1
|
Strick DJ, Tanba C, Kaplan MA, Hill NS, Farber HW, Condon D, Preston IR. A Prospective Analysis of Vasoreactivity and Mortality in WHO Group 3 Pulmonary Hypertension. Pulm Circ 2025; 15:e70078. [PMID: 40256428 PMCID: PMC12006029 DOI: 10.1002/pul2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Prognostic markers of Group 3 pulmonary hypertension (PH) remain largely unknown. In this study, we evaluate clinical data to provide a comprehensive profile of patients with Group 3 PH and evaluate the potential use of vasoreactivity testing as a prognostic tool within this population. We hypothesized that patients with a stronger vasoconstrictive component of their pulmonary vascular disease would have a more favorable prognosis. Patients were given inhaled nitric oxide during their right heart catheterization to determine if they met the European Respiratory Society guidelines for having a positive vasoreactivity test as defined for patients with Group 1 pulmonary arterial hypertension (PAH). While vasoreactivity response is proven to predict survival in subgroups of PAH, there was no significant relationship between change in mean pulmonary artery pressure (mPAP) during acute vasodilator challenge and survival within our cohort. On the contrary, patients with larger decreases in pulmonary vascular resistance (PVR) during the acute vasodilator challenge were at a significantly higher risk of mortality. The data suggests that the change in PVR during acute vasodilator challenge may be a better indicator of survival in patients with WHO Group 3 PH than the change in mPAP.
Collapse
Affiliation(s)
| | - Carl Tanba
- Tufts Medical CenterBostonMassachusettsUSA
| | | | | | | | - David Condon
- Dartmouth Hitchcock ClinicsManchesterNew HampshireUSA
| | | |
Collapse
|
2
|
Kattih Z, Kim HC, Aryal S, Nathan SD. Review of the Diagnosis and Management of Pulmonary Hypertension Associated with Interstitial Lung Disease (ILD-PH). J Clin Med 2025; 14:2029. [PMID: 40142837 PMCID: PMC11942768 DOI: 10.3390/jcm14062029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Pulmonary hypertension associated with interstitial lung disease (ILD-PH) frequently complicates the course of patients with fibrotic ILD. In this narrative review, the authors assess current diagnostic tools and management considerations in ILD-PH patients. ILD-PH is associated with increased morbidity and mortality and may be suggested by the presence of symptoms out of proportion to the extent of the ILD. There are other clues to the presence of PH in the context of ILD including the need for supplemental oxygen, a reduced DLCO especially if accompanied by a disproportionately higher forced vital capacity, imaging demonstrating an enlarged pulmonary artery or a dilated right ventricle, or objective evidence of a reduced exercise capacity. While echocardiography is one screening tool, right heart catheterization remains the gold standard for the diagnosis of PH. When appropriate, treatment with inhaled treprostinil, or possibly other pulmonary vasodilators, may be indicated.
Collapse
Affiliation(s)
- Zein Kattih
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA 22042, USA; (Z.K.); (S.A.)
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Shambhu Aryal
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA 22042, USA; (Z.K.); (S.A.)
| | - Steven D. Nathan
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA 22042, USA; (Z.K.); (S.A.)
| |
Collapse
|
3
|
Selvan KC, Teerapuncharoen K, Bag R. Oral Pulmonary Arterial Hypertension-Targeted Therapy in Patients With Pulmonary Hypertension due to Interstitial Lung Disease. J Clin Med Res 2025; 17:153-163. [PMID: 40115838 PMCID: PMC11922630 DOI: 10.14740/jocmr6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025] Open
Abstract
Background The aim of the study was to determine whether treatment with oral pulmonary arterial hypertension (PAH)-targeted therapy is associated with functional or hemodynamic improvement in patients with pulmonary hypertension due to interstitial lung disease (PH-ILD). Methods We conducted a retrospective review of 1,507 consented patients with pulmonary hypertension (PH) from the University of Chicago PH Registry. Exclusion criteria included: enrollment in PH-related clinical trials, use of inhaled treprostinil or iloprost and prior PAH-targeted therapy initiated before consenting to registry enrollment, thus precluding baseline data. Data analyzed included demographics, interstitial lung disease (ILD) classification, PAH-targeted therapy, functional data, hemodynamics, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) before and after initiation of treatment. Data were analyzed using paired t-test, or related-samples Wilcoxon signed rank test. Results Of 37 patients included, 27 (73%) received treatment with one PAH-targeted therapy and nine (24%) received dual therapy. At baseline, median NT-proBNP was 1,498 ng/dL (675 - 3,208), mean pulmonary artery pressure (mPAP) was 45 ± 11 mm Hg, and pulmonary vascular resistance (PVR) of 9 ± 4 Wood units (WU). In patients with measurements both before and after treatment with PAH-targeted therapy, there was a decrease in PVR (n = 13, 8 vs. 5 WU, P < 0.001), an increase in cardiac output (n = 13, 4 vs. 5 L/min, P = 0.014), and a decrease in NT-proBNP levels (n = 26, 1,421 vs. 842 ng/dL, P = 0.045). Conclusions In this study, use of PAH-targeted therapy in patients with PH-ILD was associated with statistically significant and clinically meaningful improvements in NT-proBNP and pulmonary hemodynamics.
Collapse
Affiliation(s)
- Kavitha C Selvan
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
- Current: Division of Pulmonary and critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Krittika Teerapuncharoen
- Division of Respiratory Disease and Tuberculosis, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Remzi Bag
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
- Current: Division of Lung Failure and Transplant, Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
4
|
Park JS, Choi YH, Min JY, Lee J, Shim G. Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment. Pharmaceutics 2025; 17:224. [PMID: 40006591 PMCID: PMC11859843 DOI: 10.3390/pharmaceutics17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Su Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong Hwan Choi
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Ji-Young Min
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Jaeseong Lee
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
5
|
Nakamura K, Akagi S, Ejiri K, Taya S, Saito Y, Kuroda K, Takaya Y, Toh N, Nakayama R, Katanosaka Y, Yuasa S. Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia. Int J Mol Sci 2025; 26:835. [PMID: 39859549 PMCID: PMC11765551 DOI: 10.3390/ijms26020835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition. Among these, hypoxic pulmonary vasoconstriction and subsequent pulmonary vascular remodeling are characteristic factors involving the pulmonary vasculature and are the focus of this review. Several factors have been reported to mediate vascular remodeling induced by hypoxic pulmonary vasoconstriction, such as HIF-1α and mechanosensors, including TRP channels. New therapies that target novel molecules, such as mechanoreceptors, to inhibit vascular remodeling are awaited.
Collapse
Affiliation(s)
- Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
- Center for Advanced Heart Failure, Okayama University Hospital, Okayama 700-8558, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Satoshi Taya
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Kazuhiro Kuroda
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Yoichi Takaya
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Norihisa Toh
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Rie Nakayama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| | - Yuki Katanosaka
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan;
- Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (S.T.); (Y.S.); (K.K.); (Y.T.); (N.T.); (R.N.); (S.Y.)
| |
Collapse
|
6
|
Nathan SD, Stinchon MR, Atcheson S, Simone L, Nelson M. Shining a spotlight on pulmonary hypertension associated with interstitial lung disease care: The latest advances in diagnosis and treatment. J Manag Care Spec Pharm 2025; 31:S2-S17. [PMID: 39745852 PMCID: PMC11695281 DOI: 10.18553/jmcp.2025.31.1-a.s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pulmonary hypertension associated with interstitial lung disease (PH-ILD) is a complex condition in which 2 consequential diseases interact and increase negative outcomes. Although the pathophysiologic mechanisms of PH-ILD are not yet well understood, the pronounced effect on functional status, supplemental oxygen requirements, health care resource utilization, and mortality that frequently accompany this diagnosis are well documented. A critical feature that complicates pathophysiologic understanding of PH-ILD is that progression of the pulmonary vascular disease does not always appear to be driven by the underlying lung disease. As PH-ILD is a progressive disease, early recognition and treatment initiation have the potential to delay the increased burden it creates. Historically, therapeutic development within pulmonary hypertension has concentrated on pulmonary arterial hypertension (PAH). However, PH-ILD and PAH are categorically distinct-belonging to distinct PH groups owing to differing pathophysiological mechanisms and therapeutic implications. PAH and PH-ILD may have numerous similarities; however, when PAH therapies have been studied in patients with PH-ILD, inconclusive efficacy (bosentan, sildenafil, tadalafil, iloprost) and at times deleterious safety findings (riociguat, ambrisentan) have been observed. Despite the paucity of evidence to support PAH therapy use in this patient population, widespread off-label use of PAH therapies arose as a result of a historical lack of PH-ILD-approved treatment. Recently, inhaled treprostinil-a prostacyclin analog-has become the first therapy approved for treatment of PH-ILD. In the phase 3 INCREASE trial, inhaled treprostinil was effective in improving 6-minute walk distance (the primary endpoint; P < 0.001) as well as N-terminal pro-B-type natriuretic peptide levels (P < 0.001). The approval of inhaled treprostinil in 2022 facilitates evidence-based therapeutic management. In addition, the 7th World Symposium on Pulmonary Hypertension has recently published an extensive summary of clinical research to date in PH-ILD. The proceedings from the 7th World Symposium on Pulmonary Hypertension provide timely recommendations for investigation of PH-ILD and a framework for assessing treatment needs. The therapeutic landscape advances are poised to transform PH-ILD care and improve outcomes for patients with PH-ILD.
Collapse
|
7
|
León-Román F, Pintado-Cort B, Barberà JA, Sellares J, Iturbe D, López-Zubizarreta M, Peña-Miguel T, Durán-Barata D, Jiménez D. [Diagnosis and Treatment of Pulmonary Embolism and Pulmonary Hypertension in Patients With Interstitial Lung Disease]. OPEN RESPIRATORY ARCHIVES 2025; 7:100406. [PMID: 40104013 PMCID: PMC11915155 DOI: 10.1016/j.opresp.2025.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
Pulmonary embolism (PE) and pulmonary hypertension (PH) are common comorbidities that worsen the prognosis of patients diagnosed with interstitial lung disease (ILD). Despite advances in the diagnosis and treatment of these entities, their impact on the management and progression of ILD is not sufficiently studied. This article includes a review and update of the diagnosis and treatment of PE and PH in patients with underlying ILD.
Collapse
Affiliation(s)
- Francisco León-Román
- Servicio de Neumología, Hospital Recoletas Salud Campo Grande, Valladolid, España
| | - Beatriz Pintado-Cort
- Servicio de Neumología, Hospital Recoletas Salud Campo Grande, Valladolid, España
| | - Joan Albert Barberà
- Servicio de Neumología, Hospital Clinic, Barcelona, España
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, España
| | | | - David Iturbe
- Servicio de Neumología, Hospital Marqués de Valdecilla, Santander, España
| | | | - Teresa Peña-Miguel
- Servicio de Neumología, Hospital Universitario de Burgos, Burgos, España
| | - Diego Durán-Barata
- Servicio de Neumología, Hospital Universitario de Getafe, Getafe, Madrid, España
- Departamento de Medicina, Universidad de Alcalá, Madrid, España
| | - David Jiménez
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, España
- Departamento de Medicina, Universidad de Alcalá, Madrid, España
- Servicio de Neumología, Hospital Ramón y Cajal e Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| |
Collapse
|
8
|
Tello K, Yogeswaran A, Majeed RW, Kiely DG, Lawrie A, Brittain E, Annis JS, Olschewski H, Kovacs G, Hassoun PM, Balasubramanian A, Konswa Z, Sweatt AJ, Zamanian RT, Wilkins MR, Howard L, Arvanitaki A, Giannakoulas G, Cajigas HR, Frantz R, Williams PG, Frauendorf M, Marquardt K, Antoine T, Fuenderich M, Richter M, Grimminger F, Ghofrani HA, Wilhelm J, Seeger W. Association of Phosphodiesterase-5 Inhibitor Treatment With Improved Survival in Pulmonary Hypertension Associated With COPD in the Pulmonary Vascular Research Institute GoDeep Meta-Registry. Chest 2025; 167:224-240. [PMID: 39182575 PMCID: PMC11864130 DOI: 10.1016/j.chest.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Patients with COPD frequently demonstrate pulmonary hypertension (PH). Severe PH in patients with COPD, identified by pulmonary vascular resistance (PVR) of > 5 Wood units (WU), is closely linked to impaired transplant-free survival. The impact of PH-targeting pharmacotherapy in this context remains unclear. RESEARCH QUESTION Is PH-targeted therapy associated with improved transplant-free survival in patients with COPD and PH? STUDY DESIGN AND METHODS This study included Pulmonary Vascular Research Institute GoDeep meta-registry patients with COPD and PH and available right heart catheterization at diagnosis. We investigated PH-targeted therapy prevalence and its association with transplant-free survival using diverse statistical methods, including Cox regression and subgroup analyses based on PH severity, comorbidities, and pulmonary function test results. Immortal time bias was addressed through a landmark approach. RESULTS As of December 2023, the GoDeep meta-registry included 26,981 patients (28% in PH group 1, 13% in PH group 2, 12% in PH group 3, 10% in PH group 4, 2% in PH group 5, 26% undefined, and 9% control participants). Of these, 836 patients had a diagnosis of COPD with PH and were included in this analysis, with median age of 66 years (interquartile range [IQR], 59-73 years), FEV1 of 51% predicted (IQR, 34%-69% predicted), mPAP of 35 mm Hg (IQR, 28-44 mm Hg), PVR of 5 WU (IQR, 4-8 WU), cardiac index of 2.5 L/min/m2 (IQR, 2.0-2.9 L/min/m2), and mostly World Health Organization functional class III were included. Five-year transplant-free survival was 42%, significantly worse than in group 1 PH. A multivariable Cox proportional hazards model identified PVR, but not FEV1, as a major predictor of outcome. Four hundred eighteen patients (50%) received phosphodiesterase-5 inhibitor (PDE5i) therapy, which was associated with significantly reduced mortality: hazard ratio of 0.65 (IQR, 0.57-0.75) for the entire cohort of patients with COPD and PH and of 0.83 (IQR, 0.74-0.94) when performing landmark analysis. This PDE5i effect was reproduced robustly when performing subgroup analyses for patients with moderate to severe PH, various comorbidities, and supplemental oxygen requirement and when assessing the impact of unobserved confounders. INTERPRETATION Patients with COPD and PH exhibit poor transplant-free survival, with PVR being a predictor of mortality. In this meta-registry, PDE5i therapy was associated with a significant reduction in mortality across all tested models.
Collapse
Affiliation(s)
- Khodr Tello
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Athiththan Yogeswaran
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Raphael W Majeed
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute of Medical Informatics, RWTH Aachen University, Aachen, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, University of Sheffield and National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield
| | - Allan Lawrie
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, University of Sheffield and National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield
| | | | | | | | | | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aparna Balasubramanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ziad Konswa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew J Sweatt
- Division of Pulmonary, Allergy, and Critical Care and the Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Palo Alto, CA
| | - Roham T Zamanian
- Division of Pulmonary, Allergy, and Critical Care and the Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Palo Alto, CA
| | | | - Luke Howard
- Imperial College Healthcare NHS Trust, London, England
| | | | | | - Hector R Cajigas
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Robert Frantz
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Kurt Marquardt
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tobiah Antoine
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Meike Fuenderich
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Manuel Richter
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Jochen Wilhelm
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
9
|
Lin J, Pan Z, Sun J, Wang X, Yin D, Huo C, Guo Q. PCSK9 inhibitor alleviates experimental pulmonary fibrosis-induced pulmonary hypertension via attenuating epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling in vivo and in vitro. Front Med (Lausanne) 2024; 11:1509168. [PMID: 39722825 PMCID: PMC11668660 DOI: 10.3389/fmed.2024.1509168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background The co-occurrence of pulmonary hypertension (PH) in patients with pulmonary fibrosis (PF) is linked to a more unfavorable prognosis and increased mortality compared to PF cases without PH. Early intervention and comprehensive management are pivotal for improving survival outcomes. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein essential in cholesterol metabolism. However, the potential for PCSK9 inhibition to alleviate PF-induced PH has not been previously reported. Methods A mouse model of PF-induced PH was established using intratracheal injection of bleomycin (BLM), followed by administration of a PCSK9 inhibitor every other day. Data on right ventricle (RV) remodeling and changes in pulmonary arteries were collected and analyzed. Transforming growth factor-beta (TGF-β) was also administered to MLE-12 cells as an experimental lung fibrosis model. The mechanisms of PCSK9's impact on lung fibrosis were examined both in vivo and in vitro. Results Inhibition of PCSK9 significantly reduced pulmonary artery thickening and RV remodeling in the BLM-induced mouse model. Moreover, the blockage of PCSK9 effectively attenuated the migration and epithelial-mesenchymal transition (EMT) process of TGF-β-induced MLE-12 cells. We also observed that the PCSK9 inhibitor suppressed the expression of the Wnt/β-catenin pathway in both animal and cell experiments. Conclusion PCSK9 plays a crucial role in the progression of PF-induced PH by regulating cell EMT and Wnt/β-catenin signaling. Targeting PCSK9 expression or activity could effectively control lung fibrosis and its PH complication.
Collapse
Affiliation(s)
- Jiancheng Lin
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Zetao Pan
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Jiayan Sun
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Xiaowan Wang
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Di Yin
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Cunyang Huo
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Guo
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Bačáková L, Sedlář A, Musílková J, Eckhardt A, Žaloudíková M, Kolář F, Maxová H. Mechanisms Controlling the Behavior of Vascular Smooth Muscle Cells in Hypoxic Pulmonary Hypertension. Physiol Res 2024; 73:S569-S596. [PMID: 39589304 PMCID: PMC11627264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/01/2024] [Indexed: 11/27/2024] Open
Abstract
Pulmonary hypertension is a complex and heterogeneous condition with five main subtypes (groups). This review focuses on pulmonary hypertension caused by chronic hypoxia (hypoxic pulmonary hypertension, HPH, group 3). It is based mainly on our own experimental work, especially our collaboration with the group of Professor Herget, whose fifth anniversary of death we commemorate. We have found that oxidation and degradation of the extracellular matrix (ECM) in vitro, in either the presence or the absence of pro-inflammatory cells, activate vascular smooth muscle cell (VSMC) proliferation. Significant changes in the ECM of pulmonary arteries also occurred in vivo in hypoxic rats, namely a decrease in collagen VI and an increase in matrix metalloproteinase 9 (MMP-9) in the tunica media, which may also contribute to the growth activation of VSMCs. The proliferation of VSMCs was also enhanced in their co-culture with macrophages, most likely due to the paracrine production of growth factors in these cells. However, hypoxia itself has a dual effect: on the one hand, it can activate VSMC proliferation and hyperplasia, but on the other hand, it can also induce VSMC hypertrophy and increased expression of contractile markers in these cells. The influence of hypoxia-inducible factors, microRNAs and galectin-3 in the initiation and development of HPH, and the role of cell types other than VSMCs (endothelial cells, adventitial fibroblasts) are also discussed. Keywords: Vasoconstriction, Remodeling, Oxidation, Degradation, Extracellular matrix, Collagen, Proteolytic enzymes, Metalloproteinases, Macrophages, Mast cells, Smooth muscle cells, Endothelial cells, Fibroblasts, Mesenchymal stem cells, Hypoxia-inducible factor, microRNA, Galectins, Hyperplasia, Hypertrophy, Therapy of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- L Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
Brownstein AJ, Mura M, Ruffenach G, Channick RN, Saggar R, Kim A, Umar S, Eghbali M, Yang X, Hong J. Dissecting the lung transcriptome of pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L520-L534. [PMID: 39137526 PMCID: PMC11482468 DOI: 10.1152/ajplung.00166.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Collapse
Grants
- R01HL147586,R01HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08169982 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141995 NHLBI NIH HHS
- UL1TR001881 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- K08 HL169982 NHLBI NIH HHS
- R01 HL159507 NHLBI NIH HHS
- R01HL16038,K08HL141995 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161038 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- R01 NS117148 NINDS NIH HHS
- R01NS117148,R01NS111378 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- UL1 TR001881 NCATS NIH HHS
- R01HL159507 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Adam J Brownstein
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Airie Kim
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
12
|
Chao HY, Yee BJ, Hsu CH, Chen HM, Lau EM. Sleep-related disorders in patients with precapillary pulmonary hypertension. Sleep Med Rev 2024; 77:101972. [PMID: 39032322 DOI: 10.1016/j.smrv.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Precapillary pulmonary hypertension (PcPH) is associated with the development of sleep-related disorders and impairment of sleep quality. With growing recognition of the clinical relevance of sleep-related conditions in PcPH, this narrative review seeks to discuss the spectrum of disorders encountered in clinical practice, pathophysiological mechanisms linking PcPH with sleep-related disorders, and potential therapeutic considerations. Current evidence demonstrates a higher prevalence of impaired sleep quality, sleep-disordered breathing, sleep-related hypoxia, and restless leg syndrome in patients with PcPH. These sleep-related disorders could further lead to impairment of quality of life in a patient population with already a high symptom burden. Recent data suggest that sleep-related hypoxia is strongly linked to worse right ventricular function and higher risk of transplantation or death. However, limited studies have investigated the role of oxygen therapy or positive airway pressure therapy improving symptoms or outcomes. Abnormal iron homeostasis is highly prevalent in PcPH and may contribute to the development of restless legs syndrome/periodic limb movement of sleep. To improve sleep management in PcPH, we highlight future research agenda and advocate close collaboration between pulmonary hypertension specialists and sleep physicians.
Collapse
Affiliation(s)
- Hsin-Yu Chao
- Department of Nursing, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Brendon J Yee
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, Australia; Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Chih-Hsin Hsu
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Hsing-Mei Chen
- Department of Nursing, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Edmund M Lau
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
13
|
Boutel M, Dara A, Arvanitaki A, Deuteraiou C, Mytilinaiou M, Dimitroulas T. Towards a Better Prognosis in Patients with Systemic Sclerosis-Related Pulmonary Arterial Hypertension: Recent Developments and Perspectives. J Clin Med 2024; 13:5834. [PMID: 39407897 PMCID: PMC11477739 DOI: 10.3390/jcm13195834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Precapillary pulmonary hypertension (PH) is a significant complication of systemic sclerosis (SSc). It represents one of the leading causes of morbidity and mortality, correlating with a significantly dismal prognosis and quality of life. Despite advancements in the management of patients with pulmonary arterial hypertension associated with SSc (SSc-PAH), no significant improvement has been reported in survival of patients with precapillary SSc-PH associated with extensive lung parenchyma disease. International expert consensus and guidelines for the management of PH recommend annual screening of SSc patients for early detection of pre-capillary PH. The implementation of screening algorithms capable of identifying patients with a high likelihood of developing PH could help limit unnecessary right-heart catheterization procedures and prevent significant delay in diagnosis. Furthermore, early initiation of up-front combination targeted therapy in patients with PAH has shown increase in survival rates, indicating that timely and aggressive medical therapy is key for stabilizing and even improving functional class, hemodynamic parameters and 6 min walking distance (6MWD) in this population. Further research is warranted into the benefit of PAH-targeted therapies in patients with PH associated with lung disease. Lastly, we discuss the potential role of immunosuppression using biologic agents in the therapeutic management of precapillary PH in SSc patients.
Collapse
Affiliation(s)
- Maria Boutel
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Alexandra Arvanitaki
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’s NHS Foundation Trust, Imperial College, London SW3 6NP, UK
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Cleopatra Deuteraiou
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Maria Mytilinaiou
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| |
Collapse
|
14
|
Lawrence A, Myall KJ, Mukherjee B, Marino P. Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease. Life (Basel) 2024; 14:1203. [PMID: 39337985 PMCID: PMC11433497 DOI: 10.3390/life14091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Pulmonary hypertension (PH) in interstitial lung disease (ILD) is relatively common, affecting up to 50% of patients with idiopathic pulmonary fibrosis (IPF). It occurs more frequently in advanced fibrotic ILD, although it may also complicate milder disease and carries significant clinical implications in terms of morbidity and mortality. Key pathological processes driving ILD-PH include hypoxic pulmonary vasoconstriction and pulmonary vascular remodelling. While current understanding of the complex cell signalling pathways and molecular mechanisms underlying ILD-PH remains incomplete, there is evidence for an interplay between the disease pathogenesis of fibrotic ILD and PH, with interest in the role of the pulmonary endothelium in driving pulmonary fibrogenesis more recently. This review examines key clinical trials in ILD-PH therapeutics, including recent research showing promise for the treatment of both ILD-PH and the underlying pulmonary fibrotic process, further supporting the hypothesis of interrelated pathogenesis. Other important management considerations are discussed, including the value of accurate phenotyping in ILD-PH and the success of the "pulmonary vascular" phenotype. This article highlights the close and interconnected nature of fibrotic ILD and PH disease pathogenesis, a perspective likely to improve our understanding and therapeutic approach to this complex condition in the future.
Collapse
Affiliation(s)
| | - Katherine Jane Myall
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
- King's College Hospital, London SE5 9RS, UK
| | - Bhashkar Mukherjee
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London SW3 6NP, UK
| | - Philip Marino
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
15
|
Maldonado-Velez G, Mickler EA, Cook TG, Aldred MA. Loss of Tbx4 Affects Postnatal Lung Development and Predisposes to Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613783. [PMID: 39345561 PMCID: PMC11429984 DOI: 10.1101/2024.09.18.613783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the precapillary pulmonary arteries. Genomic variation within the T-box 4 (TBX4) transcription factor is the second most common genetic cause of PAH, and can also cause severe lung developmental disorders with neonatal PH. Currently, the effect of TBX4 loss-of-function on later stages of lung development and predisposition to lung disease, including PH, is not well understood. Therefore, we have generated Tbx4 conditional knockout ( Tbx4-CKO ) mice in which Cre recombinase deletes exon 5 of Tbx4 within the embryonic lung mesenchyme to create a null allele. We harvested lungs from these mice at various timepoints to examine alveologenesis, vascularization, vascular remodeling, lung cellular composition, and disruption of transcriptional activity compared with control lungs. Right ventricular systolic pressure (RVSP) was measured in six-month-old mice to evaluate for PH. Tbx4-CKO lungs show enlargement of airspaces, as confirmed by an increase in mean linear intercept at P14 (24.9%), P36 (31.5%), and P180 (49.6%). These lungs also show a 39.3% decrease in von Willebrand Factor-positive vessels and a 14.2% increase in vessel wall thickness. Consistent with these results, Tbx4-CKO mice show a statistically significant increase of 15.7% in RVSP and 16.3% in the Fulton index. Bulk-RNA sequencing analysis revealed enrichment of pathways and genes relevant to lung alveologenesis, angiogenesis, and PH. Our results show that disruption of Tbx4 expression during early lung development is sufficient to disrupt postnatal lung development and circulation.
Collapse
|
16
|
Blanco I, Torres-Castro R, Barberà JA. Pulmonary vascular disease in chronic lung diseases: cause or comorbidity? Curr Opin Pulm Med 2024; 30:437-443. [PMID: 38958570 DOI: 10.1097/mcp.0000000000001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To provide timely and relevant insights into the complex relationship between pulmonary vascular disease (PVD) and chronic lung disease (CLD), focusing on the causative and consequential dynamics between these conditions. RECENT FINDINGS There are shared pathogenic mechanisms between pulmonary arterial hypertension (PAH) and group 3 pulmonary hypertension, including altered expression of mediators and growth factors implicated in both conditions. Factors such as hypoxia, hypoxemia, and hypercapnia also contribute to pulmonary vascular remodelling and endothelial dysfunction. However, the role of hypoxia as the sole driver of pulmonary hypertension in CLD is being reconsidered, particularly in chronic obstructive pulmonary disease (COPD), with evidence suggesting a potential role for cigarette smoke products in initiating pulmonary vascular impairment. On the other hand, interstitial lung disease (ILD) encompasses a group of heterogeneous lung disorders characterized by inflammation and fibrosis of the interstitium, leading to impaired gas exchange and progressive respiratory decline, which could also play a role as a cause of pulmonary hypertension. SUMMARY Understanding the intricate interplay between the pulmonary vascular compartment and the parenchymal and airway compartments in respiratory disease is crucial for developing effective diagnostic and therapeutic strategies for patients with PVD and CLD, with implications for both clinical practice and research.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| |
Collapse
|
17
|
Varghese NP, Austin ED, Galambos C, Mullen MP, Yung D, Guillerman RP, Vargas SO, Avitabile CM, Chartan CA, Cortes-Santiago N, Ibach M, Jackson EO, Jarrell JA, Keller RL, Krishnan US, Patel KR, Pogoriler J, Whalen EC, Wikenheiser-Brokamp KA, Villafranco NM, Hopper RK, Usha Raj J, Abman SH. An interdisciplinary consensus approach to pulmonary hypertension in developmental lung disease. Eur Respir J 2024; 64:2400639. [PMID: 39147412 PMCID: PMC11424926 DOI: 10.1183/13993003.00639-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
It is increasingly recognised that diverse genetic respiratory disorders present as severe pulmonary hypertension (PH) in the neonate and young infant, but many controversies and uncertainties persist regarding optimal strategies for diagnosis and management to maximise long-term outcomes. To better define the nature of PH in the setting of developmental lung disease (DEVLD), in addition to the common diagnoses of bronchopulmonary dysplasia and congenital diaphragmatic hernia, we established a multidisciplinary group of expert clinicians from stakeholder paediatric specialties to highlight current challenges and recommendations for clinical approaches, as well as counselling and support of families. In this review, we characterise clinical features of infants with DEVLD/DEVLD-PH and identify decision-making challenges including genetic evaluations, the role of lung biopsies, the use of imaging modalities and treatment approaches. The importance of working with team members from multiple disciplines, enhancing communication and providing sufficient counselling services for families is emphasised to create an interdisciplinary consensus.
Collapse
Affiliation(s)
- Nidhy P Varghese
- Department of Pediatrics, Division of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado and Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| | - Mary P Mullen
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Delphine Yung
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - R Paul Guillerman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine M Avitabile
- Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Corey A Chartan
- Department of Pediatrics, Divisions of Critical Care Medicine and Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Michaela Ibach
- Section of Palliative Care, Division of Hospital Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma O Jackson
- Heart Center, Pulmonary Hypertension Program, Seattle Children's Hospital, Seattle, WA, USA
| | - Jill Ann Jarrell
- Division of Palliative Care, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roberta L Keller
- Department of Pediatrics/Neonatology, University of California San Francisco and Benioff Children's Hospital, San Francisco, CA, USA
| | - Usha S Krishnan
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center and Morgan Stanley Children's Hospital of New York Presbyterian Hospital, New York, NY, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elise C Whalen
- Department of Pediatrics, Division of Pulmonology, Advanced Practice Providers, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine and Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Natalie M Villafranco
- Department of Pediatrics, Division of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rachel K Hopper
- Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - J Usha Raj
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven H Abman
- Department of Pediatrics, University of Colorado and Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
18
|
Gu N, Shen Y, He Y, Li C, Xiong W, Hu Y, Qiu Z, Peng F, Han W, Li C, Long X, Zhao R, Zhao Y, Shi B. Loss of m6A demethylase ALKBH5 alleviates hypoxia-induced pulmonary arterial hypertension via inhibiting Cyp1a1 mRNA decay. J Mol Cell Cardiol 2024; 194:16-31. [PMID: 38821243 DOI: 10.1016/j.yjmcc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary artery hypertension (HPH) is a complication of chronic hypoxic lung disease and the third most common type of pulmonary artery hypertension (PAH). Epigenetic mechanisms play essential roles in the pathogenesis of HPH. N6-methyladenosine (m6A) is an important modified RNA nucleotide involved in a variety of biological processes and an important regulator of epigenetic processes. To date, the precise role of m6A and regulatory molecules in HPH remains unclear. METHODS HPH model and pulmonary artery smooth muscle cells (PASMCs) were constructed from which m6A changes were observed and screened for AlkB homolog 5 (Alkbh5). Alkbh5 knock-in (KI) and knock-out (KO) mice were constructed to observe the effects on m6A and evaluate right ventricular systolic pressure (RVSP), left ventricular and septal weight [RV/(LV + S)], and pulmonary vascular remodeling in the context of HPH. Additionally, the effects of Alkbh5 knockdown using adenovirus were examined in vitro on m6A, specifically in PASMCs with regard to proliferation, migration and cytochrome P450 1A1 (Cyp1a1) mRNA stability. RESULTS In both HPH mice lung tissues and hypoxic PASMCs, a decrease in m6A was observed, accompanied by a significant up-regulation of Alkbh5 expression. Loss of Alkbh5 attenuated the proliferation and migration of hypoxic PASMCs in vitro, with an associated increase in m6A modification. Furthermore, Alkbh5 KO mice exhibited reduced RVSP, RV/(LV + S), and attenuated vascular remodeling in HPH mice. Mechanistically, loss of Alkbh5 inhibited Cyp1a1 mRNA decay and increased its expression through an m6A-dependent post-transcriptional mechanism, which hindered the proliferation and migration of hypoxic PASMCs. CONCLUSION The current study highlights the loss of Alkbh5 impedes the proliferation and migration of PASMCs by inhibiting post-transcriptional Cyp1a1 mRNA decay in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ning Gu
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjie He
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weiyu Han
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Bei Shi
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
19
|
Yalta K, Zorkun C, Yetkın E. Bleomycin-induced pulmonary hypertension: an underrated phenomenon with important implications in the setting of high-risk clinical scenarios. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2024; 41:e2024012. [PMID: 38940710 PMCID: PMC11275543 DOI: 10.36141/svdld.v41i2.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 06/29/2024]
Affiliation(s)
- Kenan Yalta
- Trakya University, Cardiology Department, Edirne, Turkey
| | - Cafer Zorkun
- Istanbul University, Cardiology Department, Istanbul, Turkey
| | - Ertan Yetkın
- Türkiye Hospital, Cardiology Department, Istanbul, Turkey
| |
Collapse
|
20
|
Choudhury P, Dasgupta S, Kar A, Sarkar S, Chakraborty P, Bhattacharyya P, Roychowdhury S, Chaudhury K. Bioinformatics analysis of hypoxia associated genes and inflammatory cytokine profiling in COPD-PH. Respir Med 2024; 227:107658. [PMID: 38704051 DOI: 10.1016/j.rmed.2024.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), interleukin 1-beta (IL-1β), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, West Bengal, India
| | - Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
21
|
Johnson SW, Wang RS, Winter MR, Gillmeyer KR, Zeder K, Klings ES, Goldstein RH, Wiener RS, Maron BA. Cluster analysis identifies novel real-world lung disease-pulmonary hypertension subphenotypes: implications for treatment response. ERJ Open Res 2024; 10:00959-2023. [PMID: 38770008 PMCID: PMC11103711 DOI: 10.1183/23120541.00959-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
Background Clinical trials repurposing pulmonary arterial hypertension (PAH) therapies to patients with lung disease- or hypoxia-pulmonary hypertension (PH) (classified as World Health Organization Group 3 PH) have failed to show a consistent benefit. However, Group 3 PH clinical heterogeneity suggests robust phenotyping may inform detection of treatment-responsive subgroups. We hypothesised that cluster analysis would identify subphenotypes with differential responses to oral PAH therapy. Methods Two k-means analyses were performed on a national cohort of US veterans with Group 3 PH; an inclusive model (I) of all treated patients (n=196) and a haemodynamic model (H) limited to patients with right heart catheterisations (n=112). The primary outcome was organ failure or all-cause mortality by cluster. An exploratory analysis evaluated within-cluster treatment effects. Results Three distinct clusters of Group 3 PH patients were identified. In the inclusive model (C1I n=43, 21.9%; C2I n=102, 52.0%; C3I n=51, 26.0%), lung disease and spirometry drove cluster assignment. By contrast, in the haemodynamic model (C1H n=44, 39.3%; C2H n=43, 38.4%; C3H n=25, 22.3%), right heart catheterisation data surpassed the importance of lung disease and spirometry. In the haemodynamic model, compared to C3H, C1H experienced the greatest hazard for respiratory failure or death (HR 6.1, 95% CI 3.2-11.8). In an exploratory analysis, cluster determined treatment response (p=0.006). Conclusions regarding within-cluster treatment responses were limited by significant differences between select variables in the treated and untreated groups. Conclusions Cluster analysis identifies novel real-world subphenotypes of Group 3 PH patients with distinct clinical trajectories. Future studies may consider this methodological approach to identify subgroups of heterogeneous patients that may be responsive to existing pulmonary vasodilatory therapies.
Collapse
Affiliation(s)
- Shelsey W. Johnson
- VA Boston Healthcare System, Boston, MA, USA
- The Pulmonary Center, Division of Pulmonary, Allergy, Sleep and Critical Care, and Boston University School of Medicine, Boston, MA, USA
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael R. Winter
- Boston University School of Public Health, Biostatistics and Epidemiology Data Analytics Center, Boston, MA, USA
| | - Kari R. Gillmeyer
- VA Boston Healthcare System, Boston, MA, USA
- The Pulmonary Center, Division of Pulmonary, Allergy, Sleep and Critical Care, and Boston University School of Medicine, Boston, MA, USA
- Center for Healthcare Organization and Implementation Research, VA Bedford Healthcare System, Bedford, MA, USA
| | - Katarina Zeder
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Elizabeth S. Klings
- The Pulmonary Center, Division of Pulmonary, Allergy, Sleep and Critical Care, and Boston University School of Medicine, Boston, MA, USA
| | | | - Renda Soylemez Wiener
- VA Boston Healthcare System, Boston, MA, USA
- The Pulmonary Center, Division of Pulmonary, Allergy, Sleep and Critical Care, and Boston University School of Medicine, Boston, MA, USA
- Center for Healthcare Organization and Implementation Research, VA Bedford Healthcare System, Bedford, MA, USA
| | - Bradley A. Maron
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| |
Collapse
|
22
|
Lin JL, Hsu CH. Pulmonary Arterial Hypertension Therapy in Pulmonary Hypertension Associated With Lung Diseases. JACC. ASIA 2024; 4:418-420. [PMID: 38765658 PMCID: PMC11099818 DOI: 10.1016/j.jacasi.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Jia-Ling Lin
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsin Hsu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Critical Care, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Polman R, Hurst JR, Uysal OF, Mandal S, Linz D, Simons S. Cardiovascular disease and risk in COPD: a state of the art review. Expert Rev Cardiovasc Ther 2024; 22:177-191. [PMID: 38529639 DOI: 10.1080/14779072.2024.2333786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Chronic Obstructive Pulmonary Disease (COPD) and cardiovascular diseases (CVD) commonly co-exist. Outcomes of people living with both conditions are poor in terms of symptom burden, receiving evidence-based treatment and mortality. Increased understanding of the underlying mechanisms may help to identify treatments to relieve this disease burden. This narrative review covers the overlap of COPD and CVD with a focus on clinical presentation, mechanisms, and interventions. Literature up to December 2023 are cited. AREAS COVERED 1. What is COPD 2. The co-existence of COPD and cardiovascular disease 3. Mechanisms of cardiovascular disease in COPD. 4. Populations with COPD are at risk of CVD 5. Complexity in the co-diagnosis of COPD in those with cardiovascular disease. 6. Therapy for COPD and implications for cardiovascular events and risk. 7. Cardiovascular risk and exacerbations of COPD. 8. Pro-active identification and management of CV risk in COPD. EXPERT OPINION The prospective identification of co-morbid COPD in CVD patients and of CVD and CV risk in people with COPD is crucial for optimizing clinical outcomes. This includes the identification of novel treatment targets and the design of clinical trials specifically designed to reduce the cardiovascular burden and mortality associated with COPD. Databases searched: Pubmed, 2006-2023.
Collapse
Affiliation(s)
- Ricardo Polman
- Department of Respiratory Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - John R Hurst
- UCL Respiratory, University College London, London, UK
| | | | - Swapna Mandal
- UCL Respiratory, University College London, London, UK
| | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Sami Simons
- Department of Respiratory Medicine, Maastricht UMC+, Maastricht, the Netherlands
- Department of Respiratory Medicine, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
24
|
Kusner J, Krasuski RA. Pulmonary Hypertension in Adult Congenital Heart Disease-Related Heart Failure. Heart Fail Clin 2024; 20:209-221. [PMID: 38462325 DOI: 10.1016/j.hfc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Already a challenging condition to define, adult congenital heart disease (ACHD) -associated heart failure (HF) often incorporates specific anatomies, including intracardiac and extracardiac shunts, which require rigorous diagnostic characterization and heighten the importance of clinicians proactively considering overall hemodynamic impacts of using specific therapies. The presence of elevated pulmonary vascular resistance dramatically increases the complexity of managing patients with ACHD-HF. Total circulatory management in patients with ACHD-HF requires input from multidisciplinary care teams and thoughtful and careful utilization of medical, interventional, and surgical approaches.
Collapse
Affiliation(s)
- Jonathan Kusner
- Department of Medicine, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27705, USA
| | - Richard A Krasuski
- Department of Cardiovascular Medicine, Duke University Medical Center, Box 3012, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Kitahara K, Omura J, Wada S, Kim SW. Patient and Therapeutic Profiles of Pulmonary Hypertension in Chronic Lung Diseases in Japan: A Cohort Study Using a Claims Database. Pulm Ther 2024; 10:21-49. [PMID: 37950789 PMCID: PMC10881911 DOI: 10.1007/s41030-023-00243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023] Open
Abstract
INTRODUCTION Pulmonary hypertension (PH) is often complicated by chronic lung diseases (CLDs) such as chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD). Differentiating between PH associated with CLD (group 3 PH) and pulmonary arterial hypertension (PAH) in CLD is often difficult and reporting on the efficacy of PAH-specific therapies is inconsistent as a result of the lack of understanding of the heterogeneity of patients with PH. METHODS A retrospective observational cohort study was conducted to understand the baseline characteristics, comorbidities, and treatment profiles of patients with PH in CLD in a real-world setting using a large-scale claims database (Medical Data Vision). Administrative and clinical data for patients admitted to acute-care hospitals in Japan between April 2008 and January 2021 were analyzed. RESULTS A total of 115,921 patients with CLD (109,578 with COPD and 6343 with ILD, of whom 569 and 176 had PH, respectively) were analyzed. This study found lower PH diagnosis rates among patients with COPD and patients with ILD than in previous studies. The majority of PH with CLD patients were elderly (mean age 75.7 years) and male (80.81%). Among patients with CLD prescribed PAH-specific therapies (105 patients with COPD; 64 patients with ILD), most received these as monotherapy (COPD, 84.76%; ILD, 75.56%); the most common were phosphodiesterase 5 inhibitors (COPD, 42.70%; ILD, 18.37%), prostacyclins (oral; COPD, 48.31%; ILD, 24.49%), and endothelin receptor antagonists (ERA) (COPD, 8.99%; ILD, 18.37%). Comorbidities (e.g., pulmonary, cardiac, kidney), home oxygen therapy (HOT), and echocardiography (ECHO) were factors associated with the diagnosis of PH. CONCLUSION This is the first study using an administrative database that provides real-world data on patients with PH in CLD in Japan. Our results indicate that PH may be misdiagnosed or underdiagnosed in Japan which may lead to suboptimal treatment for patients, and supports the need for further evidence to guide appropriate treatment.
Collapse
Affiliation(s)
- Kazuki Kitahara
- Medical Affairs, Janssen Pharmaceutical K.K., 3-5-2 Nishikanda, Chiyoda-ku, Tokyo, 101-0065, Japan.
| | - Junichi Omura
- Medical Affairs, Janssen Pharmaceutical K.K., 3-5-2 Nishikanda, Chiyoda-ku, Tokyo, 101-0065, Japan
| | - Shingo Wada
- Real World Evidence Solutions, IQVIA Solutions Japan K.K., 4-10-18 Takanawa, Minato-ku, Tokyo, 108-0074, Japan
| | - Seok-Won Kim
- Real World Evidence Solutions, IQVIA Solutions Japan K.K., 4-10-18 Takanawa, Minato-ku, Tokyo, 108-0074, Japan
| |
Collapse
|
26
|
Atchley WT, Kakkera TK. Pulmonary hypertension in chronic obstructive pulmonary disease: current understanding, knowledge gaps and future directions. Curr Opin Pulm Med 2024; 30:150-155. [PMID: 38088383 DOI: 10.1097/mcp.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
PURPOSE OF REVIEW Despite the advent of effective and mechanistically diverse treatments for pulmonary arterial hypertension (PAH) and their positive impacts on the functional capacities and outcomes for PAH patients, the much larger population of patients with pulmonary hypertension (PH) in chronic lung diseases like chronic obstructive pulmonary disease (PH-COPD) remain without effective therapies. RECENT FINDINGS In this review, we will highlight advances in the understanding of PH-COPD pathobiology, the clinical impact comorbid PH has on COPD outcomes, and detail the spectrum of disease and clinical phenotypes that encompass the heterogenous disease manifestations of PH-COPD. Finally, we will examine recent studies exploring the effects of potential treatments for PH-COPD and highlight sub-populations and treatment options that warrant further study. SUMMARY As the PAH population-base ages and comorbid diseases become more frequently diagnosed in PAH patients, the need to clearly delineate subpopulations for clinical applications of PH therapies and research becomes even more urgent. Through an improved understanding of the clinical phenotypes of PH-COPD and the overlap with certain subpopulations of PAH, a framework for future research and potential for therapeutic impact is highlighted.
Collapse
Affiliation(s)
- William T Atchley
- Division of Pulmonary & Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | |
Collapse
|
27
|
Khan S, Randhawa S, Patail H, Spira Y, Frishman WH, Aronow WS, Lanier GM. Pharmacological Update and Emerging Treatments of Pulmonary Hypertension. Cardiol Rev 2024:00045415-990000000-00192. [PMID: 38294225 DOI: 10.1097/crd.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pulmonary hypertension (PH) is defined as elevated pressures in the pulmonary artery and is associated with significant morbidity and mortality. The World Health Organization classifies PH into 5 distinct groups based on underlying etiology, pathology, and modality of treatment. Therapeutic approach may be challenging due to the extensive spectrum of causes and underlying mechanisms mediating PH. The 5 groups include pulmonary arterial hypertension (group 1), PH secondary to left heart disease (group 2), PH secondary to chronic lung disease (group 3), chronic thromboembolic pulmonary hypertension (group 4), and PH due to miscellaneous causes (group 5). Although significant progress has been made in the treatment of group 1 PH, there is a continued need to develop new therapies for all types of PH. Additionally, most treatments currently available improve functional capacity and symptoms but without a significant benefit in mortality. In this review, we aim to describe the various etiologies of PH and their established pharmacotherapies, as well as expand on emerging therapeutic options for each group.
Collapse
Affiliation(s)
- Shazli Khan
- From the Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY
| | - Sukhbir Randhawa
- Department of Internal Medicine, Samaritan Medical Center, Watertown, NY
| | - Haris Patail
- Department of Internal Medicine, University of Connecticut School of Medicine, Hartford, CT
| | - Yaakov Spira
- Department of Internal Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY
| | - William H Frishman
- Department of Internal Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- From the Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY
| | - Gregg M Lanier
- From the Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY
| |
Collapse
|
28
|
Arslan A, Smith J, Qureshi MR, Uysal A, Patel KK, Herazo-Maya JD, Bandyopadhyay D. Evolution of pulmonary hypertension in interstitial lung disease: a journey through past, present, and future. Front Med (Lausanne) 2024; 10:1306032. [PMID: 38298504 PMCID: PMC10827954 DOI: 10.3389/fmed.2023.1306032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Interstitial lung diseases (ILD) are a spectrum of disorders often complicated by pulmonary hypertension (PH) in its course. The pathophysiologic mechanism of WHO group 3 PH is different to other forms of PH. The advent of PH is a harbinger for adverse events like mortality and morbidity, implying that the PH component of disease expedites deteriorated clinical outcomes. In fact, WHO group 3 PH due to ILD has the worse prognosis among all groups of PH. Hence, early detection of PH by a comprehensive screening method is paramount. Given considerable overlap in clinical manifestations between ILD and PH, early detection of PH is often elusive. Despite, the treatment of PH due to ILD has been frustrating until recently. Clinical trials utilizing PAH-specific pulmonary vasodilators have been ongoing for years without desired results. Eventually, the INCREASE study (2018) demonstrated beneficial effect of inhaled Treprostinil to treat PH in ILD. In view of this pioneering development, a paradigm shift in clinical approach to this disease phenotype is happening. There is a renewed vigor to develop a well validated screening tool for early detection and management. Currently inhaled Treprostinil is the only FDA approved therapy to treat this phenotype, but emergence of a therapy has opened a plethora of research toward new drug developments. Regardless of all these recent developments, the overall outlook still remains grim in this condition. This review article dwells on the current state of knowledge of pre-capillary PH due to ILD, especially its diagnosis and management, the recent progresses, and future evolutions in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Debabrata Bandyopadhyay
- Division of Pulmonary, Critical Care and Sleep Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
29
|
Wan JJ, Yi J, Wang FY, Zhang C, Dai AG. Expression and regulation of HIF-1a in hypoxic pulmonary hypertension: Focus on pathological mechanism and Pharmacological Treatment. Int J Med Sci 2024; 21:45-60. [PMID: 38164358 PMCID: PMC10750340 DOI: 10.7150/ijms.88216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia inducible factor-1(HIF-1), a heterodimeric transcription factor, is composed of two subunits (HIF-1α and HIF-1β). It is considered as an important transcription factor for regulating oxygen changes in hypoxic environment, which can regulate the expression of various hypoxia-related target genes and play a role in acute and chronic hypoxia pulmonary vascular reactions. In this paper, the function and mechanism of HIF-1a expression and regulation in hypoxic pulmonary hypertension (HPH) were reviewed, and current candidate schemes for treating pulmonary hypertension by using HIF-1a as the target were introduced, so as to provide reference for studying the pathogenesis of HPH and screening effective treatment methods.
Collapse
Affiliation(s)
- Jia-Jing Wan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Jian Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, People's Republic of China
| | - Fei-Ying Wang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Chao Zhang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Ai-Guo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, People's Republic of China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan, People's Republic of China
| |
Collapse
|
30
|
Didden E, Lu D, Hsi A, Brand M, Hedlin H, Zamanian RT. Clinical evaluation of code-based algorithms to identify patients with pulmonary arterial hypertension in healthcare databases. Pulm Circ 2024; 14:e12333. [PMID: 38333073 PMCID: PMC10851026 DOI: 10.1002/pul2.12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare subgroup of pulmonary hypertension (PH). Claims and administrative databases can be particularly important for research in rare diseases; however, there is a lack of validated algorithms to identify PAH patients using administrative codes. We aimed to measure the accuracy of code-based PAH algorithms against the true clinical diagnosis by right heart catheterization (RHC). This study evaluated algorithms in patients who were recorded in two linkable data assets: the Stanford Healthcare administrative electronic health record database and the Stanford Vera Moulton Wall Center clinical PH database (which records each patient's RHC diagnosis). We assessed the sensitivity and specificity achieved by 16 algorithms (six published). In total, 720 PH patients with linked data available were included and 558 (78%) of these were PAH patients. Algorithms consisting solely of a P(A)H-specific diagnostic code classed all or almost all PH patients as PAH (sensitivity >97%, specificity <12%) while multicomponent algorithms with well-defined temporal sequences of procedure, diagnosis and treatment codes achieved a better balance of sensitivity and specificity. Specificity increased and sensitivity decreased with increasing algorithm complexity. The best-performing algorithms, in terms of fewest misclassified patients, included multiple components (e.g., PH diagnosis, PAH treatment, continuous enrollment for ≥6 months before and ≥12 months following index date) and achieved sensitivities and specificities of around 95% and 38%, respectively. Our findings help researchers tailor their choice and design of code-based PAH algorithms to their research question and demonstrate the importance of including well-defined temporal components in the algorithms.
Collapse
Affiliation(s)
- Eva‐Maria Didden
- Global Epidemiology, Rare Disease Epicenter, Actelion Pharmaceuticals LtdJanssen Pharmaceutical Company of Johnson & JohnsonAllschwilSwitzerland
| | - Di Lu
- Quantitative Sciences UnitStanford UniversityStanfordCaliforniaUSA
| | - Andrew Hsi
- Adult PH ProgramVera Moulton Wall Center UniversityStanfordCaliforniaUSA
| | - Monika Brand
- Global Epidemiology, Rare Disease Epicenter, Actelion Pharmaceuticals LtdJanssen Pharmaceutical Company of Johnson & JohnsonAllschwilSwitzerland
| | - Haley Hedlin
- Quantitative Sciences UnitStanford UniversityStanfordCaliforniaUSA
| | - Roham T. Zamanian
- Adult PH ProgramVera Moulton Wall Center UniversityStanfordCaliforniaUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
31
|
Vaidy A, O'Corragain O, Vaidya A. Diagnosis and Management of Pulmonary Hypertension and Right Ventricular Failure in the Cardiovascular Intensive Care Unit. Crit Care Clin 2024; 40:121-135. [PMID: 37973349 DOI: 10.1016/j.ccc.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Pulmonary hypertension (PH) encompasses a broad range of conditions, including pulmonary artery hypertension, left-sided heart disease, and pulmonary and thromboembolic disorders. Successful diagnosis and management rely on an integrated clinical assessment of the patient's physiology and right heart function. Right ventricular (RV) heart failure is often a result of PH, but may result from varying abnormalities in preload, afterload, and intrinsic myocardial dysfunction, which require distinct management strategies. Consideration of an individual's hemodynamic phenotype and physiologic circumstances is paramount in management of PH and RV failure, particularly when there is clinical instability in the intensive care setting.
Collapse
Affiliation(s)
- Anika Vaidy
- Pulmonary Hypertension, Right Heart Failure, CTEPH Program, Division of Cardiology, Temple University Hospital, 9th floor Parkinson Pavilion, 3401 North Broad Street, Philadelphia, PA 19140, USA
| | | | - Anjali Vaidya
- Pulmonary Hypertension, Right Heart Failure, CTEPH Program, Division of Cardiology, Temple University Hospital, 9th floor Parkinson Pavilion, 3401 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
32
|
Bouman K, van den Heuvel FM, Evertz R, Boesaard E, Groothuis JT, van Engelen BG, Nijveldt R, Erasmus CE, Udink ten Cate FE, Voermans NC. Cardiac Involvement in LAMA2-Related Muscular Dystrophy and SELENON-Related Congenital Myopathy: A Case Series. J Neuromuscul Dis 2024; 11:919-934. [PMID: 39177608 PMCID: PMC11380286 DOI: 10.3233/jnd-230190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
Background LAMA2-related muscular dystrophy (LAMA2-MD) and SELENON-related myopathy (SELENON-RM) are two rare neuromuscular diseases characterized by proximal and axial muscle weakness, scoliosis, spinal rigidity, low bone quality and respiratory impairment. Cardiac involvement has previously been described in retrospective studies and case reports, but large case series and prospective studies in unselected cohorts are lacking. Objective The objective of this study is to conduct prevalence estimations, perform cardiac phenotyping, and provide recommendations for clinical care. Methods In this case series including two time points, we conducted comprehensive assessments with electrocardiography (ECG) and transthoracic echocardiography (TTE). ECGs were systematically assessed for a large subset of variables. TTE included left and right ventricular ejection fraction (LVEF/RVEF) and left ventricular global longitudinal strain (GLS), the latter being a more early and sensitive marker of left ventricular dysfunction. Results 21 LAMA2-MD (M = 5; 20±14 years) and 10 SELENON-RM patients (M = 7; 18±12 years) were included. In most patients, QRS fragmentation and Q waves, markers of heterogeneous ventricular activation, were present both at baseline and at follow-up. GLS was abnormal (age specific in children, > -18% in adults) in 33% of LAMA2-MD and 43% of SELENON-RM patients at baseline. Reduced LVEF (<52% in males, <54% in females and <55% in pediatric population) was observed in three LAMA2-MD patients at baseline and in none of the SELENON-RM patients. GLS and LVEF did not change between baseline and follow-up. RVEF was normal in all patients. Conclusion ECG abnormalities and abnormal GLS are prevalent in LAMA2-MD and SELENON-RM, yet abnormal LVEF was only seen in LAMA2-MD patients. One LAMA2-MD patient had a clinically relevant deterioration in LVEF during 1.5-year follow-up. We advise routine screening of all patients with LAMA2-MD or SELENON-RM with ECG and echocardiography at diagnosis, minimally every two years from second decade of life and if new cardiac signs arise.
Collapse
Affiliation(s)
- Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Reinder Evertz
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewout Boesaard
- Department of Pediatric Cardiology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan T. Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E. Erasmus
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris E.A. Udink ten Cate
- Department of Pediatric Cardiology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Daher A, Klose H. [Pathophysiology, diagnosis, prognosis and treatment of pulmonary hypertension associated with chronic lung disease]. Dtsch Med Wochenschr 2023; 148:1507-1513. [PMID: 37949079 DOI: 10.1055/a-2012-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The pathophysiology of pulmonary hypertension associated with chronic lung disease (PH-CLD) is complex, multifactorial, and not consistent among pulmonary diseases. However, pulmonary vasculopathy triggered by various factors, such as chronic alveolar hypoxia or cigarette smoking, seems to play a central role in the pathogenesis of PH-CLD. While the initial workup of PH-CLD is usually complicated by an overlap of symptoms of PH and the underlying lung disease, PH-CLD should be considered when there is a discrepancy between symptoms (especially exertional dyspnea) and pulmonary function tests. Clinical suspicion of PH-CLD can be strengthened by noninvasive diagnostic tools such as transthoracic echocardiography (TTE) or N-terminal pro-B-type natriuretic peptide (NT-pro-BNP). However, a right heart catheterization should only be performed in specialized centers to establish the diagnosis if therapeutic consequences for the patient were expected.The basic treatment of PH-CLD is optimal management of the underlying lung disease. Among the existing interventional and registry-based studies, only a small number of data suggests favorable outcomes when treating PH-CLD patients with PAH-specific medications. Some publications even suggest negative effects. Nevertheless, recent data on inhaled vasoactive therapy in PH-CLD showed positive results for inhaled Treprostinil, although long-term data for this therapeutic approach are still lacking. Treatment of PH-CLD patients with PAH-specific drugs should only be performed in specialized centers and preferably in the context of clinical trials.
Collapse
|
34
|
Roubenne L, Laisné M, Benoist D, Campagnac M, Prunet B, Pasdois P, Cardouat G, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Le Grand B, Freund-Michel V, Guibert C. OP2113, a new drug for chronic hypoxia-induced pulmonary hypertension treatment in rat. Br J Pharmacol 2023; 180:2802-2821. [PMID: 37351910 DOI: 10.1111/bph.16174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) is a cardiovascular disease characterised by an increase in pulmonary arterial (PA) resistance leading to right ventricular (RV) failure. Reactive oxygen species (ROS) play a major role in PH. OP2113 is a drug with beneficial effects on cardiac injuries that targets mitochondrial ROS. The aim of the study was to address the in vivo therapeutic effect of OP2113 in PH. EXPERIMENTAL APPROACH PH was induced by 3 weeks of chronic hypoxia (CH-PH) in rats treated with OP2113 or its vehicle via subcutaneous osmotic mini-pumps. Haemodynamic parameters and both PA and heart remodelling were assessed. Reactivity was quantified in PA rings and in RV or left ventricular (LV) cardiomyocytes. Oxidative stress was detected by electron paramagnetic resonance and western blotting. Mitochondrial mass and respiration were measured by western blotting and oxygraphy, respectively. KEY RESULTS In CH-PH rats, OP2113 reduced the mean PA pressure, PA remodelling, PA hyperreactivity in response to 5-HT, the contraction slowdown in RV and LV and increased the mitochondrial mass in RV. Interestingly, OP2113 had no effect on haemodynamic parameters, both PA and RV wall thickness and PA reactivity, in control rats. Whereas oxidative stress was evidenced by an increase in protein carbonylation in CH-PH, this was not affected by OP2113. CONCLUSION AND IMPLICATIONS Our study provides evidence for a selective protective effect of OP2113 in vivo on alterations in both PA and RV from CH-PH rats without side effects in control rats.
Collapse
Affiliation(s)
- Lukas Roubenne
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- OP2 Drugs SAS, Pessac, France
| | - Margaux Laisné
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | - David Benoist
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000, Bordeaux, France
| | | | | | - Philippe Pasdois
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000, Bordeaux, France
| | | | - Thomas Ducret
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | | | - Pierre Vacher
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | | | - Roger Marthan
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, INSERM, U 1045, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, INSERM, U 1045, Bordeaux, France
| | | | | | | |
Collapse
|
35
|
Khangoora V, Bernstein EJ, King CS, Shlobin OA. Connective tissue disease-associated pulmonary hypertension: A comprehensive review. Pulm Circ 2023; 13:e12276. [PMID: 38088955 PMCID: PMC10711418 DOI: 10.1002/pul2.12276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 10/16/2024] Open
Abstract
Connective tissue diseases (CTDs) can be associated with various forms of pulmonary hypertension, including pulmonary arterial hypertension (PAH), pulmonary veno-occlusive disease, pulmonary venous hypertension, interstitial lung disease-associated pulmonary hypertension, chronic thromboembolic pulmonary hypertension, and sometimes a combination of several processes. The prevalence of PAH varies among the different CTDs, with systemic sclerosis (SSc) having the highest at 8%-12%. The most recent European Society of Cardiology/European Respiratory Society guidelines recommend routine annual screening for PAH in SSc and CTDs with SSc features. As CTDs can be associated with a myriad of presentations of pulmonary hypertension, a thorough evaluation to include a right heart catheterization to clearly delineate the hemodynamic profile is essential in developing an appropriate treatment plan. Treatment strategies will depend on the predominant phenotype of pulmonary vasculopathy. In general, management approach to CTD-PAH mirrors that of idiopathic PAH. Despite this, outcomes of CTD-PAH are inferior to those of idiopathic PAH, with those of SSc-PAH being particularly poor. Reasons for this may include extrapulmonary manifestations of CTDs, including renal disease and gastrointestinal involvement, concurrent interstitial lung disease, and differences in the innate response of the right ventricle to increased pulmonary vascular resistance. Early referral for lung transplant evaluation of patients with CTD-PAH, particularly SSc-PAH, is recommended. It is hoped that in the near future, additional therapies may be added to the armamentarium of effective treatments for CTD-PAH. Ultimately, a better understanding of the pathogenesis of CTD-PAH will be required to develop targeted therapies for this morbid condition.
Collapse
Affiliation(s)
- Vikramjit Khangoora
- Advanced Lung Disease and Transplant ProgramInova Fairfax HospitalFalls ChurchVirginiaUSA
| | - Elana J. Bernstein
- Division of Rheumatology, Department of Medicine, Vagelos College of Physicians and SurgeonsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Christopher S. King
- Advanced Lung Disease and Transplant ProgramInova Fairfax HospitalFalls ChurchVirginiaUSA
| | - Oksana A. Shlobin
- Advanced Lung Disease and Transplant ProgramInova Fairfax HospitalFalls ChurchVirginiaUSA
| |
Collapse
|
36
|
Wang Y, Zeng Z, Zeng Z, Chu G, Shan X. Elevated CHCHD4 orchestrates mitochondrial oxidative phosphorylation to disturb hypoxic pulmonary hypertension. J Transl Med 2023; 21:464. [PMID: 37438854 DOI: 10.1186/s12967-023-04268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a highly prevalent cardiopulmonary disorder characterized by vascular remodeling and increased resistance in pulmonary artery. Mitochondrial coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins have various important pathophysiological roles. However, the functional roles of CHCHD proteins in hypoxic PAH is still ambiguous. Here, we aimed to investigate the role of CHCHD4 in hypoxic PAH and provide new insight into the mechanism driving the development of PAH. METHODS Serotype 1 adeno-associated viral vector (AAV) carrying Chchd4 was intratracheally injected to overexpress CHCHD4 in Sprague Dawley (SD) rats. The Normoxia groups of animals were housed at 21% O2. Hypoxia groups were housed at 10% O2, for 8 h/day for 4 consecutive weeks. Hemodynamic and histological characteristics are investigated in PAH. Primary pulmonary artery smooth muscle cells of rats (PASMCs) are used to assess how CHCHD4 affects proliferation and migration. RESULTS We found CHCHD4 was significantly downregulated among CHCHD proteins in hypoxic PASMCs and lung tissues from hypoxic PAH rats. AAV1-induced CHCHD4 elevation conspicuously alleviates vascular remodeling and pulmonary artery resistance, and orchestrates mitochondrial oxidative phosphorylation in PASMCs. Moreover, we found overexpression of CHCHD4 impeded proliferation and migration of PASMCs. Mechanistically, through lung tissues bulk RNA-sequencing (RNA-seq), we further identified CHCHD4 modulated mitochondrial dynamics by directly interacting with SAM50, a barrel protein on mitochondrial outer membrane surface. Furthermore, knockdown of SAM50 reversed the biological effects of CHCHD4 overexpression in isolated PASMCs. CONCLUSIONS Collectively, our data demonstrated that CHCHD4 elevation orchestrates mitochondrial oxidative phosphorylation and antagonizes aberrant PASMC cell growth and migration, thereby disturbing hypoxic PAH, which could serve as a promising therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
37
|
Liu R, Yuan T, Wang R, Gong D, Wang S, Du G, Fang L. Insights into Endothelin Receptors in Pulmonary Hypertension. Int J Mol Sci 2023; 24:10206. [PMID: 37373355 DOI: 10.3390/ijms241210206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease which affects the cardiopulmonary system; it is defined as a mean pulmonary artery pressure (mPAP) > 20 mmHg as measured by right heart catheterization at rest, and is caused by complex and diverse mechanisms. In response to stimuli such as hypoxia and ischemia, the expression and synthesis of endothelin (ET) increase, leading to the activation of various signaling pathways downstream of it and producing effects such as the induction of abnormal vascular proliferation during the development of the disease. This paper reviews the regulation of endothelin receptors and their pathways in normal physiological processes and disease processes, and describes the mechanistic roles of ET receptor antagonists that are currently approved and used in clinical studies. Current clinical researches on ET are focused on the development of multi-target combinations and novel delivery methods to improve efficacy and patient compliance while reducing side effects. In this review, future research directions and trends of ET targets are described, including monotherapy and precision medicine.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
38
|
Li C, Liu P, Yao H, Zhu H, Zhang S, Meng F, Li S, Li G, Peng Y, Gu J, Zhu L, Jiang Y, Dai A. Regulatory B cells protect against chronic hypoxia-induced pulmonary hypertension by modulating the Tfh/Tfr immune balance. Immunology 2023; 168:580-596. [PMID: 36221236 DOI: 10.1111/imm.13589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (HPH) is a progressive and lethal disease characterized by the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) and obstructive vascular remodelling. Previous research demonstrated that Breg cells were involved in the pathogenesis of pulmonary hypertension. This work aimed to evaluate the regulatory function of Breg cells in HPH. HPH mice model were established and induced by exposing to chronic hypoxia for 21 days. Mice with HPH were treated with anti-CD22 or adoptive transferred of Breg cells. The coculture systems of Breg cells with CD4+ T cells and Breg cells with PASMCs in vitro were constructed. Lung pathology was evaluated by HE staining and immunofluorescence staining. The frequencies of Breg cells, Tfh cells and Tfr cells were analysed by flow cytometry. Serum IL-21 and IL-10 levels were determined by ELISA. Protein levels of Blimp-1, Bcl-6 and CTLA-4 were determined by western blot and RT-PCR. Proliferation rate of PASMCs was measured by EdU. Compared to the control group, mean PAP, RV/(LV + S) ratio, WA% and WT% were significantly increased in the model group. Anti-CD22 exacerbated abnormal hemodynamics, pulmonary vascular remodelling and right ventricle hypertrophy in HPH, which ameliorated by adoptive transfer of Breg cells into HPH mice. The proportion of Breg cells on day 7 induced by chronic hypoxia was significantly higher than control group, which significantly decreased on day 14 and day 21. The percentage of Tfh cells was significantly increased, while percentage of Tfr cells was significantly decreased in HPH than those of control group. Anti-CD22 treatment increased the percentage of Tfh cells and decreased the percentage of Tfr cells in HPH mice. However, Breg cells restrained the Tfh cells differentiation and expanded Tfr cells differentiation in vivo and in vitro. Additionally, Breg cells inhibited the proliferation of PASMCs under hypoxic condition in vitro. Collectively, these findings suggested that Breg cells may be a new therapeutic target for modulating the Tfh/Tfr immune balance in HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Pingping Liu
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
| | - Huiling Yao
- Department of General Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Fang Meng
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - San Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yanping Peng
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Jing Gu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yongliang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Aiguo Dai
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
- Hunan Province Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, People's Republic of China
| |
Collapse
|
39
|
Guo Y, He Z, Chen Z, Chen F, Wang C, Zhou W, Liu J, Liu H, Shi R. Inhibition of Th17 cells by donepezil ameliorates experimental lung fibrosis and pulmonary hypertension. Theranostics 2023; 13:1826-1842. [PMID: 37064881 PMCID: PMC10091879 DOI: 10.7150/thno.82069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Rationale: Pulmonary hypertension (PH) secondary to lung fibrosis belongs to WHO Group III, one of the most common subgroups of PH; however, it lacks effective treatment options. Cholinesterase inhibitor donepezil (DON) has been shown to effectively improve Group I PH. However, its effects on Group III PH are unknown. Methods: A lung fibrosis-induced PH mouse model was constructed using a single intratracheal instillation of bleomycin (BLM), after which DON was administered daily. Pulmonary artery and right ventricle (RV) remodeling were evaluated at the end of the study. Lung tissue in each group was analyzed using RNA sequencing, and the results were further verified with datasets from patients with PH. The mechanisms underlying DON-induced effects on PH were verified both in vivo and in vitro. Results: DON effectively improved pulmonary artery and RV remodeling in the BLM-induced mouse model. Transcriptomic profiles of lung tissue indicated that the expression of inflammatory and fibrotic genes was significantly changed in this process. In the animal model and patients with PH, T helper 17 lymphocytes (Th17) were the most common inflammatory cells infiltrating the lung tissue. DON significantly inhibited lung fibroblast activation; thus, preventing lung fibrosis and reducing the inflammatory response and Th17 cell infiltration in the BLM-induced lung tissue. In addition, Th17 cells could activate lung fibroblasts by secreting IL17A, and DON-mediated inhibition of Th17 cell differentiation was found to depend on the α7nAchR-JAK2-STAT3 pathway. Conclusion: DON can alleviate lung fibrosis and PH in an experimental mouse model. It inhibited pro-inflammatory Th17 cell differentiation, which is dependent on a cholinergic receptor pathway, thereby regulating fibroblast activation.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, Hunan, China
| | - Ziyu He
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, Hunan, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Fengling Chen
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, Hunan, China
| | - Chengming Wang
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, Hunan, China
| | - Wanlu Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hao Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
40
|
Vahdatpour C, Epstein S, Jones K, Smoot M, Parker A, Ryan J, Bryant A. A review of cardio-pulmonary microvascular dysfunction in pulmonary hypertension. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 26:100255. [PMID: 38510189 PMCID: PMC10946046 DOI: 10.1016/j.ahjo.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 03/22/2024]
Abstract
Microvascular dysfunction progressing to pulmonary hypertension can be a primary cause of right ventricular failure or a secondary cause because of an underlying systemic illness. Little is known regarding the etiology and epidemiology of coronary microvascular dysfunction in pulmonary hypertension. Despite this limitation, its presence has been described in patients with pulmonary hypertension. This review focuses on the pathogenesis of cardiac and pulmonary microvascular dysfunction in pulmonary hypertension. Additionally, this review provides a contemporary assessment on the diagnosis and treatment of microvascular dysfunction in patients in pulmonary hypertension. This topic is important to raise awareness of microvascular dysfunction in the coronary and pulmonary circulation, so that future studies will investigate its impact on the pulmonary hypertension patient cohort.
Collapse
Affiliation(s)
- Cyrus Vahdatpour
- Department of Pulmonary Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Epstein
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Kirk Jones
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Madeline Smoot
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Alex Parker
- Department of Cardiology, University of Florida, Gainesville, FL, USA
| | - John Ryan
- Department of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Andrew Bryant
- Department of Pulmonary Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Swisher JW, Weaver E. The Evolving Management and Treatment Options for Patients with Pulmonary Hypertension: Current Evidence and Challenges. Vasc Health Risk Manag 2023; 19:103-126. [PMID: 36895278 PMCID: PMC9990521 DOI: 10.2147/vhrm.s321025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension may develop as a disease process specific to pulmonary arteries with no identifiable cause or may occur in relation to other cardiopulmonary and systemic illnesses. The World Health Organization (WHO) classifies pulmonary hypertensive diseases on the basis of primary mechanisms causing increased pulmonary vascular resistance. Effective management of pulmonary hypertension begins with accurately diagnosing and classifying the disease in order to determine appropriate treatment. Pulmonary arterial hypertension (PAH) is a particularly challenging form of pulmonary hypertension as it involves a progressive, hyperproliferative arterial process that leads to right heart failure and death if untreated. Over the last two decades, our understanding of the pathobiology and genetics behind PAH has evolved and led to the development of several targeted disease modifiers that ameliorate hemodynamics and quality of life. Effective risk management strategies and more aggressive treatment protocols have also allowed better outcomes for patients with PAH. For those patients who experience progressive PAH with medical therapy, lung transplantation remains a life-saving option. More recent work has been directed at developing effective treatment strategies for other forms of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary hypertension due to other lung or heart diseases. The discovery of new disease pathways and modifiers affecting the pulmonary circulation is an ongoing area of intense investigation.
Collapse
Affiliation(s)
- John W Swisher
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| | - Eric Weaver
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| |
Collapse
|
42
|
Strategizing Drug Therapies in Pulmonary Hypertension for Improved Outcomes. Pharmaceuticals (Basel) 2022; 15:ph15101242. [PMID: 36297354 PMCID: PMC9609426 DOI: 10.3390/ph15101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by a resting mean pulmonary artery pressure (PAP) of 20 mmHg or more and is a disease of multiple etiologies. Of the various types of PH, pulmonary arterial hypertension (PAH) is characterized by elevated resistance in the pulmonary arterial tree. It is a rare but deadly disease characterized by vascular remodeling of the distal pulmonary arteries. This paper focuses on PAH diagnosis and management including current and future treatment options. Over the last 15 years, our understanding of this progressive disease has expanded from the concept of vasoconstrictive/vasodilatory mismatch in the pulmonary arterioles to now a better appreciation of the role of genetic determinants, numerous cell signaling pathways, cell proliferation and apoptosis, fibrosis, thrombosis, and metabolic abnormalities. While knowledge of its pathophysiology has expanded, the majority of the treatments available today still modulate the same three vasodilatory pathways that have been targeted for over 30 years (endothelin, nitric oxide, and prostacyclin). While modifying these pathways may help improve symptoms and quality of life, none of these directly modify the underlying disease pathogenesis. However, there are now studies ongoing with new drugs that can prevent or reverse these underlying causes of PAH. This review discusses the evidence base for the current treatment algorithms for PAH, as well as discusses novel therapies in development.
Collapse
|