1
|
Wang XJ, Huang L, Hou M, Guo J. Senescence-related Genes as Prognostic Markers for STEMI Patients: LASSO Regression-Based Bioinformatics and External Validation. J Cardiovasc Transl Res 2025; 18:354-365. [PMID: 39786668 DOI: 10.1007/s12265-024-10583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/14/2024] [Indexed: 01/12/2025]
Abstract
The prognostic value of differentially expressed senescence-related genes(DESRGs) in ST-segment elevation myocardial infarction(STEMI) patients is unclear. We used GEO2R to identify DESRGs from GSE60993 and performed functional enrichment analysis. We built an optimal prognostic model with LASSO penalized Cox regression via GSE49925. We evaluated the model with survival analysis, ROC curve, decision curve analysis, nomogram, and external validation with plasma samples. We created a prognostic signature with three dysregulated DESRGs (CDC25B, FKBP5, and ECHDC3) and two clinical variables (serum creatinine, Gensini score). The signature stratified patients into low- and high-risk groups and showed strong predictive performance within two years. The external validation confirmed the survival difference between the groups. We identified three DESRGs that were differentially expressed and prognostic in STEMI patients. The model incorporating three DESRGs showed promising prediction and utility for stratifying patients and estimating survival risk in STEMI patients.
Collapse
Affiliation(s)
- Xing-Jie Wang
- Clinical Laboratory of Tianjin Chest Hospital, 261 Taierzhuang South Road, Tianjin, 300222, Jinnan District, China.
| | - Lei Huang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, 300170, Hedong District, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin University Central Hospital, Tianjin, China
| | - Min Hou
- Clinical Laboratory of Tianjin Chest Hospital, 261 Taierzhuang South Road, Tianjin, 300222, Jinnan District, China
| | - Jie Guo
- Clinical Laboratory of Tianjin Chest Hospital, 261 Taierzhuang South Road, Tianjin, 300222, Jinnan District, China
| |
Collapse
|
2
|
Yuan Y, Martsch P, Chen X, Martinez E, Li L, Song J, Poppenborg T, Bruns F, Kim JH, Kamler M, Martin JF, Abu-Taha I, Dobrev D, Li N. Atrial cardiomyocyte-restricted cleavage of gasdermin D promotes atrial arrhythmogenesis. Eur Heart J 2025; 46:1250-1262. [PMID: 39927987 PMCID: PMC11959185 DOI: 10.1093/eurheartj/ehaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND AIMS Enhanced inflammatory signalling causally contributes to atrial fibrillation (AF) development. Gasdermin D (GSDMD) is an important downstream effector of several inflammasome pathways. However, the role of GSDMD, particularly the cleaved N-terminal (NT)-GSDMD, in non-immune cells remains elusive. This study aimed to elucidate the function of NT-GSDMD in atrial cardiomyocytes (ACMs) and determine its contribution to atrial arrhythmogenesis. METHODS Human atrial appendages were used to assess the protein levels and localization. A modified adeno-associated virus 9 was employed to establish ACM-restricted overexpression of NT-GSDMD in mice. RESULTS The cleavage of GSDMD was enhanced in ACMs of AF patients. Atrial cardiomyocyte-restricted overexpression of NT-GSDMD in mice increased susceptibility to pacing-induced AF. The NT-GSDMD pore formation facilitated interleukin-1β secretion from ACMs, promoting macrophage infiltration, while up-regulating 'endosomal sorting complexes required for transport'-mediated membrane-repair mechanisms, which prevented inflammatory cell death (pyroptosis) in ACMs. Up-regulated NT-GSDMD directly targeted mitochondria, increasing mitochondrial reactive oxygen species (ROS) generation, which triggered proarrhythmic calcium-release events. The NT-GSDMD-induced arrhythmogenesis was mitigated by the mitochondrial-specific antioxidant MitoTEMPO. A mutant NT-GSDMD lacking pore-formation capability failed to cause mitochondrial dysfunction or induce atrial arrhythmia. Genetic ablation of Gsdmd prevented spontaneous AF development in a mouse model. CONCLUSIONS These findings establish a unique pyroptosis-independent role of NT-GSDMD in ACMs and arrhythmogenesis, which involves ROS-driven mitochondrial dysfunction. Mitochondrial-targeted therapy, either by reducing ROS production or inhibition of GSDMD, prevents AF inducibility, positioning GSDMD as a novel therapeutic target for AF prevention.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pascal Martsch
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xiaohui Chen
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Enrique Martinez
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jia Song
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Theresa Poppenborg
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Florian Bruns
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Na Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Chen C, Wang G, Zou Q, Xiong K, Chen Z, Shao B, Liu Y, Xie D, Ji Y. m 6A reader YTHDF2 governs the onset of atrial fibrillation by modulating Cacna1c translation. SCIENCE CHINA. LIFE SCIENCES 2025; 68:706-721. [PMID: 39432207 DOI: 10.1007/s11427-024-2674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/02/2024] [Indexed: 10/22/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia, which is tightly associated with the abnormal expression and function of ion channels in the atrial cardiomyocytes. N6-methyladenosine (m6A), a widespread chemical modification in eukaryotic mRNA, is known to play a significant regulatory role in the pathogenesis of heart disease. However, the significance of m6A regulatory proteins in the onset of AF remains unclear. Here, we demonstrate that the m6A reader protein YTHDF2 regulates atrial electrical remodeling and AF onset by modulating the Cav1.2 expression. Firstly, YTHDF2 expression was selectively upregulated in rat atrial cardiomyocytes with AF. Secondly, YTHDF2 knockout reduced AF susceptibility in mice. Thirdly, the knockout of YTHDF2 increased Cav1.2 protein levels in an m6A-in-dependent manner, ultimately prolonging the atrial myocardial refractory period, a critical electrophysiological substrate for the onset of AF. Fourthly, the N-terminal domain of YTHDF2 was identified as critical for Cacna1c mRNA translation regulation. Overall, our findings unveil that YTHDF2 can alter Cav1.2 protein expression in an m6A-independent manner, thereby facilitating the onset of AF. Our study suggests that YTHDF2 may be a potential intervention target for AF.
Collapse
Affiliation(s)
- Chuansheng Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guanghua Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qicheng Zou
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhiwen Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Beihua Shao
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Cardiology, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Zhou F, Zhou JB, Wei TP, Wu D, Wang RX. The Role of HIF-1α in Atrial Fibrillation: Recent Advances and Therapeutic Potentials. Rev Cardiovasc Med 2025; 26:26787. [PMID: 40026494 PMCID: PMC11868874 DOI: 10.31083/rcm26787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 03/05/2025] Open
Abstract
The steady increase in life expectancy throughout the world is contributing to an increased incidence of atrial fibrillation (AF), which imposes a significant socioeconomic toll on affected patients and societies. The mechanisms underlying atrial fibrillation are multifaceted and vary among individuals. Hypoxia is a process that is closely linked to AF onset and progression. Hypoxia-inducible factor 1-alpha (HIF-1α) is a transcription factor that serves as a key regulator of oxygen homeostasis within cells through its activation under hypoxic conditions and subsequently coordinates various pathophysiological responses. High levels of HIF-1α expression are evident in AF patients, and facilitate the progression from persistent AF to permanent AF. Thus, HIF-1α may serve as a promising target for novel therapeutic strategies aimed at the prevention and treatment of AF. This review provides an overview and synthesis of recent studies probing the relationship between HIF-1α and AF, providing a foundation for future studies and the development targeted drug therapies.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Jia-Bin Zhou
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Tian-Peng Wei
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Dan Wu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Han P, Zhao X, Li X, Geng J, Ni S, Li Q. Pathophysiology, molecular mechanisms, and genetics of atrial fibrillation. Hum Cell 2024; 38:14. [PMID: 39505800 DOI: 10.1007/s13577-024-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The development of atrial fibrillation (AF) is a highly complex, multifactorial process involving pathophysiologic mechanisms, molecular pathway mechanisms and numerous genetic abnormalities. The pathophysiologic mechanisms including altered ion channels, abnormalities of the autonomic nervous system, inflammation, and abnormalities in Ca2 + handling. Molecular pathway mechanisms including, but not limited to, renin-angiotensin-aldosterone (RAAS), transforming growth factor-β (TGF-β), oxidative stress (OS). Although in clinical practice, the distinction between types of AF such as paroxysmal and persistent determines the choice of treatment options. However, it is the pathophysiologic alterations present in AF that truly determine the success of AF treatment and prognosis, but even more so the molecular mechanisms and genetic alterations that lie behind them. One tiny clue reveals the general trend, and small beginnings show how things will develop. This article will organize the development of these mechanisms and their interactions in recent years.
Collapse
Affiliation(s)
- Pan Han
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinxin Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xuexun Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shouxiang Ni
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qiao Li
- Department of Diagnostic Ultrasound, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
6
|
Li L, Zhao Z, Liu Z, Tang Y, Yang T, Gong N, Liao B, Long Y, Nie Y, Yu F. Identification of the optimal reference genes for atrial fibrillation model established by iPSC-derived atrial myocytes. BMC Genomics 2024; 25:1001. [PMID: 39455925 PMCID: PMC11515253 DOI: 10.1186/s12864-024-10922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) stands as a prevalent and detrimental arrhythmic disorder, characterized by intricate pathophysiological mechanisms. The availability of reliable and reproducible AF models is pivotal in unraveling the underlying mechanisms of this complex condition. Unfortunately, the researchers are still confronted with the absence of consistent in vitro AF models, hindering progress in this crucial area of research. METHODS Human induced pluripotent stem cells derived atrial myocytes (hiPSC-AMs) were generated based on the GiWi methods and were verified by whole-cell patch clamp, immunofluorescent staining, and flow cytometry. Then hiPSC-AMs were employed to establish the AF model by HS. Whole-cell patch clamp technique and calcium imaging were used to identify the AF model. The stability of 29 reference genes was evaluated using delta-Ct, GeNorm, NormFinder, and BestKeeper algorithms; RESULTS: HiPSC-AMs displayed atrial myocyte action potentials and expressed the atrial-specific protein MLC-2 A and NR2F2, about 70% of the cardiomyocytes were MLC-2 A positive. After HS, hiPSC-AMs showed a significant increase in beating frequency, a shortened action potential duration, and increased calcium transient frequency. Of the 29 candidate genes, the top five most stably ranked genes were ABL1, RPL37A, POP4, RPL30, and EIF2B1. After normalization using ABL1, KCNJ2 was significantly upregulated in the AF model; Conclusions: In the hiPSC-AMs AF model established by HS, ABL1 provides greater normalization efficiency than commonly used GAPDH.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
| | - Zijuan Zhao
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zihao Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
| | - Yuquan Tang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
| | - Tan Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
| | - Nailin Gong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
| | - Bing Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China.
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China.
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China.
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China.
| |
Collapse
|
7
|
Guo Z, Bao S, Shi Z, Li X, Li P, Zhong B, Zhang M, Wu Q. USP15-Mediated Deubiquitination of FKBP 5 and Activation of the αIIbβ3 Signaling Pathway Regulate Thrombosis in Mice. FRONT BIOSCI-LANDMRK 2024; 29:325. [PMID: 39344328 DOI: 10.31083/j.fbl2909325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Platelets have the hemostatic function, and their aberrant activation is associated with occlusive thrombus formation. Plasma exosomes are rich in platelets containing ubiquitin-specific peptidase 15 (USP15). Herein, we aim to explore the effect of USP15 on thrombosis, as well as expounding whether USP15 acts as an upstream target of FK506 binding protein 5 (FKBP5) to regulate occlusive thrombus formation. METHODS Washed human platelets were treated with thrombin for measurement of USP15 and FKBP5 expressions. USP15 loss/gain-of-function variant in HEK293 cells was performed by cell transfection, and the interaction between USP15 and FKBP5 was examined using immunoprecipitation and ubiquitination assays. Mice with USP15-knockout platelets (Plt USP15-/-) were modeled, and subjected to calculation of bleeding time, artery thrombosis imaging and clot retraction assay. FKBP5 expression and the inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE)/phosphatidylinositol 3-kinase (PI3K)/Rap1 pathway in wild-type and Plt USP15-/- mice-derived platelets were detected using Western blot. The activation of αIIbβ3 in washed platelets was analyzed using flow cytometry. RESULTS USP15 and FKBP5 expressions were upregulated in platelets after thrombin treatment. Following transfection of USP15 knockdown and USP15 overexpression plasmids into HEK293 cells, FKBP5 protein expression was downregulated by USP15 knockdown while being upregulated by USP15 overexpression. USP15 bound to FKBP5 and protected FKBP5 against ubiquitination. Knockdown of platelet USP15 prolonged bleeding time, inhibited arterial thrombosis and delayed clot retraction in mice. Knockdown of platelet USP15 also decreased protein expressions of FKBP5, IKBKE and Rap1, p-PI3K/PI3K ratio, and activation of αIIbβ3 in mice. CONCLUSION USP15 knockdown in platelets affects thrombosis in mice by promoting the instability of FKBP5 to repress the activation of IKBKE/PI3K/Rap1 pathway-mediated αIIbβ3.
Collapse
Affiliation(s)
- Ziwei Guo
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Sixu Bao
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
- The Graduate School, Nanjing Medical University, 211166 Nanjing, Jinagsu, China
| | - Zehui Shi
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Xuejiao Li
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Peijin Li
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
- The Graduate School, Nanjing Medical University, 211166 Nanjing, Jinagsu, China
| | - Bin Zhong
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Ming Zhang
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Qiyong Wu
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Song J, Wu J, Robichaux DJ, Li T, Wang S, Arredondo Sancristobal MJ, Dong B, Dobrev D, Karch J, Thomas SS, Li N. A High-Protein Diet Promotes Atrial Arrhythmogenesis via Absent-in-Melanoma 2 Inflammasome. Cells 2024; 13:108. [PMID: 38247800 PMCID: PMC10814244 DOI: 10.3390/cells13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation. The role of the Absent-in-Melanoma 2 (AIM2) inflammasome in AF pathogenesis remains unexplored. In this study, we discovered that HPD increased susceptibility to AF. To demonstrate the involvement of AIM2 signaling in the pathogenesis of HPD-induced AF, wildtype (WT) and Aim2-/- mice were fed normal-chow (NC) and HPD, respectively. Four weeks later, inflammasome activity was upregulated in the atria of WT-HPD mice, but not in the Aim2-/--HPD mice. The increased AF vulnerability in WT-HPD mice was associated with abnormal sarcoplasmic reticulum (SR) Ca2+-release events in atrial myocytes. HPD increased the cytoplasmic double-strand (ds) DNA level, causing AIM2 activation. Genetic inhibition of AIM2 in Aim2-/- mice reduced susceptibility to AF, cytoplasmic dsDNA level, mitochondrial ROS production, and abnormal SR Ca2+-release in atrial myocytes. These data suggest that HPD creates a substrate conducive to AF development by activating the AIM2-inflammasome, which is associated with mitochondrial oxidative stress along with proarrhythmic SR Ca2+-release. Our data imply that targeting the AIM2 inflammasome might constitute a novel anti-AF strategy in certain patient subpopulations.
Collapse
Affiliation(s)
- Jia Song
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| | - Jiao Wu
- Department of Medicine, Section of Nephrology, Houston, TX 77030, USA
| | - Dexter J. Robichaux
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
| | - Tingting Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| | - Shuyue Wang
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Bingning Dong
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dobromir Dobrev
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
- Institute of Pharmacology, University Duisburg-Essen, 45147 Essen, Germany
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
| | - Sandhya S. Thomas
- Department of Medicine, Section of Nephrology, Houston, TX 77030, USA
- Michael E. Debakey VA Medical Center, Houston, TX 77030, USA
| | - Na Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| |
Collapse
|
9
|
Li A, Bao J, Gao S, He Y, Nie X, Hosyanto FF, He X, Li T, Xu L. MicroRNA hsa-miR-320a-3p and Its Targeted mRNA FKBP5 Were Differentially Expressed in Patients with HIV/TB Co-Infection. ACS Infect Dis 2023; 9:1742-1753. [PMID: 37624586 DOI: 10.1021/acsinfecdis.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Among the PLWH (people living with HIV) population, the risk of developing active tuberculosis (TB) is increasing. Active TB also accelerates the deterioration of PLWH's immune function and is one of the leading causes of death in the PLWH population. So far, accurate diagnosis of active TB in the PLWH population remains challenging. Through data analysis of HIV/TB co-infection in the GEO database, the differentially expressed genes as well as their related microRNA (miRNA) were acquired and were further verified through clinical blood samples. Dual-luciferase assay was used to verify the mechanism of miRNA on mRNA. The enrichment of immune cells in database patient samples was analyzed by bioinformatics and finally verified by blood routine data. Our study found that FKBP5 (FK506 binding protein 5) was highly expressed in the HIV/TB co-infection group; hsa-miR-320a-3p was highly expressed in the HIV infection group but decreased in the HIV/TB co-infection group. Dual-luciferase assay results showed that hsa-miR-320a-3p mimics significantly reduced the relative luciferase activity of the WT-FKBP5 group; however, this phenomenon was not observed in the MUT-FKBP5 group. At the same time, as a key molecule of the immune-related pathway, FKBP5 is highly correlated with the amount of neutrophils, which provides a new suggestion for the treatment of the HIV/TB co-infection population. Our study found that hsa-miR-320a-3p can decrease FKBP5 expression, suggesting a potential regulatory role for FKBP5. The involvement of FKBP5 and its related molecule hsa-miR-320a-3p in HIV/TB co-infection proposes them as potential biomarkers for the diagnosis of active TB in the PLWH population.
Collapse
Affiliation(s)
- Anlong Li
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Bao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Hospital-Acquired Infection Control Department, First People's Hospital of Jintang County, Chengdu 610400, China
| | - Sijia Gao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ying He
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | - Xiaoping Nie
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | | | - Xintong He
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | - Lei Xu
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Fatkin D, Ohanian M, Brown KJ. A Novel Role for FKBP5 in Atrial Cardiomyopathy. Circ Res 2023; 133:45-47. [PMID: 37347835 DOI: 10.1161/circresaha.123.322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (D.F., M.O.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia (D.F.)
- Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia (D.F.)
| | - Monique Ohanian
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (D.F., M.O.)
| | - Kemar J Brown
- Division of Cardiology, Massachusetts General Hospital, Boston (K.J.B.)
- Department of Genetics, Harvard Medical School, Boston, MA (K.J.B.)
| |
Collapse
|
11
|
Malekpour M, Shekouh D, Safavinia ME, Shiralipour S, Jalouli M, Mortezanejad S, Azarpira N, Ebrahimi ND. Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: an opportunity for drug discovery. Front Psychiatry 2023; 14:1182345. [PMID: 37398599 PMCID: PMC10313426 DOI: 10.3389/fpsyt.2023.1182345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Stress-induced mental health disorders are affecting many people around the world. However, effective drug therapy for curing psychiatric diseases does not occur sufficiently. Many neurotransmitters, hormones, and mechanisms are essential in regulating the body's stress response. One of the most critical components of the stress response system is the hypothalamus-pituitary-adrenal (HPA) axis. The FKBP prolyl isomerase 51 (FKBP51) protein is one of the main negative regulators of the HPA axis. FKBP51 negatively regulates the cortisol effects (the end product of the HPA axis) by inhibiting the interaction between glucocorticoid receptors (GRs) and cortisol, causing reduced transcription of downstream cortisol molecules. By regulating cortisol effects, the FKBP51 protein can indirectly regulate the sensitivity of the HPA axis to stressors. Previous studies have indicated the influence of FKBP5 gene mutations and epigenetic changes in different psychiatric diseases and drug responses and recommended the FKBP51 protein as a drug target and a biomarker for psychological disorders. In this review, we attempted to discuss the effects of the FKBP5 gene, its mutations on different psychiatric diseases, and drugs affecting the FKBP5 gene.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shadi Shiralipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Jalouli
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Mortezanejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|