1
|
Zhang L, Zhou J, Kong W. Extracellular matrix in vascular homeostasis and disease. Nat Rev Cardiol 2025; 22:333-353. [PMID: 39743560 DOI: 10.1038/s41569-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix is an essential component and constitutes a dynamic microenvironment of the vessel wall with an indispensable role in vascular homeostasis and disease. From early development through to ageing, the vascular extracellular matrix undergoes various biochemical and biomechanical alterations in response to diverse environmental cues and exerts precise regulatory control over vessel remodelling. Advances in novel technologies that enable the comprehensive evaluation of extracellular matrix components and cell-matrix interactions have led to the emergence of therapeutic strategies that specifically target this fine-tuned network. In this Review, we explore various aspects of extracellular matrix biology in vascular development, disorders and ageing, emphasizing the effect of the extracellular matrix on disease initiation and progression. Additionally, we provide an overview of the potential therapeutic implications of targeting the extracellular matrix microenvironment in vascular diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
2
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Liu Y, Li M, Chen Z, Zuo M, Bao K, Zhao Z, Yan M, Bai Y, Ai D, Wang H, Jiang H. BRISC-Mediated PPM1B-K63 Deubiquitination and Subsequent TGF-β Pathway Activation Promote High-Fat/High-Sucrose Diet-Induced Arterial Stiffness. Circ Res 2025; 136:297-314. [PMID: 39742393 DOI: 10.1161/circresaha.124.325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg2+/Mn2+-dependent 1B)-lysine 63(K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness. METHODS Enzymes governing PPM1B deubiquitination were identified through small interfering RNA (siRNA) screening and mass spectrometry. Glutathione S-transferase pull-down, coimmunoprecipitation, protein purification, and immunofluorescence were used to explore the mechanism underlying PPM1B deubiquitination. Doppler ultrasound was used to evaluate HFHSD-induced arterial stiffness in mice, and telemetry was used to record pulsatile (systolic and diastolic) blood pressure. RESULTS Smooth muscle cell-specific PPM1B overexpression attenuated HFHSD-induced arterial stiffness in mice in a PPM1B-K326-K63-linked polyubiquitination-dependent manner. Mechanistically, ABRO1 (Abraxas brother 1; a core BRCC36 [BRCA1/BRCA2 (breast cancer type 1/2)-containing complex subunit 36] isopeptidase complex component) directly bound YAP and underwent liquid-liquid phase separation with YAP and PPM1B in a YAP-dependent manner, which in turn promoted PPM1B deubiquitination. Furthermore, smooth muscle cell-specific Abro1-knockout mice and Brcc3-knockout mice showed attenuated HFHSD-induced arterial stiffness and activation of transforming growth factor-β-Smad (mothers against decapentaplegic homolog) signaling. CONCLUSIONS We elucidated the PPM1B deubiquitination mechanisms and highlighted a potential therapeutic target for metabolic syndrome-related arterial stiffness.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, China (Y.L., M.Z., H.W.)
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Hunan, China (Y.L., Y.B.)
| | - Mengke Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Zhipeng Chen
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Min Zuo
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, China (Y.L., M.Z., H.W.)
| | - Kaiwen Bao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Ziyan Zhao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Meng Yan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China (M.Y.)
| | - Yongping Bai
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Hunan, China (Y.L., Y.B.)
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Hu Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, China (Y.L., M.Z., H.W.)
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (H.J.)
| |
Collapse
|
4
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
5
|
Ma N, Wu F, Liu J, Wu Z, Wang L, Li B, Liu Y, Dong X, Hu J, Fang X, Zhang H, Ai D, Zhou J, Wang X. Kindlin-2 Phase Separation in Response to Flow Controls Vascular Stability. Circ Res 2024; 135:1141-1160. [PMID: 39492718 DOI: 10.1161/circresaha.124.324773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atheroprotective shear stress preserves endothelial barrier function, while atheroprone shear stress enhances endothelial permeability. Yet, the underlying mechanisms through which distinct flow patterns regulate EC integrity remain to be clarified. This study aimed to investigate the involvement of Kindlin-2, a key component of focal adhesion and endothelial adherens junctions crucial for regulating endothelial cell (EC) integrity and vascular stability. METHODS Mouse models of atherosclerosis in EC-specific Kindlin-2 knockout mice (Kindlin-2iΔEC) were used to study the role of Kindlin-2 in atherogenesis. Pulsatile shear (12±4 dynes/cm2) or oscillatory shear (0.5±4 dynes/cm2) were applied to culture ECs. Live-cell imaging, fluorescence recovery after photobleaching assay, and OptoDroplet assay were used to study the liquid-liquid phase separation (LLPS) of Kindlin-2. Co-immunoprecipitation, mutagenesis, proximity ligation assay, and transendothelial electrical resistance assay were used to explore the underlying mechanism of flow-regulated Kindlin-2 function. RESULTS We found that Kindlin-2 localization is altered under different flow patterns. Kindlin-2iΔEC mice showed heightened vascular permeability. Kindlin-2iΔEC were bred onto ApoE-/- mice to generate Kindlin-2iΔEC; ApoE-/- mice, which displayed a significant increase in atherosclerosis lesions. In vitro data showed that in ECs, Kindlin-2 underwent LLPS, a critical process for proper focal adhesion assembly, maturation, and junction formation. Mass spectrometry analysis revealed that oscillatory shear increased arginine methylation of Kindlin-2, catalyzed by PRMT5 (protein arginine methyltransferase 5). Functionally, arginine hypermethylation inhibits Kindlin-2 LLPS, impairing focal adhesion assembly and junction maturation. Notably, we identified R290 of Kindlin-2 as a crucial residue for LLPS and a key site for arginine methylation. Finally, pharmacologically inhibiting arginine methylation reduces EC activation and plaque formation. CONCLUSIONS Collectively, our study elucidates that mechanical force induces arginine methylation of Kindlin-2, thereby regulating vascular stability through its impact on Kindlin-2 LLPS. Targeting Kindlin-2 arginine methylation emerges as a promising hemodynamic-based strategy for treating vascular disorders and atherosclerosis.
Collapse
Affiliation(s)
- Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Bochuan Li
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yuming Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China (J.H.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla (X.F.)
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology (H.Z.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Ding Ai
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| |
Collapse
|
6
|
Mao S, Liu ZY, Liu ZY, Liu P, Lin LC, Zhang Y, Yang JJ, Zhao JY, Tao H. Phase separation of epigenetic landscape in cardiovascular diseases. Biomed Pharmacother 2024; 181:117654. [PMID: 39522265 DOI: 10.1016/j.biopha.2024.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenesis of cardiovascular diseases (CVDs) is intricate, with liquid-liquid phase separation (LLPS) considered a crucial regulatory mechanism. Epigenetics is closely intertwined with cardiovascular diseases, involving mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) that play pivotal roles in cardiovascular disease progression and regression. It is known that specific proteins and mRNAs associated with epigenetic modifications exhibit LLPS characteristics, influencing cardiovascular diseases. Consequently, targeting epigenetic modifications to modulate LLPS emerges as a promising strategy for cardiovascular diseases treatment. This review delves into the regulatory impact of liquid-liquid phase separation on cardiovascular diseases, with a specific focus on the epigenetic landscape. The current study sought to investigate the relationship between epigenetic landscape and phase separation in cardiovascular diseases development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Peng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
7
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
8
|
Dai Y, Li Y, Xu J, Zhang J. A highly selective inhibitor of discoidin domain receptor-1 (DDR1-IN-1) protects corneal epithelial cells from YAP/ACSL4-mediated ferroptosis in dry eye. Br J Pharmacol 2024; 181:4245-4261. [PMID: 38978400 DOI: 10.1111/bph.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the involvement of discoidin domain receptor (DDR) in dry eye and assessed the potential of specific DDR inhibitors as a therapeutic strategy for dry eye by exploring the underlying mechanism. EXPERIMENTAL APPROACH Dry eye was induced in Wistar rats by applying 0.2% benzalkonium chloride (BAC), after which rats were treated topically for 7 days with DDR1-IN-1, a selective inhibitor of DDR1. Clinical manifestations of dry eye were assessed on Day-7 post-treatment. Histological evaluation of corneal damage was performed using haematoxylin and eosin (H&E) staining. In vitro, immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress (HS) were treated with varying doses of DDR1-IN-1 for 24 h. The levels of lipid peroxidation in dry eye corneas or HS-stimulated HCECs were assessed. Protein levels of DDR1/DDR2 and related pathways were detected by western blotting. The cellular distribution of acyl-CoA synthetase long chain family member 4 (ACSL4) and Yes-associated protein (YAP) was evaluated using immunohistochemistry or immunofluorescent staining. KEY RESULTS In dry eye corneas, only DDR1 expression was significantly up-regulated compared with normal controls. DDR1-IN-1 treatment significantly alleviated dry eye symptoms in vivo. The treatment remarkably reduced lipid hydroperoxide (LPO) levels and suppressed the expression of ferroptosis markers, particularly ACSL4. Overexpression or reactivation of YAP diminished the protective effects of DDR1-IN-1, indicating the involvement of the Hippo/YAP pathway in DDR1-targeted therapeutic effects. CONCLUSIONS AND IMPLICATIONS This study confirms the significance of DDR1 in dry eye and highlights the potential of selective DDR1 inhibitor(s) for dry eye treatment.
Collapse
Affiliation(s)
- Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
9
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
10
|
Li Y, Feng Y, Geng S, Xu F, Guo H. The role of liquid-liquid phase separation in defining cancer EMT. Life Sci 2024; 353:122931. [PMID: 39038510 DOI: 10.1016/j.lfs.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Cancer EMT is a pivotal process that drives carcinogenesis, metastasis, and cancer recurrence, with its initiation and regulation intricately governed by biochemical pathways in a precise spatiotemporal manner. Recently, the membrane-less biomolecular condensates formed via liquid-liquid phase separation (LLPS) have emerged as a universal mechanism underlying the spatiotemporal collaboration of biological activities in cancer EMT. In this review, we first elucidate the current understanding of LLPS formation and its cellular functions, followed by an overview of valuable tools for investigating LLPS. Secondly, we examine in detail the LLPS-mediated biological processes crucial for the initiation and regulation of cancer EMT. Lastly, we address current challenges in advancing LLPS research and explore the potential modulation of LLPS using therapeutic agents.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
11
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
12
|
Dong G, Wang J, Chen Z, Wang F, Xia B, Chen G. Regulatory effects of stress release from decellularized periosteum on proliferation, migration, and osteogenic differentiation of periosteum-derived cells. Biomater Sci 2024; 12:3360-3373. [PMID: 38771565 DOI: 10.1039/d4bm00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bone injury is often associated with tears in the periosteum and changes in the internal stress microenvironment of the periosteum. In this study, we investigated the biological effects of periosteal prestress release on periosteum-derived cells (PDCs) and the potential mechanisms of endogenous stem cell recruitment. Decellularized periosteum with natural extracellular matrix (ECM) components was obtained by a combination of physical, chemical, and enzymatic decellularization. The decellularized periosteum removed immunogenicity while retaining the natural network structure and composition of the ECM. The Young's modulus has no significant difference between the periosteum before and after decellularization. The extracted PDCs were further composited with the decellularized periosteum and subjected to 20% stress release. It was found that the proliferative capacity of PDCs seeded on decellularized periosteum was significantly enhanced 6 h after stress release of the periosteum. The cell culture supernatant obtained after periosteal prestress release was able to significantly promote the migration ability of PDCs within 24 h. Enzyme-linked immunosorbnent assay (ELISA) experiments showed that the expression of stroma-derived factor-1α (SDF-1α) and vascular endothelial growth factor (VEGF) in the supernatant increased significantly after 3 h and 12 h of stress release, respectively. Furthermore, periosteal stress release promoted the high expression of osteogenic markers osteocalcin (OCN), osteopontin (OPN), and collagen type I of PDCs. The change in stress environment caused by the release of periosteal prestress was sensed by integrin β1, a mechanoreceptor on the membrane of PDCs, which further stimulated the expression of YAP in the nucleus. These investigations provided a novel method to evaluate the importance of mechanical stimulation in periosteum, which is also of great significance for the design and fabrication of artificial periosteum with mechanical regulation function.
Collapse
Affiliation(s)
- Gangli Dong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Jinsong Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, P. R. China.
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| |
Collapse
|
13
|
Dong X, Wen R, Xiong Y, Jia X, Zhang X, Li X, Zhang L, Li Z, Zhang S, Yu Y, Li Q, Wu X, Tu H, Chen Z, Xian S, Wang L, Wang C, Jia L, Wang J, Chen G. Emodin alleviates CRS4-induced mitochondrial damage via activation of the PGC1α signaling. Phytother Res 2024; 38:1345-1357. [PMID: 38198804 DOI: 10.1002/ptr.8091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/21/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruijia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Xiong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Jia
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiwen Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangyou Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhibin Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanna Yu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiang Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingbo Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Tu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianqun Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gangyi Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
15
|
Liu S, Bi Y, Han T, Li YE, Wang Q, Wu NN, Xu C, Ge J, Hu R, Zhang Y. The E3 ubiquitin ligase MARCH2 protects against myocardial ischemia-reperfusion injury through inhibiting pyroptosis via negative regulation of PGAM5/MAVS/NLRP3 axis. Cell Discov 2024; 10:24. [PMID: 38409220 PMCID: PMC10897310 DOI: 10.1038/s41421-023-00622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 02/28/2024] Open
Abstract
Inflammasome activation and pyroptotic cell death are known to contribute to the pathogenesis of cardiovascular diseases, such as myocardial ischemia-reperfusion (I/R) injury, although the underlying regulatory mechanisms remain poorly understood. Here we report that expression levels of the E3 ubiquitin ligase membrane-associated RING finger protein 2 (MARCH2) were elevated in ischemic human hearts or mouse hearts upon I/R injury. Genetic ablation of MARCH2 aggravated myocardial infarction and cardiac dysfunction upon myocardial I/R injury. Single-cell RNA-seq analysis suggested that loss of MARCH2 prompted activation of NLRP3 inflammasome in cardiomyocytes. Mechanistically, phosphoglycerate mutase 5 (PGAM5) was found to act as a novel regulator of MAVS-NLRP3 signaling by forming liquid-liquid phase separation condensates with MAVS and fostering the recruitment of NLRP3. MARCH2 directly interacts with PGAM5 to promote its K48-linked polyubiquitination and proteasomal degradation, resulting in reduced PGAM5-MAVS co-condensation, and consequently inhibition of NLRP3 inflammasome activation and cardiomyocyte pyroptosis. AAV-based re-introduction of MARCH2 significantly ameliorated I/R-induced mouse heart dysfunction. Altogether, our findings reveal a novel mechanism where MARCH2-mediated ubiquitination negatively regulates the PGAM5/MAVS/NLRP3 axis to protect against cardiomyocyte pyroptosis and myocardial I/R injury.
Collapse
Affiliation(s)
- Shuolin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Tianting Han
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yiran E Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Qihang Wang
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ne Natalie Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chenguo Xu
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Ronggui Hu
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science, Hangzhou Institute for Advance Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
16
|
Liu L, Arévalo-Martínez M, Rippe C, Johansson ME, Holmberg J, Albinsson S, Swärd K. Itga8-Cre-mediated deletion of YAP and TAZ impairs bladder contractility with minimal inflammation and chondrogenic differentiation. Am J Physiol Cell Physiol 2023; 325:C1485-C1501. [PMID: 37927241 DOI: 10.1152/ajpcell.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
A role of Yes1-associated transcriptional regulator (YAP) and WW domain-containing transcription regulator 1 (TAZ) in vascular and gastrointestinal contractility due to control of myocardin (Myocd) expression, which in turn activates contractile genes, has been demonstrated. Whether this transcriptional hierarchy applies to the urinary bladder is unclear. We found that YAP/TAZ are expressed in human detrusor myocytes and therefore exploited the Itga8-CreERT2 model for the deletion of YAP/TAZ. Recombination occurred in detrusor, and YAP/TAZ transcripts were reduced by >75%. Bladder weights were increased (by ≈22%), but histology demonstrated minimal changes in the detrusor, while arteries in the mucosa were inflamed. Real-time quantitative reverse transcription PCR (RT-qPCR) using the detrusor demonstrated reductions of Myocd (-79 ± 18%) and serum response factor (Srf) along with contractile genes. In addition, the cholinergic receptor muscarinic 2 (Chrm2) and Chrm3 were suppressed (-80 ± 23% and -80 ± 10%), whereas minute increases of Il1b and Il6 were seen. Unlike YAP/TAZ-deficient arteries, SRY (sex-determining region Y)-box 9 (Sox9) did not increase, and no chondrogenic differentiation was apparent. Reductions of smooth muscle myosin heavy chain 11 (Myh11), myosin light-chain kinase gene (Mylk), and Chrm3 were seen at the protein level. Beyond restraining the smooth muscle cell (SMC) program of gene expression, YAP/TAZ depletion silenced SMC-specific splicing, including exon 2a of Myocd. Reduced contractile differentiation was associated with weaker contraction in response to myosin phosphatase inhibition (-36%) and muscarinic activation (reduced by 53% at 0.3 µM carbachol). Finally, short-term overexpression of constitutively active YAP in human embryonic kidney 293 (HEK293) cells increased myocardin (greater than eightfold) along with archetypal target genes, but contractile genes were unaffected or reduced. YAP and TAZ thus regulate myocardin expression in the detrusor, and this is important for SMC differentiation and splicing as well as for contractility.NEW & NOTEWORTHY This study addresses the hypothesis that YAP and TAZ have an overarching role in the transcriptional hierarchy in the smooth muscle of the urinary bladder by controlling myocardin expression. Using smooth muscle-specific and inducible deletion of YAP and TAZ in adult mice, we find that YAP and TAZ control myocardin expression, contractile differentiation, smooth muscle-specific splicing, and bladder contractility. These effects are largely independent of inflammation and chondrogenic differentiation.
Collapse
Affiliation(s)
- Li Liu
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | | | - Catarina Rippe
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Holmberg
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karl Swärd
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
18
|
Liu J, Zhao C, Xiao X, Li A, Liu Y, Zhao J, Fan L, Liang Z, Pang W, Yao W, Li W, Zhou J. Endothelial discoidin domain receptor 1 senses flow to modulate YAP activation. Nat Commun 2023; 14:6457. [PMID: 37833282 PMCID: PMC10576099 DOI: 10.1038/s41467-023-42341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Mechanotransduction in endothelial cells is critical to maintain vascular homeostasis and can contribute to disease development, yet the molecules responsible for sensing flow remain largely unknown. Here, we demonstrate that the discoidin domain receptor 1 (DDR1) tyrosine kinase is a direct mechanosensor and is essential for connecting the force imposed by shear to the endothelial responses. We identify the flow-induced activation of endothelial DDR1 to be atherogenic. Shear force likely causes conformational changes of DDR1 ectodomain by unfolding its DS-like domain to expose the buried cysteine-287, whose exposure facilitates force-induced receptor oligomerization and phase separation. Upon shearing, DDR1 forms liquid-like biomolecular condensates and co-condenses with YWHAE, leading to nuclear translocation of YAP. Our findings establish a previously uncharacterized role of DDR1 in directly sensing flow, propose a conceptual framework for understanding upstream regulation of the YAP signaling, and offer a mechanism by which endothelial activation of DDR1 promotes atherosclerosis.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aohan Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yueqi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jianan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Linwei Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China.
| |
Collapse
|
19
|
Zhu J, Lun W, Feng Q, Cao X, Li Q. Mesenchymal stromal cells modulate YAP by verteporfin to mimic cartilage development and construct cartilage organoids based on decellularized matrix scaffolds. J Mater Chem B 2023; 11:7442-7453. [PMID: 37439116 DOI: 10.1039/d3tb01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The mechanical elasticity or stiffness of the ECM modulates YAP activity to regulate the differentiation of stem cells during the development and defect regeneration of cartilage tissue. However, the understanding of the scaffold-associated mechanobiology during the initiation of chondrogenesis and hyaline cartilaginous phenotype maintenance remains unclear. In order to elucidate such mechanisms to promote articular cartilage repair by producing more hyaline cartilage, we identify the relationship between YAP subcellular localization and variation of the cartilage structure and organization during the early postnatal explosive growth in incipient articular cartilage. Next, we prepared a decellularized cartilage scaffold with different stiffness (2-33 kPa) to investigate the effect of scaffold stiffness on the formation of hyaline cartilage by mesenchymal stem cells and the change of YAP activity. Furthermore, we simulated the decrease of cellular YAP activity during postnatal cartilage development by inhibiting YAP activity with verteporfin, and realized that the timing of drug incorporation was critical to regulate the differentiation of MSCs to hyaline chondrocytes and inhibit their hypertrophy and fibrosis. On this basis, we constructed hyaline cartilage organoids by decellularized matrix scaffolds. Collectively, the results herein demonstrate that YAP plays a critical role during in vitro chondrogenic differentiation which is tightly regulated by biochemical and mechanical regulation.
Collapse
Affiliation(s)
- Jiayi Zhu
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
| | - Wanqing Lun
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
| | - Qi Feng
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiaodong Cao
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
| |
Collapse
|
20
|
Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ Mechanotransduction in Spaceflight-Induced Liver Dysfunction. Int J Mol Sci 2023; 24:ijms24032197. [PMID: 36768527 PMCID: PMC9917057 DOI: 10.3390/ijms24032197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Here, we discussed liver function alterations induced by spaceflight or simulated effects of microgravity on Earth. The roles of YAP/TAZ serving as a potential bridge in connecting liver metabolism with microgravity were specifically summarized. Existing evidence indicated that YAP/TAZ target gene expressions were affected by mechanotransductive pathways and phase separation, reasonably speculating that microgravity might regulate YAP/TAZ activation by disrupting these pathways via cytoskeletal remodeling or nuclear deformation, or disturbing condensates formation via diffusion limit, and then breaking liver homeostasis.
Collapse
Affiliation(s)
- Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| |
Collapse
|