electrophysiological Heterogeneity. Int J Mol Sci 2024; 25:10193. [PMID: 39337682 PMCID: PMC11432636 DOI: 10.3390/ijms251810193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As atrial fibrillation (AF) progresses from initial paroxysmal episodes to the persistent phase, maintaining sinus rhythm for an extended period through pharmacotherapy and catheter ablation becomes difficult. A major cause of the deteriorated treatment outcome is the atrial structural and electrophysiological heterogeneity, which AF itself can exacerbate. This heterogeneity exists or manifests in various dimensions, including anatomically segmental structural features, the distribution of histological fibrosis and the autonomic nervous system, sarcolemmal ion channels, and electrophysiological properties. All these types of heterogeneity are closely related to the development of AF. Recognizing the heterogeneity provides a valuable approach to comprehending the underlying mechanisms in the complex excitatory patterns of AF and the determining factors that govern the seemingly chaotic propagation. Furthermore, substrate modification based on heterogeneity is a potential therapeutic strategy. This review aims to consolidate the current knowledge on structural and electrophysiological atrial heterogeneity and its relation to the pathogenesis of AF, drawing insights from clinical studies, animal and cell experiments, molecular basis, and computer-based approaches, to advance our understanding of the pathophysiology and management of AF.
Collapse
Affiliation(s)
- Satoshi Iwamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kensuke Ihara
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Giichi Nitta
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
40
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
41
|
Casado-Arroyo R, Bernardi M, Sabouret P, Franculli G, Tamargo J, Spadafora L, Lellouche N, Biondi-Zoccai G, Toth PP, Banach M. Investigative agents for atrial fibrillation: agonists and stimulants, progress and expectations. Expert Opin Investig Drugs 2024; 33:967-978. [PMID: 39096248 DOI: 10.1080/13543784.2024.2388583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Its prevalence has increased due to worldwide populations that are aging in combination with the growing incidence of risk factors associated. Recent advances in our understanding of AF pathophysiology and the identification of nodal players involved in AF-promoting atrial remodeling highlights potential opportunities for new therapeutic approaches. AREAS COVERED This detailed review summarizes recent developments in the field antiarrhythmic drugs in the field AF. EXPERT OPINION The current situation is far than optimal. Despite clear unmet needs in drug development in the field of AF treatment, the current development of new drugs is absent. The need for a molecule with absence of cardiac and non-cardiac toxicity in the short and long term is a limitation in the field. Improvement in the understanding of AF genetics, pathophysiology, molecular alterations, big data and artificial intelligence with the objective to provide a personalized AF treatment will be the cornerstone of AF treatment in the coming years.
Collapse
Affiliation(s)
- Ruben Casado-Arroyo
- Department of Cardiology, H.U.B.-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pierre Sabouret
- Heart Institute, ACTION Study Group-CHU Pitié-Salpétrière Paris, Paris, France
- Collège National des Cardiologues Français (CNCF), Paris, France
| | - Giuseppe Franculli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicolas Lellouche
- Service de Cardiologie, AP-HP, University Hospital Henri Mondor, Créteil, France
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz Lodz Poland, Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute Lodz Poland, Lodz, Poland
| |
Collapse
|
42
|
Chen PH, Kao YH, Chen YJ. Pathophysiological Mechanisms of Psychosis-Induced Atrial Fibrillation: The Links between Mental Disorder and Arrhythmia. Rev Cardiovasc Med 2024; 25:343. [PMID: 39355592 PMCID: PMC11440412 DOI: 10.31083/j.rcm2509343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 10/03/2024] Open
Abstract
Atrial fibrillation (AF) is a common phenomenon of sustained arrhythmia leading to heart failure or stroke. Patients with mental disorders (MD), particularly schizophrenia and bipolar disorder, are at a high risk of AF triggered by the dysregulation of the autonomic nervous system, atrial stretch, oxidative stress, inflammation, and electrical or structural remodeling. Moreover, pathophysiological mechanisms underlying MD may also contribute to the genesis of AF. An overactivated hypothalamic-pituitary-adrenal axis, aberrant renin-angiotensin-aldosterone system, abnormal serotonin signaling, disturbed sleep, and genetic/epigenetic factors can adversely alter atrial electrophysiology and structural substrates, leading to the development of AF. In this review, we provide an update of our collective knowledge of the pathophysiological and molecular mechanisms that link MD and AF. Targeting the pathogenic mechanisms of MD-specific AF may facilitate the development of therapeutics that mitigate AF and cardiovascular mortality in this patient population.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| |
Collapse
|
43
|
Kohajda Z, Corici C, Kristóf A, Virág L, Husti Z, Baczkó I, Sághy L, Varró A, Jost N. The Properties of the Transient Outward, Inward Rectifier and Acetylcholine-Sensitive Potassium Currents in Atrial Myocytes from Dogs in Sinus Rhythm and Experimentally Induced Atrial Fibrillation Dog Models. Pharmaceuticals (Basel) 2024; 17:1138. [PMID: 39338302 PMCID: PMC11434634 DOI: 10.3390/ph17091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common chronic/recurrent arrhythmia, which significantly impairs quality of life and increases cardiovascular morbidity and mortality. Therefore, the aim of the present study was to investigate the properties of three repolarizing potassium currents which were shown to contribute to AF-induced electrical remodeling, i.e., the transient outward (Ito), inward rectifier (IK1) and acetylcholine-sensitive (IK,ACh) potassium currents in isolated atrial myocytes obtained from dogs either with sinus rhythm (SR) or following chronic atrial tachypacing (400/min)-induced AF. METHODS Atrial remodeling and AF were induced by chronic (4-6 weeks of) right atrial tachypacing (400/min) in dogs. Transmembrane ionic currents were measured by applying the whole-cell patch-clamp technique at 37 °C. RESULTS The Ito current was slightly downregulated in AF cells when compared with that recorded in SR cells. This downregulation was also associated with slowed inactivation kinetics. The IK1 current was found to be larger in AF cells; however, this upregulation was not statistically significant in the voltage range corresponding with atrial action potential (-80 mV to 0 mV). IK,ACh was activated by the cholinergic agonist carbachol (CCh; 2 µM). In SR, CCh activated a large current either in inward or outward directions. The selective IK,ACh inhibitor tertiapin (10 nM) blocked the outward CCh-induced current by 61%. In atrial cardiomyocytes isolated from dogs with AF, the presence of a constitutively active IK,ACh was observed, blocked by 59% with 10 nM tertiapin. However, in "AF atrial myocytes", CCh activated an additional, significant ligand-dependent and tertiapin-sensitive IK,ACh current. CONCLUSIONS In our dog AF model, Ito unlike in humans was downregulated only in a slight manner. Due to its slow inactivation kinetics, it seems that Ito may play a more significant role in atrial repolarization than in ventricular working muscle myocytes. The presence of the constitutively active IK,ACh in atrial myocytes from AF dogs shows that electrical remodeling truly developed in this model. The IK,ACh current (both ligand-dependent and constitutively active) seems to play a significant role in canine atrial electrical remodeling and may be a promising atrial selective drug target for suppressing AF.
Collapse
Affiliation(s)
- Zsófia Kohajda
- HUN-REN-SZTE Research Group of Cardiovascular Pharmacology, H-6701 Szeged, Hungary
| | - Claudia Corici
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
| | - Attila Kristóf
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
| | - István Baczkó
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| | - László Sághy
- Cardiac Electrophysiology Division, Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6701 Szeged, Hungary
| | - András Varró
- HUN-REN-SZTE Research Group of Cardiovascular Pharmacology, H-6701 Szeged, Hungary
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| | - Norbert Jost
- HUN-REN-SZTE Research Group of Cardiovascular Pharmacology, H-6701 Szeged, Hungary
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| |
Collapse
|
44
|
Liu L, Luo F. miR-450a-2-3p targets ERK(1/2) to ameliorate ISO-induced cardiac fibrosis in mice. GENES & NUTRITION 2024; 19:16. [PMID: 39160527 PMCID: PMC11334388 DOI: 10.1186/s12263-024-00753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Cardiac fibrosis is an important contributor to atrial fibrillation (AF). Our aim was to identify biomarkers for AF using bioinformatics methods and explore the regulatory mechanism of miR-450a-2-3p in cardiac fibrosis in mice. METHODS Two datasets, GSE115574 and GSE79768, were obtained from the Gene Expression Omnibus (GEO) database and subsequently merged for further analysis. Differential gene expression analysis was performed to identify differentially expressed genes (DEGs) and miR-450a-2-3p-related differentially expressed genes (MRDEGs). To investigate the underlying mechanism of cardiac fibrosis, a mouse model was established by treating mice with isoproterenol (ISO) and the miR-450a-2-3p agomir. RESULTS A total of 127 DEGs and 31 MRDEGs were identified and subjected to Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the functions and pathways involved in AF. In the animal model, histological analysis using HE and Masson staining, as well as quantification of the collagen volume fraction (CVF), was performed. The increased expression of α-smooth muscle actin (α-SMA), collagen type I (COL1), collagen type III (COL3), and extracellular signal-regulated kinase 1/2 (ERK(1/2)) at both the transcriptional and translational levels indicated the significant development of myocardial fibrosis in mice induced with isoproterenol (ISO). In addition, the cross-sectional area of cardiomyocytes and the expression of atrial natriuretic peptide (NPPA) and brain natriuretic peptide (NPPB) were increased in the ISO group compared with the control group. However, after overexpression of the miR-450a-2-3p agomir through caudal vein injection, there was a notable improvement in cardiac morphology in the treated group. The expression levels of α-SMA, COL1, COL3, ERK(1/2), NPPA, and NPPB were also significantly decreased. CONCLUSION Our study reveals the mechanistic connection between ISO-induced myocardial fibrosis and the miR-450a-2-3p/ERK(1/2) signaling pathway, highlighting its role in the development of cardiac fibrosis. Modulating miR-450a-2-3p expression and inhibiting ERK(1/2) activation are promising approaches for therapeutic intervention in patients with AF.
Collapse
Affiliation(s)
- Langsha Liu
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
45
|
Marcus MD, Link MS. Omega-3 Fatty Acids and Arrhythmias. Circulation 2024; 150:488-503. [PMID: 39102482 DOI: 10.1161/circulationaha.123.065769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The pro- and antiarrhythmic effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been extensively studied in preclinical and human trials. Despite early evidence of an antiarrhythmic role of n-3 PUFA in the prevention of sudden cardiac death and postoperative and persistent atrial fibrillation (AF), subsequent well-designed randomized trials have largely not shown an antiarrhythmic benefit. Two trials that tested moderate and high-dose n-3 PUFA demonstrated a reduction in sudden cardiac death, but these findings have not been widely replicated, and the potential of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to reduce arrhythmic death in combination, or as monotherapy, remains uncertain. The accumulated clinical evidence does not support supplementation of n-3 PUFA for postoperative AF or secondary prevention of AF. Several large, contemporary, randomized controlled trials of high-dose n-3 PUFA for primary or secondary cardiovascular prevention have demonstrated a small, significant, dose-dependent increased risk of incident AF compared with mineral oil or corn oil comparator. These findings were reproduced with both icosapent ethyl monotherapy and a mixed EPA+DHA formulation. The proarrhythmic mechanism of increased AF in contemporary cohorts exposed to high-dose n-3 PUFA is unknown. EPA and DHA and their metabolites have pleiotropic cardiometabolic and pro- and antiarrhythmic effects, including modification of the lipid raft microenvironment; alteration of cell membrane structure and fluidity; modulation of sodium, potassium, and calcium currents; and regulation of gene transcription, cell proliferation, and inflammation. Further characterization of the complex association between EPA, EPA+DHA, and DHA and AF is needed. Which formulations, dose ranges, and patient subgroups are at highest risk, remain unclear.
Collapse
Affiliation(s)
- Mason D Marcus
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX
| | - Mark S Link
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
46
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
47
|
Fang L, Chen Q, Cheng X, Li X, Zou T, Chen J, Xiang G, Xue Q, Li Y, Zhang J. Calcium-mediated DAD in membrane potentials and triggered activity in atrial myocytes of ETV1 f / fMyHC Cre /+ mice. J Cell Mol Med 2024; 28:e70005. [PMID: 39159135 PMCID: PMC11332596 DOI: 10.1111/jcmm.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 08/21/2024] Open
Abstract
The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1f/fMyHCCre/+, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice. Electrophysiology experiments indicated shortened APD50 and APD90, increased incidence of DADs, decreased density of ICa,L in ETV1-CKO mice. There was no difference in VINACT,1/2 and VACT,1/2, but a significantly longer duration of the recovery time after inactivation in the ETV1-CKO mice. The recording of intracellular Ca2+ showed that there was significantly increased in the frequency of calcium spark, Ca2+ transient amplitude, and proportion of SCaEs in ETV1-CKO mice. Reduction of Cav1.2 rather than NCX1 and SERCA2a, increase RyR2, p-RyR2 and CaMKII was reflected in ETV1-CKO group. This study demonstrates that the increase in calcium spark and SCaEs corresponding to Ca2+ transient amplitude may trigger DAD in membrane potential in ETV1-CKO mice, thereby increasing the risk of AF.
Collapse
Affiliation(s)
- Li‐Hua Fang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Qian Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of Critical Care Medicine Division FourFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Xian‐Lu Cheng
- Department of CardiologyNanping First Hospital Affiliated to Fujian Medical UniversityNanpingFujianPeople's Republic of China
| | - Xiao‐Qian Li
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Tian Zou
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Jian‐Quan Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Guo‐Jian Xiang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Qiao Xue
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Yang Li
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Jian‐Cheng Zhang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| |
Collapse
|
48
|
Vercek G, Jug B, Novakovic M, Antonic M, Djordjevic A, Ksela J. Conventional and Novel Inflammatory Biomarkers in Chronic Heart Failure Patients with Atrial Fibrillation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1238. [PMID: 39202519 PMCID: PMC11356261 DOI: 10.3390/medicina60081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
(1) Background and Objectives: Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with increased morbidity and mortality both in the general population and heart failure patients. Inflammation may promote the initiation, maintenance and perpetuation of AF, but the impact of inflammatory molecular signaling on the association between AF and heart failure remains elusive. (2) Materials and Methods: In 111 patients with chronic stable heart failure, baseline values of conventional (IL-6 and hsCRP) and selected novel inflammatory biomarkers (IL-10, IL-6/IL-10 ratio, orosomucoid and endocan) were determined. Inflammatory biomarkers were compared with respect to the presenting cardiac rhythm. (3) Results: Patients aged below 75 years with AF had significantly higher values of IL-6 and IL-6/IL-10 ratio; IL-6 levels were a significant predictor of AF in both univariate (OR 1.175; 95%CI 1.013-1.363; p = 0.034) and multivariate logistic regression analysis when accounting for other inflammatory biomarkers (OR 1.327; 95% CI 1.068-1.650; p = 0.011). Conversely, there was no association between other novel inflammatory biomarkers and AF. (4) Conclusions: IL-6 levels and the IL-6/IL-10 ratio are associated with AF in patients with chronic stable heart failure under the age of 75 years, suggesting that inflammatory molecular signaling may play a role in the development of AF in the heart failure population.
Collapse
Affiliation(s)
- Gregor Vercek
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.V.); (B.J.); (M.N.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Borut Jug
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.V.); (B.J.); (M.N.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Novakovic
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.V.); (B.J.); (M.N.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Miha Antonic
- Department of Cardiac Surgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.A.); (A.D.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Anze Djordjevic
- Department of Cardiac Surgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.A.); (A.D.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jus Ksela
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Cardiovascular Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
49
|
Heijman J, Dobrev D. Spexin Hormone Signaling and Atrial Fibrillation: The Knowns and Unknowns. Circulation 2024; 150:128-131. [PMID: 38976612 PMCID: PMC11232924 DOI: 10.1161/circulationaha.124.070016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Jordi Heijman
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Departments of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| |
Collapse
|
50
|
Zhu X, Lv M, Cheng T, Zhou Y, Yuan G, Chu Y, Luan Y, Song Q, Hu Y. Bibliometric analysis of atrial fibrillation and ion channels. Heart Rhythm 2024; 21:1161-1169. [PMID: 38280618 DOI: 10.1016/j.hrthm.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Atrial fibrillation (AF) is a common clinical malignant arrhythmia with an increasing global incidence. Ion channel dysfunction is an important mechanism in the development of AF. In this study, we used bibliometrics to analyze the studies of ion channels and AF, aiming to provide inspiration and reference for researchers. A total of 3179 literature citations were obtained from Web of Science core databases. Analysis software included Excel 2019, VOSviewer 1.6.16, and CiteSpace 5.7.R2. This field of research has been growing since 1985. The most active country is the United States. The University of Montreal is the most important research institution. The journal Cardiovascular Research has published the largest number of articles in this field. Stanley Nattel and Dobromir Dobrev are the most frequently cited authors. The most cited literature was published in Nature and Science. Cardiac electrophysiology, gene expression, pathogenesis of AF, and AF prevention and treatment are the hot topics for this field research. Cardiac fibrillation and catheter ablation may be future research hotspots in this field.
Collapse
Affiliation(s)
- Xueping Zhu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Cheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Luan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qingqiao Song
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|