1
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhang M, Wei J, Sun Y, He C, Ma S, Pan X, Zhu X. The efferocytosis process in aging: Supporting evidence, mechanisms, and therapeutic prospects for age-related diseases. J Adv Res 2025; 69:31-49. [PMID: 38499245 PMCID: PMC11954809 DOI: 10.1016/j.jare.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Aging is characterized by an ongoing struggle between the buildup of damage caused by a combination of external and internal factors. Aging has different effects on phagocytes, including impaired efferocytosis. A deficiency in efferocytosis can cause chronic inflammation, aging, and several other clinical disorders. AIM OF REVIEW Our review underscores the possible feasibility and extensive scope of employing dual targets in various age-related diseases to reduce the occurrence and progression of age-related diseases, ultimately fostering healthy aging and increasing lifespan. Key scientific concepts of review Hence, the concurrent implementation of strategies aimed at augmenting efferocytic mechanisms and anti-aging treatments has the potential to serve as a potent intervention for extending the duration of a healthy lifespan. In this review, we comprehensively discuss the concept and physiological effects of efferocytosis. Subsequently, we investigated the association between efferocytosis and the hallmarks of aging. Finally, we discuss growing evidence regarding therapeutic interventions for age-related disorders, focusing on the physiological processes of aging and efferocytosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
3
|
Ding Y, Zhang X, Li J, Li Y, Zhang L, Yuan E. SIRT3 impairment and MnSOD hyperacetylation in trophoblast dysfunction and preeclampsia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119915. [PMID: 39938691 DOI: 10.1016/j.bbamcr.2025.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
Preeclampsia (PE) is a prevalent obstetric disorder that affects 2-8 % of pregnancies worldwide. Trophoblasts, which are crucial functional cells in the placenta, play a significant role in the development of PE due to inadequate invasion. Sirtuin 3 (SIRT3) is an NAD+ - dependent mitochondrial deacetylase, that positively modulates energy metabolism, mitochondrial biogenesis, and protection against oxidative stress. However, the role of SIRT3 in trophoblast dysfunction and the pathogenesis of PE remains unclear. In this study, we aim to investigate the functional role of SIRT3 in PE and explore the underlying mechanism. Our results demonstrated that human PE placentas exhibited reduced expression of SIRT3. In vitro experiments showed that hypoxia promoted SIRT3 expression, while oxidative stress inhibited SIRT3 expression in HTR-8/SVneo cells. The reduced SIRT3 expression inhibited the proliferation and migration of trophoblast cells while also increasing levels of reactive oxygen species and inflammatory factors. As a deacetylase, SIRT3 deficiency increased the acetylation level of manganese superoxide dismutase (MnSOD), a key mitochondrial antioxidant enzyme, subsequently reducing its activity. These effects associated with reduced SIRT3 expression could be reversed by treatment with MnSOD mimetics TEMPO and overexpression of MnSOD. All these results suggested that diminished SIRT3 expression leaded to MnSOD hyperacetylation and inactivation, contributing to trophoblast dysfunction and the pathogenesis of PE.
Collapse
Affiliation(s)
- Yangnan Ding
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China.
| | - Xuewei Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Jin Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Yina Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Enwu Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Ding YN, Wang HY, Chen XF, Tang X, Chen HZ. Roles of Sirtuins in Cardiovascular Diseases: Mechanisms and Therapeutics. Circ Res 2025; 136:524-550. [PMID: 40014680 DOI: 10.1161/circresaha.124.325440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Cardiovascular diseases (CVDs) are experiencing a rapid surge and are widely recognized as the leading cause of mortality in the current aging society. Given the multifactorial etiology of CVDs, understanding the intricate molecular and cellular mechanisms is imperative. Over the past 2 decades, many scientists have focused on Sirtuins, a family of nicotinamide adenine dinucleotide-dependent deacylases. Sirtuins are highly conserved across species, from yeasts to primates, and play a crucial role in linking aging and diseases. Sirtuins participate in nearly all key physiological and pathological processes, ranging from embryogenic development to stress response and aging. Abnormal expression and activity of Sirtuins exist in many aging-related diseases, while their activation has shown efficacy in mitigating these diseases (eg, CVDs). In terms of research, this field has maintained fast, sustained growth in recent years, from fundamental studies to clinical trials. In this review, we present a comprehensive, up-to-date discussion on the biological functions of Sirtuins and their roles in regulating cardiovascular biology and CVDs. Furthermore, we highlight the latest advancements in utilizing Sirtuin-activating compounds and nicotinamide adenine dinucleotide boosters as potential pharmacological targets for preventing and treating CVDs. The key unresolved issues in the field-from the chemicobiological regulation of Sirtuins to Sirtuin-targeted CVD investigations-are also discussed. This timely review could be critical in understanding the updated knowledge of Sirtuin biology in CVDs and facilitating the clinical accessibility of Sirtuin-targeting interventions.
Collapse
Affiliation(s)
- Yang-Nan Ding
- Department of Laboratory Medicine, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, The Third Affiliated Hospital of Zhengzhou University, China (Y.-N.D.)
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
| | - Hui-Yu Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing (H.-Y.W., H.-Z.C.)
| | - Xiao-Feng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, China (X.-F.C.)
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu (X.T.)
| | - Hou-Zao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing (H.-Y.W., H.-Z.C.)
| |
Collapse
|
5
|
Hu M, Huang SY, Gao YP, Hu YX, Wang SS, Teng T, Zeng XF, Tang QZ. KLF12 Aggravates Angiotensin II-Induced Cardiac Remodeling in Male Mice by Transcriptionally Inhibiting SMAD7. J Am Heart Assoc 2025; 14:e037455. [PMID: 39895521 DOI: 10.1161/jaha.124.037455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/30/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Adverse left ventricular remodeling and subsequent heart failure remain a major cause of patient morbidity and mortality worldwide. The KLF family of transcription factors plays crucial roles in heart injury. KLF12 (Krüppel-like factor 12) is a transcription factor that regulates multiple disease processes, although the specific role of KLF12 in cardiac remodeling remains unclear. METHODS AND RESULTS In our study, we observed a significant upregulation of KLF12 expression in remodeling hearts. The increased expression of KLF12 primarily originated from cardiac fibroblasts during the fibrotic response induced by angiotensin II. To investigate the effects of KLF12, we performed RNA-seq and found that KLF12 overexpression significantly upregulated the cardiac remodeling associated pathway. Hence, we generated adult mice with cardiac fibroblast-specific overexpression of KLF12 using lentivirus or miRNA (miR-1/133TS) technology. Compared with control mice, KLF12-miR1/133TS transfected mice exhibited exacerbated cardiac remodeling and function. Mechanistically, we discovered that KLF12 directly binds to the promoter of Smad7, leading to the activation of the TGF-β (transforming growth factor beta)-Smad3 pathway. CONCLUSIONS In conclusion, KLF12 promoted the development of angiotensin II-induced cardiac remodeling in male mice. Targeting KLF12 may be a promising therapeutic approach to treat cardiac remodeling.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Shi-Yu Huang
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yi-Peng Gao
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Yu-Xin Hu
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Teng Teng
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Xiao-Feng Zeng
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Qi-Zhu Tang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| |
Collapse
|
6
|
Ou J, Li K, Yuan H, Du S, Wang T, Deng Q, Wu H, Zeng W, Cheng K, Nandakumar KS. Staphylococcus aureus vesicles impair cutaneous wound healing through p38 MAPK-MerTK cleavage-mediated inhibition of macrophage efferocytosis. Cell Commun Signal 2025; 23:14. [PMID: 39780180 PMCID: PMC11708000 DOI: 10.1186/s12964-024-01994-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown. METHODS Filtration, ultracentrifugation, and iodixanol density gradient centrifugation were used to purify the bacterial vesicles. Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB) were used to characterize the vesicles. Macrophage efferocytosis efficiency was assessed using flow cytometry and confocal microscopy, while efferocytosis at wound sites was analyzed through WB, FACS, and TUNEL staining. Hematoxylin and eosin (H&E) staining and wound size measurements were used to evaluate the wound healing process. Phosphorylation of signaling pathways was detected by WB, and efferocytosis receptor expression was measured using RNA sequencing, qPCR, and flow cytometry. siRNA and pathway inhibitors were used to investigate the roles of key receptors and signaling pathways in efferocytosis. RESULTS We identified SAVs at infected wound sites, linking them to delayed healing of wounds. SAVs inhibit efferocytosis by activating the TLR2-MyD88-p38 MAPK signaling pathway, which regulates efferocytosis receptor genes. This activation promoted cleavage and shedding of MerTK, a crucial receptor for macrophage-driven efferocytosis. Notably, selective inhibition of p38 MAPK prevented MerTK shedding, restored efferocytosis and accelerated wound healing significantly, offering a promising therapeutic approach for chronic, non-healing wounds. CONCLUSION These findings uncover a novel mechanism in S. aureus-infected wounds, highlighting how the disruption of efferocytosis via the TLR2-MyD88-p38 MAPK-MerTK axis becomes a key force behind impaired healing of wounds. Targeting this pathway could open up a new therapeutic avenue facilitating the treatment of chronic, non-healing skin injuries.
Collapse
Affiliation(s)
- Jiaxin Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kangxin Li
- Henan International Joint Laboratory of Infection and Immunity, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Respiratory and Critical Care Medicine, the Tenth Affiliated Hospital (Dongguan Peoples Hospital), Southern Medical University, Dongguan, 523059, China.
- Department of Endocrinology, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510030, China.
| | - Hui Yuan
- Henan International Joint Laboratory of Infection and Immunity, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510642, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiannan Deng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510075, China
| | - Huimei Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiyan Zeng
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, 510030, China
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Connolly BJ, Saxton SN. Recent updates on the influence of iron and magnesium on vascular, renal, and adipose inflammation and possible consequences for hypertension. J Hypertens 2024; 42:1848-1861. [PMID: 39258532 PMCID: PMC11451934 DOI: 10.1097/hjh.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
The inflammatory status of the kidneys, vasculature, and perivascular adipose tissue (PVAT) has a significant influence on blood pressure and hypertension. Numerous micronutrients play an influential role in hypertension-driving inflammatory processes, and recent reports have provided bases for potential targeted modulation of these micronutrients to reduce hypertension. Iron overload in adipose tissue macrophages and adipocytes engenders an inflammatory environment and may contribute to impaired anticontractile signalling, and thus a treatment such as chelation therapy may hold a key to reducing blood pressure. Similarly, magnesium intake has proven to greatly influence inflammatory signalling and concurrent hypertension in both healthy animals and in a model for chronic kidney disease, demonstrating its potential clinical utility. These findings highlight the importance of further research to determine the efficacy of micronutrient-targeted treatments for the amelioration of hypertension and their potential translation into clinical application.
Collapse
Affiliation(s)
- Benjamin J Connolly
- Divison of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
8
|
Firouzjaei AA, Mohammadi-Yeganeh S. The intricate interplay between ferroptosis and efferocytosis in cancer: unraveling novel insights and therapeutic opportunities. Front Oncol 2024; 14:1424218. [PMID: 39544291 PMCID: PMC11560889 DOI: 10.3389/fonc.2024.1424218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
The complex interplay between ferroptosis and efferocytosis in cancer has attracted significant interest recently. Efferocytosis, the process of eliminating apoptotic cells, is essential for preserving tissue homeostasis and reducing inflammation. However, dysregulation of efferocytosis can have profound effects on cancer. Apoptotic cells accumulate because of impaired efferocytosis, which triggers chronic inflammation and the release of pro-inflammatory chemicals. Surprisingly, accumulating evidence suggests that dysregulation of ferroptosis- a form of controlled cell death characterized by lipid peroxidation and the buildup iron-dependent reactive oxygen species (ROS)-can influence efferocytic activities within the tumor microenvironment. Dysfunctional iron metabolism and increased lipid peroxidation, are associated with ferroptosis, resulting in inadequate apoptotic cell clearance. Conversely, apoptotic cells can activate ferroptotic pathways, increasing oxidative stress and inducing cell death in cancer cells. This reciprocal interaction emphasizes the complex relationship between efferocytosis and ferroptosis in cancer biology. Understanding and managing the delicate balance between cell clearance and cell death pathways holds significant therapeutic potential in cancer treatment. Targeting the efferocytosis and ferroptosis pathways may offer new opportunities for improving tumor clearance, reducing inflammation, and sensitizing cancer cells to therapeutic interventions. Further research into the interaction between efferocytosis and ferroptosis in cancer will provide valuable insights for the development of novel therapies aimed at restoring tissue homeostasis and improving patient outcomes.
Collapse
|
9
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
10
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Guo Y, Cheng X, Huang C, Gao J, Shen W. Frataxin Loss Promotes Angiotensin II-Induced Endothelial-to-Mesenchymal Transition. J Am Heart Assoc 2024; 13:e034316. [PMID: 39023059 PMCID: PMC11964068 DOI: 10.1161/jaha.124.034316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The metabolic flexibility of endothelial cells is linked to their phenotypic plasticity. Frataxin is critical in determining the iron metabolism and fate of endothelial cells. This study aimed to investigate frataxin-mediated metabolic remodeling during the endothelial-to-mesenchymal transition (EndoMT). METHODS AND RESULTS Endothelial cell-specific frataxin knockout and frataxin mutation mice were subjected to angiotensin II to induce hypertension. EndoMT and cardiac fibrosis were assessed using histological and protein expression analyses. Fatty acid oxidation (FAO) in microvascular endothelial cells was measured using a Seahorse XF96 analyzer. We showed that inhibition of FAO accompanies angiotensin II-induced EndoMT. Frataxin knockout mice promote EndoMT, associated with increased cardiac fibrosis following angiotensin II infusion. Angiotensin II reduces frataxin expression, which leads to mitochondrial iron overload and subsequent carbonylation of sirtuin 3. In turn, carbonylated sirtuin 3 contributes to the acetylated frataxin at lysine 189, making it more prone to degradation. The frataxin/sirtuin 3 feedback loop reduces hydroxyl-CoA dehydrogenase α subunit-mediated FAO. Additionally, silymarin is a scavenger of free radicals, restoring angiotensin II-induced reduction of FAO activity and sirtuin 3 and frataxin expression, improving EndoMT both in vitro and in vivo. Furthermore, frataxin mutation mice showed suppressed EndoMT and improved cardiac fibrosis. CONCLUSIONS The frataxin/sirtuin 3 feedback loop has the potential to attenuate angiotensin II-induced EndoMT by improving FAO.
Collapse
Affiliation(s)
- Yuetong Guo
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xingyi Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenglin Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
13
|
Cantrell AC, Besanson J, Williams Q, Hoang N, Edwards K, Bishop GR, Chen Y, Zeng H, Chen JX. Ferrostatin-1 specifically targets mitochondrial iron-sulfur clusters and aconitase to improve cardiac function in Sirtuin 3 cardiomyocyte knockout mice. J Mol Cell Cardiol 2024; 192:36-47. [PMID: 38734062 PMCID: PMC11164624 DOI: 10.1016/j.yjmcc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
AIMS Ferroptosis is a form of iron-regulated cell death implicated in ischemic heart disease. Our previous study revealed that Sirtuin 3 (SIRT3) is associated with ferroptosis and cardiac fibrosis. In this study, we tested whether the knockout of SIRT3 in cardiomyocytes (SIRT3cKO) promotes mitochondrial ferroptosis and whether the blockade of ferroptosis would ameliorate mitochondrial dysfunction. METHODS AND RESULTS Mitochondrial and cytosolic fractions were isolated from the ventricles of mice. Cytosolic and mitochondrial ferroptosis were analyzed by comparison to SIRT3loxp mice. An echocardiography study showed that SIRT3cKO mice developed heart failure as evidenced by a reduction of EF% and FS% compared to SIRT3loxp mice. Comparison of mitochondrial and cytosolic fractions of SIRT3cKO and SIRT3loxp mice revealed that, upon loss of SIRT3, mitochondrial, but not cytosolic, total lysine acetylation was significantly increased. Similarly, acetylated p53 was significantly upregulated only in the mitochondria. These data demonstrate that SIRT3 is the primary mitochondrial deacetylase. Most importantly, loss of SIRT3 resulted in significant reductions of frataxin, aconitase, and glutathione peroxidase 4 (GPX4) in the mitochondria. This was accompanied by a significant increase in levels of mitochondrial 4-hydroxynonenal. Treatment of SIRT3cKO mice with the ferroptosis inhibitor ferrostatin-1 (Fer-1) for 14 days significantly improved preexisting heart failure. Mechanistically, Fer-1 treatment significantly increased GPX4 and aconitase expression/activity, increased mitochondrial iron‑sulfur clusters, and improved mitochondrial membrane potential and Complex IV activity. CONCLUSIONS Inhibition of ferroptosis ameliorated cardiac dysfunction by specifically targeting mitochondrial aconitase and iron‑sulfur clusters. Blockade of mitochondrial ferroptosis may be a novel therapeutic target for mitochondrial cardiomyopathies.
Collapse
Affiliation(s)
- Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - Jessie Besanson
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - Quinesha Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - Ngoc Hoang
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - Kristin Edwards
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - G Reid Bishop
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| |
Collapse
|
14
|
Liu YT, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Ke D, Zhou H, Che Y, Tang QZ. Macrod1 suppresses diabetic cardiomyopathy via regulating PARP1-NAD +-SIRT3 pathway. Acta Pharmacol Sin 2024; 45:1175-1188. [PMID: 38459256 PMCID: PMC11130259 DOI: 10.1038/s41401-024-01247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 μM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 μM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
15
|
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, Pan B, Zhang B, Zhang H, Luo A, Xu Y, Li M, Pu Y. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci U S A 2024; 121:e2314128121. [PMID: 38359291 PMCID: PMC10895275 DOI: 10.1073/pnas.2314128121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Mengdi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jie Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Pengju Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Fangming Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Yuxi Wu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Weiwei Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang110122, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Yinzhe Xu
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Yang Pu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| |
Collapse
|
16
|
Vagnozzi RJ, Robinson EL. Frataxin Deacetylation in Macrophages: Avoiding SIRTain Myocyte Death. Circ Res 2023; 133:648-650. [PMID: 37708247 PMCID: PMC10506396 DOI: 10.1161/circresaha.123.323503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Ronald J. Vagnozzi
- Department of Medicine, Division of Cardiology, University
of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research & Translation,
University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Gates Institute, University of Colorado Anschutz Medical
Campus, Aurora, CO, USA
| | - Emma L. Robinson
- Department of Medicine, Division of Cardiology, University
of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research & Translation,
University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|